CN109978612A - 一种基于深度学习的便利店销量预测方法 - Google Patents

一种基于深度学习的便利店销量预测方法 Download PDF

Info

Publication number
CN109978612A
CN109978612A CN201910204204.XA CN201910204204A CN109978612A CN 109978612 A CN109978612 A CN 109978612A CN 201910204204 A CN201910204204 A CN 201910204204A CN 109978612 A CN109978612 A CN 109978612A
Authority
CN
China
Prior art keywords
sample
layer
training
rbm
svr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910204204.XA
Other languages
English (en)
Inventor
张涛
张宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910204204.XA priority Critical patent/CN109978612A/zh
Publication of CN109978612A publication Critical patent/CN109978612A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于深度学习的便利店销量预测方法属于计算机科学计算领域,该方法主要采用了深度信念网络DBN模型。DBN网络本质上是由多个限制玻尔兹曼机RBM堆叠而成的结构,这里将DBN网络顶层输出与SVR回归机进行连接,并优化参数设置,建立了新的回归模型。该方法能够解决一些实际问题,比如连锁便利店食品类商品的销量预测,在kaggle数据集上对比线性回归、决策树、BP神经网络、支持向量回归等单模型回归算法的实验中,都取得了更好的预测结果。

Description

一种基于深度学习的便利店销量预测方法
技术领域
本发明属于计算机科学计算领域,主要为深度学习回归预测算法的改进。
背景技术
在大数据时代,预测分析技术已经逐渐在商业社会中得到广泛应用。在新零售的热潮下,便利店行业以时间上、空间上和商品上便民特点,加之政策的支持和投资的推动,成为了新的风口。便利店企业在激烈的市场竞争中,要做到合理配置商品库存,利用大数据分析技术对销售量的预测是重要的一个环节。
连锁便利店地点复杂、需求多样、季节影响等因素增加了其销量预测的困难。以前,预测只是人为的凭着经验做预测,没有对此多做研究。现在,虽然有许多采用传统的回归预测算法进行销量预测的研究与应用,但存在诸多缺点,如线性回归算法对于非线性数据难以建模,难以表达高度复杂的数据;BP神经网络的模型过于复杂,难以解释,训练过程耗时,对数据量依赖大,易陷于局部最优;决策树有过拟合的倾向等等;而且它们在精度方面都有所欠缺。所以,研究一种精确且可靠的销量预测算法来提高品牌的竞争力是很有意义的。
发明内容
本发明要解决的技术问题是,提出一种基于深度学习的销量预测方法。该方法主要采用了深度信念网络DBN模型。DBN网络本质上是由多个限制玻尔兹曼机RBM堆叠而成的结构,这里将DBN网络顶层输出与SVR回归机进行连接,建立了新的回归模型,引入了对于易腐败变质商品的评价指标,目的是为了提高连锁便利店容易变质商品的销量预测精度。
为实现上述目的,本发明所述预测方法包括以下步骤。
步骤1.预处理。对便利店的历史销量数据进行清洗、插值、集成操作。
步骤2.构建DBN和SVR组合模型。自底向上设置每一层RBM模型可视层和隐藏层神经元节点个数,将顶层RBM隐藏层作为输出层与SVR模型输入层连接。
步骤3.训练组合模型。组合模型训练包括两步:
S1.预训练,用训练集数据对每层RBM逐层进行预训练,使得每层RBM参数达到局部最优。
S2.有监督微调,将DBN和SVR组合模型使用BP反向传播算法,使用训练集数据对其进行有监督训练,微调各层参数,直到收敛。
步骤4.评估模型。使用模型评价指标评估模型性能。
附图说明:
图1为本发明所涉及方法的流程图;
图2为本发明所涉及的数据集表结构图;
图3为本发明所涉及的深度信念网络DBN模型结构图。
图4为本发明设计的DBN与SVR融合模型的结构图;
图5为本发明所涉及的DBN与SVR融合模型的训练流程图;
图6为本发明所涉及的支持向量回归最优分类线图;
具体实施方式
下面结合附图对本发明方法做进一步说明:
如图1所示,本发明所述预测方法包括以下步骤:
步骤1.数据预处理。
S1.数据清洗。去除kaggle数据集中与目标没有关联的噪声数据表(石油价格表、假期表、商店总交易量表)。
S2.缺失值填充。时间序列数据少数销量数据为空,数据量比较大,采用线性内插法填充缺失值。
S3数据集成。数据地区信息按多级(如图2所示)给出,将列state和列city合并成一列,并用唯一标识area_id编码。
步骤2.构建DBN和SVR组合模型。深度信念网络DBN由多层限制玻尔兹曼机RBM组成,如图3所示的DBN网络是由3个RBM模型堆叠而成,每个RBM由两层网络组成,即可视层(v)和隐藏层(h),层与层之间通过权值(w)连接。自底向上,第一层可视层(v1)为输入的初始数据,和第一个隐藏层(h1)组成第一个RBM(RBM1);第一个隐藏层(h1)作为第二可视层(v2),并和第二隐藏层(h2)组成第二个RBM(RBM2);第二隐藏层作为第三个可视层(v3),并和第三隐藏层(h3)组成第三个RBM(RBM3)。
本实施例中DBN和SVR融合模型结构如图4所示,3层RBM组成DBN网络,DBN网络顶层输出与SVR模型相连。底层RBM1可视层有7个神经元节点对应输入数据7种属性:时间、地区、商品id、商品类别id、商店id、是否容易变质、保质期。样本数据在经过每一层RBM都会进行特征提取并降低维度。RBM3输出层输出数据作为支持向量回归机SVR的输入,经过SVR回归模型运算后得出预测结果。
步骤3.DBN和SVR组合模型的训练流程如图5所示。首先用训练集数据对每层RBM逐层进行预训练。RBM是无监督学习模型,无监督学习是指根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题。RBM模型是通过重构之后得到的对样本的估计与样本的真实值之间的误差进行学习的。RBM学习过程如下:
S1.样本x通过输入层输入,经过前向运算得到激活值y=f(wx+b),w为权值b为偏置值,f(x)是激活函数,这里采用sigmoid激活函数。
S2.将得到激活值y从隐藏层向输入层反向运算,使用相同的连接权值w和可视层偏置a用公式x′=f(wx+a)反向运算得到重构值x'。RBM的隐藏层的神经元个数比可见层的神经元个数少,在反向运算中,较少神经元的隐藏层又能够近似复现原始可见层的输入,因此,可以认为前向运算是对输入信号的编码,特征提取的过程,而反向运算是解码的过程。
S3.重构值x'代入公式y'=f(wx'+b)正向运算得到重构值y',然后z=x*y,z'=x'*y',可更新连接权值w=w+α*(z-z'),更新隐含层偏置b'=b+α*(y-y'),更新可视层偏置a'=a+α*(x-x'),α为学习率,这里设置为1.0。
S4.更新权值和偏置后,重复S1、S2、S3计算直到样本重构值与样本值均方误差mse<0.1或者迭代次数达到10次作为终止条件。
RBM1预训练完成后,训练样本通过输入RBM1得到输出作为RBM2输入层的输入数据进行RBM2的预训练。RBM全部完成预训练后,顶层SVR回归模型将接收顶层RBM的输出特征向量作为它的输入特征向量,训练SVR回归模型。
SVR回归模型:
给定一个训练样本D={(x1,y1),(x2,y2)……(xn,yn)},yi∈R,R是实数集,n是样本总量,i为样本索引,希望学得一个f(x)使得其与y尽可能的接近,w、b是待确定的参数。在这个模型中,只有当f(x)与y完全相同时,损失才为零,而支持向量回归假设我们能容忍的f(x)与y之间最多有ε的偏差,当且仅当f(x)与y的差别绝对值大于ε时,才计算损失,此时相当于以f(x)为中心,构建一个宽度为2ε的间隔带,若训练样本落入此间隔带,则认为是被预测正确的,如图6所示,SVR回归问题可以转化为求解下列约束规划问题:
上式中C为正则化常数,是人为设置的经验参数,这里设置为C=1。间隔ε设置为1,m为样本总量,i为样本索引,f(xi)是样本xi的预测值,yi是真实值,εi是样本xi的超平面上间隔松弛变量,是样本xi的下间隔的松弛变量,s.t.是约束条件,f(xi)=K(w,xi)+b,其中K(x)为核函数,它将低维度空间映射为高纬度空间,将低维度线性不可分问题转化为高纬度线性可分的问题,这里选择使用RBF径向基核函数。SVR模型的训练就是通过输入样本xi和标签值yi有监督地训练模型,更新模型参数w,b。
SVR模型训练完成后,每一层RBM网络只能确保自身层内的权值对该层特征向量映射达到最优,并不是对整个DBN和SVR融合模型的特征向量映射达到最优,所以预训练样本的标签信息通过顶层SVR模型自顶向下传播至每一层RBM,迭代更新微调整个DBN网络的权值和偏置,直至收敛,模型的训练完成。
RBM网络训练模型的过程可以看作对一个深层BP网络权值参数的初始化,使DBN克服了BP网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点。这可以很直观的解释,基于DBN网络结构的BP算法只需要对权值参数空间进行一个局部的搜索,相比前向神经网络来说,训练速度快,收敛时间短。
步骤4.在大量训练集采用步骤3中方法训练好模型DBN_SVR后,用测试集检验预测模型对连锁便利店销量的预测能力以及模型的泛化能力,使用评价指标为加权均方根对数误差NWRMSLE。
上式中i是商品的索引数值,n为测试集总的样本数,是商品i销量预测值,yi是商品i实际销量值。评价体系引入了商品的重要性因子ω,针对便利店中保质期短、容易腐败变质的商品。ω越大,评价指标NWRMSLE在ω的惩罚下越大,说明算法的性能越低。本例商品权值函数为其中t为商品保质期,单位是天,s是季节影响因子,夏季s=1.05,冬季s=0.85,春秋季s=1.0。
如前所述,本发明的优势在于:
1.将连锁便利店的销量预测和深度学习、机器学习算法相结合,对比以前人们采用主观经验的方式预测销量会有更加科学有效。
2.将深度信念网络算法(DBN)与支持向量回归机(SVR)技术相结合,解决连锁便利店销量预测的问题。对比一些传统销量预测方法精度不高、收敛慢、易陷入局部最优解等缺点,本方法在连锁便利店保质期短的食品类商品销量预测方面有显著效果。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (1)

1.一种基于深度学习的便利店销量预测方法,其特征在于,包括以下步骤:
步骤1.数据预处理;
S1.数据清洗;
S2.缺失值填充;
S3数据集成;
步骤2.构建DBN和SVR组合模型;
DBN网络是由3个RBM模型堆叠而成,每个RBM由两层网络组成,即可视层(v)和隐藏层(h),层与层之间通过权值(w)连接;自底向上,第一层可视层(v1)为输入的初始数据,和第一个隐藏层(h1)组成第一个RBM(RBM1);第一个隐藏层(h1)作为第二可视层(v2),并和第二隐藏层(h2)组成第二个RBM(RBM2);第二隐藏层作为第三个可视层(v3),并和第三隐藏层(h3)组成第三个RBM(RBM3);
3层RBM组成DBN网络,DBN网络顶层输出与SVR模型相连;底层RBM1可视层有7个神经元节点对应输入数据7种属性:时间、地区、商品id、商品类别id、商店id、是否容易变质、保质期;
样本数据在经过每一层RBM都会进行特征提取并降低维度;RBM3输出层输出数据作为支持向量回归机SVR的输入,经过SVR回归模型运算后得出预测结果;
步骤3.首先用训练集数据对每层RBM逐层进行预训练;RBM模型是通过重构之后得到的对样本的估计与样本的真实值之间的误差进行学习的;RBM学习过程如下:
S1.样本x通过输入层输入,经过前向运算得到激活值y=f(wx+b),w为权值b为偏置值,f(x)是激活函数,这里采用sigmoid激活函数;
S2.将得到激活值y从隐藏层向输入层反向运算,使用相同的连接权值w和可视层偏置a用公式x′=f(wx+a)反向运算得到重构值x';
S3.重构值x'代入公式y'=f(wx'+b)正向运算得到重构值y',然后z=x*y,z'=x'*y',可更新连接权值w′=w+α*(z-z'),更新隐含层偏置b=b+α*(y-y'),更新可视层偏置a'=a+α*(x-x'),α为学习率,设置为1.0;
S4.更新权值和偏置后,重复S1、S2、S3计算直到样本重构值与样本值均方误差mse<0.1或者迭代次数达到10次作为终止条件;
RBM1预训练完成后,训练样本通过输入RBM1得到输出作为RBM2输入层的输入数据进行RBM2的预训练;RBM全部完成预训练后,顶层SVR回归模型将接收顶层RBM的输出特征向量作为它的输入特征向量,训练SVR回归模型;
SVR回归模型:
给定一个训练样本D={(x1,y1),(x2,y2)……(xn,yn)},yi∈R,R是实数集,n是样本总量,i为样本索引,w、b是待确定的参数;
支持向量回归假设我们能容忍的f(x)与y之间最多有ε的偏差,当且仅当f(x)与y的差别绝对值大于ε时,才计算损失,此时相当于以f(x)为中心,构建一个宽度为2ε的间隔带,若训练样本落入此间隔带,则认为是被预测正确的,SVR回归问题转化为求解下列约束规划问题:
s.t.f(xi)-yi≤∈+εi,
上式中C为正则化常数,是人为设置的经验参数,这里设置为C=1;间隔ε设置为1,m为样本总量,i为样本索引,f(xi)是样本xi的预测值,yi是真实值,εi是样本xi的超平面上间隔松弛变量,是样本xi的下间隔的松弛变量,s.t.是约束条件,f(xi)=K(w,xi)+b,其中K(x)为核函数,它将低维度空间映射为高纬度空间,将低维度线性不可分问题转化为高纬度线性可分的问题,这里选择使用RBF径向基核函数;SVR模型的训练就是通过输入样本xi和标签值yi有监督地训练模型,更新模型参数w,b;
SVR模型训练完成后,每一层RBM网络只能确保自身层内的权值对该层特征向量映射达到最优,并不是对整个DBN和SVR融合模型的特征向量映射达到最优,所以预训练样本的标签信息通过顶层SVR模型自顶向下传播至每一层RBM,迭代更新微调整个DBN网络的权值和偏置,直至收敛,模型的训练完成;
训练好模型DBN_SVR后,对连锁便利店销量进行预测。
CN201910204204.XA 2019-03-18 2019-03-18 一种基于深度学习的便利店销量预测方法 Pending CN109978612A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910204204.XA CN109978612A (zh) 2019-03-18 2019-03-18 一种基于深度学习的便利店销量预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910204204.XA CN109978612A (zh) 2019-03-18 2019-03-18 一种基于深度学习的便利店销量预测方法

Publications (1)

Publication Number Publication Date
CN109978612A true CN109978612A (zh) 2019-07-05

Family

ID=67079347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910204204.XA Pending CN109978612A (zh) 2019-03-18 2019-03-18 一种基于深度学习的便利店销量预测方法

Country Status (1)

Country Link
CN (1) CN109978612A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111815348A (zh) * 2020-05-28 2020-10-23 杭州览众数据科技有限公司 一种基于各门店商品相似度聚类的区域商品生产计划方法
CN113634873A (zh) * 2021-08-31 2021-11-12 西安交通大学 基于干涉测量的激光加工后壁组合防护方法及系统
CN113869938A (zh) * 2021-09-09 2021-12-31 杭州铭信信息科技有限公司 一种日清生鲜门店智能订货方法
CN115034812A (zh) * 2022-05-31 2022-09-09 湖南华菱电子商务有限公司 基于大数据的钢铁行业销售量预测方法及装置
CN115115416A (zh) * 2022-07-21 2022-09-27 湖南大学 一种商品销量预测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106709640A (zh) * 2016-12-15 2017-05-24 华南理工大学 基于深度学习与支持向量回归的船舶能耗预测方法
CN106769048A (zh) * 2017-01-17 2017-05-31 苏州大学 基于Nesterov动量法的自适应深度置信网络轴承故障诊断方法
CN107180362A (zh) * 2017-05-03 2017-09-19 浙江工商大学 基于深度学习的零售商品销售预测方法
CN107292672A (zh) * 2017-07-05 2017-10-24 上海数道信息科技有限公司 一种餐饮行业销售预测的实现系统与方法
CN108305103A (zh) * 2018-02-26 2018-07-20 上海理工大学 一种基于参数优化的支持向量机模型的产品销售预测方法
CN108764974A (zh) * 2018-05-11 2018-11-06 国网电子商务有限公司 一种基于深度学习的商品采购量预测方法及装置
DE102017114187A1 (de) * 2017-06-27 2018-12-27 SBF Invest GmbH Automatische Kommissionierung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106709640A (zh) * 2016-12-15 2017-05-24 华南理工大学 基于深度学习与支持向量回归的船舶能耗预测方法
CN106769048A (zh) * 2017-01-17 2017-05-31 苏州大学 基于Nesterov动量法的自适应深度置信网络轴承故障诊断方法
CN107180362A (zh) * 2017-05-03 2017-09-19 浙江工商大学 基于深度学习的零售商品销售预测方法
DE102017114187A1 (de) * 2017-06-27 2018-12-27 SBF Invest GmbH Automatische Kommissionierung
CN107292672A (zh) * 2017-07-05 2017-10-24 上海数道信息科技有限公司 一种餐饮行业销售预测的实现系统与方法
CN108305103A (zh) * 2018-02-26 2018-07-20 上海理工大学 一种基于参数优化的支持向量机模型的产品销售预测方法
CN108764974A (zh) * 2018-05-11 2018-11-06 国网电子商务有限公司 一种基于深度学习的商品采购量预测方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姜艳梅: "基于数据挖掘的超市商品销量预测", 《中国优秀硕士学位论文全文数据库(信息科技辑)》 *
焦琴琴: "基于深度学习的路网短时交通流预测", 《中国优秀硕士学位论文全文数据库(工程科技II辑)》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111815348A (zh) * 2020-05-28 2020-10-23 杭州览众数据科技有限公司 一种基于各门店商品相似度聚类的区域商品生产计划方法
CN113634873A (zh) * 2021-08-31 2021-11-12 西安交通大学 基于干涉测量的激光加工后壁组合防护方法及系统
CN113869938A (zh) * 2021-09-09 2021-12-31 杭州铭信信息科技有限公司 一种日清生鲜门店智能订货方法
CN115034812A (zh) * 2022-05-31 2022-09-09 湖南华菱电子商务有限公司 基于大数据的钢铁行业销售量预测方法及装置
CN115034812B (zh) * 2022-05-31 2023-04-21 湖南华菱电子商务有限公司 基于大数据的钢铁行业销售量预测方法及装置
CN115115416A (zh) * 2022-07-21 2022-09-27 湖南大学 一种商品销量预测方法
CN115115416B (zh) * 2022-07-21 2024-07-02 湖南大学 一种商品销量预测方法

Similar Documents

Publication Publication Date Title
CN109978612A (zh) 一种基于深度学习的便利店销量预测方法
CN109284866B (zh) 商品订单预测方法及装置、存储介质、终端
Liu et al. A flood forecasting model based on deep learning algorithm via integrating stacked autoencoders with BP neural network
CN108829763B (zh) 一种基于深度神经网络的影评网站用户的属性预测方法
CN113537600B (zh) 一种全过程耦合机器学习的中长期降水预报建模方法
CN111563706A (zh) 一种基于lstm网络的多变量物流货运量预测方法
CN107506590A (zh) 一种基于改进深度信念网络的心血管疾病预测模型
CN109063911A (zh) 一种基于门控循环单元网络的负荷聚合体分组预测方法
CN108509573A (zh) 基于矩阵分解协同过滤算法的图书推荐方法及系统
CN111582538A (zh) 一种基于图神经网络的社群价值预测方法及系统
CN115438732A (zh) 面向冷启动用户基于分类偏好迁移的跨域推荐方法
CN111768000A (zh) 在线自适应微调深度学习的工业过程数据建模方法
CN109754122A (zh) 一种基于随机森林特征提取的bp神经网络的数值预测方法
CN105096159A (zh) 一种区域售电量预测方法及装置
CN108062566A (zh) 一种基于多核潜在特征提取的智能集成软测量方法
CN116362836A (zh) 基于用户行为序列的农产品推荐算法
Li et al. Short‐Term Demand Forecast of E‐Commerce Platform Based on ConvLSTM Network
CN111292121A (zh) 一种基于园区画像的园区负荷预测方法及系统
CN114742564A (zh) 一种融合复杂关系的虚假评论者群体检测方法
Zhu et al. Loan default prediction based on convolutional neural network and LightGBM
CN114239397A (zh) 基于动态特征提取与局部加权深度学习的软测量建模方法
CN105913144B (zh) 一种基于目标导向最优匹配相似性的产品寿命预测方法
Zhao et al. A pipeline for fair comparison of graph neural networks in node classification tasks
Jagric A nonlinear approach to forecasting with leading economic indicators
CN116307206A (zh) 基于分段图卷积和时间注意力机制的天然气流量预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190705