CN109983220A - 径向反动式风力涡轮发动机/动力装置/Kumars RR VT发动机 - Google Patents

径向反动式风力涡轮发动机/动力装置/Kumars RR VT发动机 Download PDF

Info

Publication number
CN109983220A
CN109983220A CN201680090739.3A CN201680090739A CN109983220A CN 109983220 A CN109983220 A CN 109983220A CN 201680090739 A CN201680090739 A CN 201680090739A CN 109983220 A CN109983220 A CN 109983220A
Authority
CN
China
Prior art keywords
engine
engine according
kumars
wind turbine
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680090739.3A
Other languages
English (en)
Inventor
苏库马兰巴拉纳丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN109983220A publication Critical patent/CN109983220A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/002Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/25Geometry three-dimensional helical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

一种利用风力发电的小型自容式发动机。每台发动机可同时运行2台发电机。可以安装多个发动机单元以用于大型商业用途。

Description

径向反动式风力涡轮发动机/动力装置/Kumars RR VT发动机
技术领域
这台发动机是利用风的动能并将其转化为电能的现场装置。
背景技术
鉴于目前全球变暖的严峻形势,必须找到一种廉价和清洁的能源。它还必须是一种可持续的可再生能源。答案是风能。
多年来,人类一直利用风能进行机械工作。早期的风车是用来碾磨小麦和从运河取水的。
近年来,人们对风力涡轮机发电越来越感兴趣,创新也越来越多。世界上最常见的是安装有螺旋桨叶片的风塔。这些塔及其叶片是巨大的。建造这些风力涡轮机塔的成本太高了。这与廉价能源的理念背道而驰,廉价能源的建造成本会转嫁给消费者。建造它们是一项艰巨的任务,维护起来很麻烦。一台发电机与一组螺旋桨相连。因此,一塔一发电机。
最近也出现了一些新颖的设计,这些设计在本质上似乎是艺术性的,而不是服务于实际目的。
发明内容
我认为这项发明是所有风力涡轮发动机中的劳斯莱斯,它满足了很高的期望。两台发电机可以由一个发动机单元同时运行。
开发这台发动机所采用的概念是基于:
(a)伯努利原理——利用异形轮廓(profiled contours)以及通过不同表面区域的收缩路径的通道上的气流的压力和速度的密切关系。和
(b)一种改进的阿基米德螺旋,利用反正切设计函数生成螺旋叶片。单个连续式叶片以45至90度角连接到涡轮转子上。
结合上述(a)和(b),可以在转子周围形成涡流状气流。涡轮转子上的叶片的浆距是变化的,即上升/下降,从而产生压力梯度。这种设计特点迫使叶片壁之间的空气流动。
Kumars RR VT发动机的基本部件有:
(1)管道/外壳组件
发动机的外壳(该外壳在下文会被称为管道)允许空气通过它的开口端。管道顶部和底座是两个翼型(aerofoils)的连接点。侧壁还充当涡轮转子、轴、轴颈和轴承的支撑结构。
(2)涡轮转子、叶片和轴组件
转子为连接叶片和端板的基座。它也是涡轮轴的壳体。
转子上的单个连续式叶片在转子与端板之间呈螺旋模式(whorl pattern)布置。根据位置的不同,叶片倾斜45到90度。这意味着,在任何给定的时刻,始终有叶片的一部分能够达到最佳的迎风角度。这会引起一个升力,从而引起转向动作。叶片的螺旋采用变浆距的反正切设计。
轴支撑转子总成、轴颈、轴承和齿轮,齿轮用于连接发电机。
(3)翼型
两个迎角为10度的翼型用于在管道内形成低压区。翼型前缘的翼弦角(chordangle)为45度。这是为了创造一个上升气流,使风朝着转子总成的中心。
(4)轴承和齿轮组件
轴承与轴颈一起用于支撑涡轮转子和轴组件。齿轮连接在涡轮轴的末端,用于与发电机连接。
上述部件及其布置位置的组合对于Kumar RR VT发动机实现高扭矩和高转速的最佳效率至关重要。
由于发动机的结构仅由几个部件组成,因此容易制造,毫无疑问,发动机非常坚固。
组件说明和工作压力图
附图将详细阐述Kumar RR VT发动机及其工作原理。
图1示出了发动机的前视图;
图2示出了发动机的[A-A]截面图;以及
图3示出了发动机内部产生的工作压力。
根据图示,图1、图2和图3自身已经进行了说明。
从图3可以看出,空气总是倾向于从高压区域流向低压区域。这种运动使得通过发动机的空气动量增加。
权利要求书(按照条约第19条的修改)
1.一种发动机,用于利用风能并将风能转化为电能。
2.根据权利要求1所述的发动机,其利用所述发动机内部管道压力的变化(图3)来运行涡轮机。
3.根据权利要求2所述的发动机,其使用固定装置来达到所需的管道压力,所述固定装置例如是翼型、汽缸、涡轮叶片和端板。
4.根据权利要求3的发动机组件,其必须有策略的放置。从发动机前部或后部进入的风不会改变涡轮旋转方向。
5.根据权利要求4所述的发动机,其可以安装在坚固的底座上,并可以安装在任何地方,不论是陆地上,海里还是空中。
6.根据权利要求5所述的发动机,其通过端部上的齿轮系与2台发电机连接,以保持动平衡、静平衡和稳定性。
7.根据权利要求6所述的发动机,由于尺寸大而被指定用于工业/私人使用,需要安装在坚固的底座上。
8.根据权利要求7所述的发动机,其可以水平、垂直或在任何所需位置安装。

Claims (8)

1.一种发动机,用于利用风能并将其转化为电能。
2.根据权利要求1所述的发动机,其利用压力变化(图3)进行操作。
3.根据权利要求2所述的发动机,其使用固定装置来达到所需压力,所述固定装置例如是翼型(1)、汽缸(4)、涡轮叶片(3)和端板(5)。
4.根据权利要求3的组件,其必须有策略的放置,以满足权利要求2。
5.根据权利要求4所述的发动机,其可以安装在底座(9)上,并可以安装在任何地方。
6.根据权利要求5所述的发动机,其通过齿轮(8)系与2台发电机在涡轮轴(6)的端部连接。
7.根据权利要求6所述的发动机,其可以作为多个单元在单个位置或多个位置运行,并且输出可以是局部的或集中的。
8.根据权利要求6和7所述的发动机,其可以水平、垂直或在任何所需位置安装。
CN201680090739.3A 2016-10-12 2016-10-12 径向反动式风力涡轮发动机/动力装置/Kumars RR VT发动机 Pending CN109983220A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MY2016/000063 WO2018070862A1 (en) 2016-10-12 2016-10-12 Radial reaction wind turbine engine / powerplant / kumars rr vt engine

Publications (1)

Publication Number Publication Date
CN109983220A true CN109983220A (zh) 2019-07-05

Family

ID=61905738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680090739.3A Pending CN109983220A (zh) 2016-10-12 2016-10-12 径向反动式风力涡轮发动机/动力装置/Kumars RR VT发动机

Country Status (4)

Country Link
US (1) US20190242360A1 (zh)
EP (1) EP3526470A4 (zh)
CN (1) CN109983220A (zh)
WO (1) WO2018070862A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900514A (zh) * 2006-07-14 2007-01-24 单建锡 喇叭口滚筒式螺旋风力发电机
CN201270451Y (zh) * 2008-05-08 2009-07-08 崔文安 自增压磁场旋转式风磁综合发电机
CN102011683A (zh) * 2010-12-21 2011-04-13 青岛敏深风电科技有限公司 螺旋式涡轮风叶及涡流对流式风力发电机
CN203759947U (zh) * 2014-03-05 2014-08-06 张风吉 能量转换演示实验装置
US20150017006A1 (en) * 2012-03-12 2015-01-15 The Power Collective Ltd. Wind Turbine Assembly
CN104454384A (zh) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 一种防异物发电机
CN104854325A (zh) * 2012-12-27 2015-08-19 三菱重工业株式会社 辐流式涡轮动叶片
CN205423073U (zh) * 2016-03-03 2016-08-03 高飞 一种螺形结构的风能发电机
WO2016145520A1 (en) * 2015-03-16 2016-09-22 O'hagan Peter K Improved wind turbine suitable for mounting without a wind turbine tower

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638005B2 (en) * 2002-01-17 2003-10-28 John W. Holter Coaxial wind turbine apparatus having a closeable air inlet opening
US7695242B2 (en) * 2006-12-05 2010-04-13 Fuller Howard J Wind turbine for generation of electric power
GB0912695D0 (en) * 2009-07-22 2009-08-26 Power Collective The Ltd A generator
US8525363B2 (en) * 2011-07-27 2013-09-03 Dlz Corporation Horizontal-axis hydrokinetic water turbine system
WO2014043507A1 (en) * 2012-09-13 2014-03-20 Martin Epstein Vertical axis wind turbine with cambered airfoil blades

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900514A (zh) * 2006-07-14 2007-01-24 单建锡 喇叭口滚筒式螺旋风力发电机
CN201270451Y (zh) * 2008-05-08 2009-07-08 崔文安 自增压磁场旋转式风磁综合发电机
CN102011683A (zh) * 2010-12-21 2011-04-13 青岛敏深风电科技有限公司 螺旋式涡轮风叶及涡流对流式风力发电机
US20150017006A1 (en) * 2012-03-12 2015-01-15 The Power Collective Ltd. Wind Turbine Assembly
CN104854325A (zh) * 2012-12-27 2015-08-19 三菱重工业株式会社 辐流式涡轮动叶片
CN203759947U (zh) * 2014-03-05 2014-08-06 张风吉 能量转换演示实验装置
CN104454384A (zh) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 一种防异物发电机
WO2016145520A1 (en) * 2015-03-16 2016-09-22 O'hagan Peter K Improved wind turbine suitable for mounting without a wind turbine tower
CN205423073U (zh) * 2016-03-03 2016-08-03 高飞 一种螺形结构的风能发电机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
夏征农等: "《大辞海》", 31 December 2015, 上海辞书出版社 *
李孔清等: "《空调器 风道与气动声学特性数值仿真优化》", 31 January 2016, 中国矿业大学出版社 *

Also Published As

Publication number Publication date
EP3526470A4 (en) 2020-05-27
WO2018070862A1 (en) 2018-04-19
US20190242360A1 (en) 2019-08-08
EP3526470A1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
Singh et al. Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor
US9512817B2 (en) Diffuser augmented wind turbines
US20110206526A1 (en) Vertical-axis wind turbine having logarithmic curved airfoils
Chong et al. Performance analysis of the deflector integrated cross axis wind turbine
CN103827479A (zh) 水平多级风力涡轮
US8221072B2 (en) Ultra high power density wind turbine system
US10094358B2 (en) Wind turbine blade with double airfoil profile
CN104329218A (zh) 一种连杆传动的折叠叶片垂直轴叶轮
CN104533706A (zh) 一种皮带传动的折叠叶片型垂直轴风机叶轮
CN109983220A (zh) 径向反动式风力涡轮发动机/动力装置/Kumars RR VT发动机
KR102142243B1 (ko) 돛 장치
KR101236888B1 (ko) 익형 2중 블레이드를 갖는 풍력발전용 수직축 터빈
CN205876600U (zh) 一种螺旋型垂直轴风力发电机
KR20100047131A (ko) 듀얼 로터 풍력발전기
CN203248313U (zh) 一种新型的风力发电机
RU2261362C2 (ru) Аэротермодинамическая ветроэнергетическая установка (атву)
CN104595104A (zh) 一种具有柔性叶片的垂直轴风机叶轮
CN205654487U (zh) 一种新型的垂直轴对称式风力发电机叶片及风轮
KR20150082804A (ko) 수직형 풍력발전기
US20180355845A1 (en) Low friction vertical axis-horizontal blade wind turbine with high efficiency
KR20140123324A (ko) 공조용 수평축 풍력발전시스템
CN202579039U (zh) 一种新型风力发电机
US20160333851A1 (en) Wind power generating apparatus
CN101994643B (zh) 升力型垂直轴风力发电机的风轮结构和风轮安装方法
KR101642259B1 (ko) 가변형 듀얼 블레이드를 포함하고 있는 고효율 수류터빈

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190705

RJ01 Rejection of invention patent application after publication