CN109977629B - 自动变速箱的壳体优化方法 - Google Patents

自动变速箱的壳体优化方法 Download PDF

Info

Publication number
CN109977629B
CN109977629B CN201910449716.2A CN201910449716A CN109977629B CN 109977629 B CN109977629 B CN 109977629B CN 201910449716 A CN201910449716 A CN 201910449716A CN 109977629 B CN109977629 B CN 109977629B
Authority
CN
China
Prior art keywords
shell
vibration signal
box
gear
automatic gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910449716.2A
Other languages
English (en)
Other versions
CN109977629A (zh
Inventor
刘敦宁
高晓光
苑衍灵
赵培龙
郭士鲁
赵洪杰
李文冠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shengrui Transmission Co Ltd
Original Assignee
Shengrui Transmission Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shengrui Transmission Co Ltd filed Critical Shengrui Transmission Co Ltd
Priority to CN201910449716.2A priority Critical patent/CN109977629B/zh
Publication of CN109977629A publication Critical patent/CN109977629A/zh
Application granted granted Critical
Publication of CN109977629B publication Critical patent/CN109977629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明涉及一种自动变速箱的壳体优化方法。所述自动变速箱的壳体优化方法是先检测自动变速箱壳体的各个面的壳体振动信号,并根据检测的壳体振动信号分离出各齿轮振动信号,然后测试自动变速箱各轴与壳体的频响曲线h(t),用该曲线计算轴和壳体的频率和振型,用有限元法直接计算壳体和轴的频率和振型,并对频率和振型进行验证;将分离出的齿轮振动信号为输入条件,与计算出的频率和振型共同计算出壳体振动辐射区,并确定壳体的优化区域,对优化区域进行加厚处理。本方法通过测试计算出齿轮振动信号与壳体噪音辐射区的对应关系,能够对齿轮和壳体对应区域有明确的认识,明确壳体优化区域,从而避免对壳体大范围的设计变更。

Description

自动变速箱的壳体优化方法
技术领域
本发明涉及自动变速箱技术领域,具体地,涉及一种自动变速箱的壳体优化方法。
背景技术
自动变速箱是相对于手动变速箱而出现的一种能够自动根据汽车车速和发动机转速来进行自动换挡操纵的变速装置。目前汽车自动变速箱常见的有四种型式,分别是液力自动变速箱(AT)、机械无级自动变速箱(CVT)、电控机械自动变速箱(AMT)和双离合自动变速箱(DCT)。
自动变速箱在工作时由于内部的齿轮振动会产生噪音,为了降低噪音会对自动变速箱的壳体进行加厚,现在要对自动变速箱的壳体进行加厚优化通常是采用直接检测自动变速箱壳体噪声辐射区域的方式,对检测出的壳体噪声辐射区域直接进行加厚处理,但这样的优化方式由于直接检测处的壳体噪声辐射区域较大,直接加厚不仅会浪费材料,而且会导致自动变速箱整体的体积增大,不利于整车的布置。
发明内容
为了改善现有技术的不足,本发明的目的在于提供了一种自动变速箱的壳体优化方法,以解决现有技术中存在的对自动变速箱的壳体进行加厚优化通常是采用直接检测自动变速箱壳体噪声辐射区域的方式,对检测出的壳体噪声辐射区域直接进行加厚处理,但这样的优化方式由于直接检测处的壳体噪声辐射区域较大,直接加厚不仅会浪费材料,而且会导致自动变速箱整体的体积增大,不利于整车的布置的技术问题。
在本发明的实施例中提供了一种自动变速箱的壳体优化方法,包括以下步骤:
S1.检测自动变速箱壳体的各个面的壳体振动信号;
S2.根据所述壳体振动信号分离出各齿轮振动信号;
S3.测试自动变速箱各轴与壳体的频响曲线h(t),并在测试分析软件中计算自动变速箱各轴和壳体固有频率和振型;
S4.运用有限元软件计算自动变速箱各轴和壳体固有频率和振型,并用S3中测试结果进行验证;将S2中分离出的齿轮实际振动信号作为输入条件,与计算出的固有频率和振型,在有限元软件中计算各齿轮振动信号与壳体各面的噪声辐射区域的对应关系;
S5.根据计算出的各齿轮振动信号与壳体各面的噪声辐射区域的对应关系,确定壳体的优化区域,对优化区域进行加厚处理。
进一步地,步骤S1包括有:
S10.在自动变速箱壳体的各个面上安装振动传感器;
S11.通过所述振动传感器测量自动变速箱各个面的壳体振动信号。
进一步地,步骤S2包括有:
S20.对检测到的壳体振动信号进行阶次滤波处理;
S21.只保留需要的齿轮信号,所述齿轮信号为各齿轮振动信号。
进一步地,步骤S2还包括有S22:
S22.检测各齿轮振动信号,并将所述各齿轮振动信号与分离出来的齿轮振动信号作比较,如果差值超过设定值则齿轮振动信号不可用。
进一步地,步骤S22还包括有:
S220.使用齿轮啮合仪器测量各齿轮振动信号;
S221. 将所述各齿轮振动信号与分离出来的齿轮振动信号作比较,如果差值超过设定值则齿轮振动信号不可用。
进一步地,所述自动变速箱的壳体优化方法还包括有步骤S40,步骤S40位于步骤S4与S5之间,步骤S40为:
S40.检测自动变速箱壳体的各个面上的噪声辐射区域,并将噪声辐射区域的检测值与S4中噪声辐射区域的计算值作比较,若差值超过设定值则计算值不可用。
进一步地,步骤S40包括有:
S400.使用麦克风阵列设备测试自动变速箱壳体的各个面上的噪声辐射区域;
S401. 将噪声辐射区域的检测值与S4中噪声辐射区域的计算值作比较,若差值超过设定值则计算值不可用。
本发明提供的自动变速箱的壳体优化方法是先检测自动变速箱壳体的各个面的壳体振动信号,并根据检测的壳体振动信号分离出自动变速箱内部各齿轮振动信号,然后测试自动变速箱各轴与壳体的频响曲线h(t),并在测试分析软件中计算自动变速箱各轴和壳体固有频率和振型;分别计算自动变速箱各轴和壳体固有频率和振型,并用S3中测试结果进行验证,将S2中分离出的齿轮实际振动信号作为输入条件,与计算出的固有频率和振型,在有限元软件中计算各齿轮振动信号与壳体各面的噪声辐射区域的对应关系;最后可以根据计算出的各齿轮振动与壳体各面的噪声辐射区域的对应关系,确定壳体的优化区域,对优化区域进行加厚处理。与现有的自动变速箱壳体优化方式相比,本发明提供的自动变速箱的壳体优化方法通过测试计算出齿轮振动与壳体噪音辐射区的对应关系,能够对齿轮和壳体对应区域有明确的认识,明确壳体优化区域,从而避免对壳体大范围的设计变更,在一定程度上减少了壳体的加厚范围,减小了自动变速箱的尺寸,更有利于整车的布置。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的自动变速箱的壳体优化方法的实施例1的步骤示意图;
图2为本发明提供的自动变速箱的壳体优化方法的实施例2的步骤示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语如出现“中心”、 “上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等,其所指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,如出现术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明提供了一种自动变速箱的壳体优化方法,下面给出多个实施例对本发明提供的自动变速箱的壳体优化方法进行详细描述。
实施例1
如图1所示,本发明提供的自动变速箱的壳体优化方法,包括以下步骤:
S1.检测自动变速箱壳体的各个面的壳体振动信号;
S2.根据壳体振动信号分离出各齿轮振动信号;
S3.测试自动变速箱各轴与壳体的频响曲线h(t),并在测试分析软件中计算自动变速箱各轴和壳体固有频率和振型;
S4.运用有限元软件计算自动变速箱轴和壳体固有频率和振型,并用S3中测试结果进行验证;将S2中分离出的齿轮实际振动信号作为输入条件,与计算出的固有频率和振型,在有限元软件中计算各齿轮振动信号与壳体各面的噪声辐射区域的对应关系;
S5.根据计算出的各齿轮振动与壳体各面的噪声辐射区域的对应关系,确定壳体的优化区域,对优化区域进行加厚处理。
本发明提供的自动变速箱的壳体优化方法是先检测自动变速箱壳体的各个面的壳体振动信号,并根据检测的壳体振动信号分离出自动变速箱内部各齿轮振动信号,然后测试自动变速箱各轴与壳体的频响曲线h(t),并在测试分析软件中计算自动变速箱各轴和壳体固有频率和振型;分别计算自动变速箱各轴和壳体固有频率和振型,并用S3中测试结果进行验证,将S2中分离出的齿轮实际振动信号作为输入条件,与计算出的固有频率和振型,在有限元软件中计算各齿轮振动信号与壳体各面的噪声辐射区域的对应关系;最后可以根据计算出的各齿轮振动与壳体各面的噪声辐射区域的对应关系,确定壳体的优化区域,对优化区域进行加厚处理。与现有的自动变速箱壳体优化方式相比,本发明提供的自动变速箱的壳体优化方法通过测试计算出齿轮振动与壳体噪音辐射区的对应关系,能够对齿轮和壳体对应区域有明确的认识,明确壳体优化区域,从而避免对壳体大范围的设计变更,在一定程度上减少了壳体的加厚范围,减小了自动变速箱的尺寸,更有利于整车的布置。
其中,自动变速箱各轴与壳体的频响曲线h(t)可以使用力锤法测试,以壳体为例:
(1)准备壳体,在壳体表面选择敲击点和振动加速度传感器布置点。
(2)在壳体数模中找出各敲击点坐标值和振动加速度传感器布置点坐标值。
(3)在测试软件中,输入敲击点坐标,建立壳体模型。
(4)依次用力锤敲击各敲击点,测试软件根据敲击力和振动加速度信号计算出壳体频响曲线。
(5)将频响曲线导入分析软件中。
这种频响曲线的测试方法属于现有技术,这里不做更加详细的描述。
本专利中输入轮振动信号为X,频率为Wd,振型为Wn,M为壳体质量,C为阻尼,K为壳体刚度为常量;求解壳体振动响应为u。
以其中某一阶振动响应为例,其振动方程为公式1,初始条件为公式2:
公式1
公式2
根据微分方程理论,其解有如下形式:
公式3
将其带入公式1,得到特征方程:
公式4
其特征解:
公式5
公式6
公式7
则,将公式6带入公式5:
公式8
根据微分方程理论,公式1的通解:
公式9
其中
公式10
将公式2带入公式9及其导数,得到:
公式11
将公式11带入公式9,得到振动响应:
公式12
其中,齿轮振动信号为振动响应函数的振源,主要以静态传动误差作为指标,据相关文献,静态传动误差峰峰值小于2um为最佳;噪音辐射区为壳体在振动源激励下的响应,一般以检测点的振动加速度幅值作为评判,通过降低激励源激励或改善总成结构的固有属性的方式可以有效降低噪音辐射区的振动响应。
具体地,步骤S1包括有:
S10.在自动变速箱壳体的各个面上安装振动传感器;
S11.通过振动传感器测量自动变速箱各个面的壳体振动信号。
可以通过在自动变速箱壳体的各个面安装振动传感器的方式检测各个面的壳体振动信号,振动传感器的作用主要是将机械量接收下来,并转换为与之成比例的电量,振动传感器是将原始要测的机械量做为振动传感器的输入量,然后由机械接收部分加以接收,形成另一个适合于变换的机械量,最后由机电变换部分再将变换为电量。振动传感器可以分为机械式、光学式和电测式几大类,其属于现有技术,这里不对振动传感器的结构做详细解释。
步骤S2包括有:
S20.对检测到的壳体振动信号进行阶次滤波处理;
S21.只保留需要的齿轮信号,齿轮信号为各齿轮振动信号。
进一步地,步骤S2还包括有S22:
S22.检测各齿轮振动信号,并将各齿轮振动信号与分离出来的齿轮振动信号作比较,如果差值超过设定值则齿轮振动信号不可用。
由于进行阶次滤波处理后得到的齿轮振动信号会存在一定的误差,因此需要将各齿轮振动信号与分离出来的齿轮振动信号作比较,如果相差过大,超过预先设定的差值,则说明处理后得到的齿轮振动信号误差过大,则不可用,可以重新检测并进行处理。
步骤S22还包括有:
S220.使用齿轮啮合仪器测量各齿轮振动信号;
S221. 将各齿轮振动信号与分离出来的齿轮振动信号作比较,如果差值超过设定值则齿轮振动信号不可用。
实施例2
本发明提供的自动变速箱的壳体优化方法,包括以下步骤:
S1.检测自动变速箱壳体的各个面的壳体振动信号;
S2.根据壳体振动信号分离出各齿轮振动信号;
S3.测试自动变速箱各轴与壳体的频响曲线h(t),并在测试分析软件中计算自动变速箱各轴和壳体固有频率和振型;
S4.分别计算自动变速箱各轴和壳体固有频率和振型,并用S3中测试结果进行验证,并根据S2中分离出的齿轮实际振动信号计算各齿轮振动与壳体各面的噪声辐射区域的对应关系;
S5.根据计算出的各齿轮振动与壳体各面的噪声辐射区域的对应关系,确定壳体的优化区域,对优化区域进行加厚处理。
本发明提供的自动变速箱的壳体优化方法的实施例2与实施例1的区别在于,如图2所示,自动变速箱的壳体优化方法还包括有步骤S40,步骤S40位于步骤S4与S5之间,步骤S40为:
S40.检测自动变速箱壳体的各个面上的噪声辐射区域,并将噪声辐射区域的检测值与S4中噪声辐射区域的计算值作比较,若差值超过设定值则计算值不可用。
在步骤S4与S5之间加设步骤S40的原因在于S4中噪声辐射区域的计算值可能会存在一定的误差,因此需要将噪声辐射区域的检测值与S4中噪声辐射区域的计算值作比较,若噪声辐射区域的计算值不处于噪声辐射区域的检测值区域内,并与噪声辐射区域的检测值相差过大,则说明误差过大,则不可用,需要重新检测并进行处理。
具体地,步骤S40包括有:
S400.使用麦克风阵列设备测试自动变速箱壳体的各个面上的噪声辐射区域;
S401. 将噪声辐射区域的检测值与S4中噪声辐射区域的计算值作比较,若差值超过设定值则计算值不可用。
麦克风阵列设备是由一定数目的声学传感器(一般是麦克风)组成,用来对声场的空间特性进行采样并处理的系统,其在频率响应中也可以根据时域中波束形成与空间滤波器相仿的应用,分析出接收到语音信号音源的方向以及其变化,而这些分析都可以由极坐标图以波束形式来显示语音信号的强度与角度。麦克风阵列设备能够直接检测出自动变速箱壳体的噪声辐射区域,其属于现有技术,这里不对其结构进行详细解释。
综上所述,本发明提供的自动变速箱的壳体优化方法是先检测自动变速箱壳体的各个面的壳体振动信号,并根据检测的壳体振动信号分离出自动变速箱内部各齿轮振动信号,然后测试自动变速箱各轴与壳体的频响曲线h(t),并在测试分析软件中计算自动变速箱各轴和壳体固有频率和振型;分别计算自动变速箱各轴和壳体固有频率和振型,并用S3中测试结果进行验证,并根据S2中分离出的齿轮实际振动信号计算各齿轮振动与壳体各面的噪声辐射区域的对应关系;最后可以根据计算出的各齿轮振动与壳体各面的噪声辐射区域的对应关系,确定壳体的优化区域,对优化区域进行加厚处理。与现有的自动变速箱壳体优化方式相比,本发明提供的自动变速箱的壳体优化方法通过测试计算出齿轮振动与壳体噪音辐射区的对应关系,能够对齿轮和壳体对应区域有明确的认识,明确壳体优化区域,从而避免对壳体大范围的设计变更,在一定程度上减少了壳体的加厚范围,减小了自动变速箱的尺寸,更有利于整车的布置。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

1.一种自动变速箱的壳体优化方法,其特征在于,包括以下步骤:
S1.检测自动变速箱壳体的各个面的壳体振动信号;
S2.根据所述壳体振动信号分离出各齿轮振动信号;
S3.测试自动变速箱各轴与壳体的频响曲线h(t),将频响曲线h(t)导入分析软件中,并在测试分析软件中利用频响曲线h(t)获得自动变速箱各轴和壳体固有频率和振型;
S4.运用有限元软件计算自动变速箱轴和壳体固有频率和振型,并用S3中由频响曲线h(t)获得的自动变速箱各轴和壳体固有频率和振型分别与本步骤中运用有限元软件计算自动变速箱轴和壳体固有频率和振型进行比较验证;
将S2中分离出的齿轮实际振动信号作为输入条件,与计算出的固有频率和振型,在有限元软件中计算各齿轮振动信号与壳体各面的噪声辐射区域的对应关系;
S5.根据计算出的各齿轮振动信号与壳体各面的噪声辐射区域的对应关系,确定壳体的优化区域,对优化区域进行加厚处理。
2.根据权利要求1所述的自动变速箱的壳体优化方法,其特征在于,步骤S1包括有:
S10.在自动变速箱壳体的各个面上安装振动传感器;
S11.通过所述振动传感器测量自动变速箱各个面的壳体振动信号。
3.根据权利要求1所述的自动变速箱的壳体优化方法,其特征在于,步骤S2包括有:
S20.对检测到的壳体振动信号进行阶次滤波处理;
S21.只保留需要的齿轮信号,所述齿轮信号为各齿轮振动信号。
4.根据权利要求1或3所述的自动变速箱的壳体优化方法,其特征在于,步骤S2还包括有S22:
S22.检测各齿轮振动信号,并将所述各齿轮振动信号与分离出来的齿轮振动信号作比较,如果差值超过设定值则齿轮振动信号不可用。
5.根据权利要求4所述的自动变速箱的壳体优化方法,其特征在于,步骤S22还包括有:
S220.使用齿轮啮合仪器测量各齿轮振动信号;
S221.将所述各齿轮振动信号与分离出来的齿轮振动信号作比较,如果差值超过设定值则齿轮振动信号不可用。
6.根据权利要求1所述的自动变速箱的壳体优化方法,其特征在于,所述自动变速箱的壳体优化方法还包括有步骤S40,步骤S40位于步骤S4与S5之间,步骤S40为:
S40.检测自动变速箱壳体的各个面上的噪声辐射区域,并将噪声辐射区域的检测值与S4中噪声辐射区域的计算值作比较,若差值超过设定值则计算值不可用。
7.根据权利要求6所述的自动变速箱的壳体优化方法,其特征在于,步骤S40包括有:
S400.使用麦克风阵列设备测试自动变速箱壳体的各个面上的噪声辐射区域;
S401.将噪声辐射区域的检测值与S4中噪声辐射区域的计算值作比较,若差值超过设定值则计算值不可用。
CN201910449716.2A 2019-05-28 2019-05-28 自动变速箱的壳体优化方法 Active CN109977629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910449716.2A CN109977629B (zh) 2019-05-28 2019-05-28 自动变速箱的壳体优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910449716.2A CN109977629B (zh) 2019-05-28 2019-05-28 自动变速箱的壳体优化方法

Publications (2)

Publication Number Publication Date
CN109977629A CN109977629A (zh) 2019-07-05
CN109977629B true CN109977629B (zh) 2019-09-20

Family

ID=67073949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910449716.2A Active CN109977629B (zh) 2019-05-28 2019-05-28 自动变速箱的壳体优化方法

Country Status (1)

Country Link
CN (1) CN109977629B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110516364B (zh) * 2019-08-28 2023-06-16 万向钱潮(上海)汽车系统有限公司 一种电子驻车制动装置的噪音优化方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104118421A (zh) * 2013-04-25 2014-10-29 上海汽车集团股份有限公司 混合动力汽车换挡过程中多动力源的协调控制方法
CN205207595U (zh) * 2015-11-25 2016-05-04 北汽福田汽车股份有限公司 一种变速箱壳体及变速箱
CN109696237B (zh) * 2017-10-24 2021-09-21 上海汽车集团股份有限公司 汽车动力总成悬置系统振动噪声试验装置
CN208793586U (zh) * 2018-07-31 2019-04-26 湖北诺御汽车零部件科技有限公司 铝质重卡变速箱前壳壳体

Also Published As

Publication number Publication date
CN109977629A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN102519692B (zh) 一种汽车动力总成和悬架刚体模态集成测试方法
CN101929917B (zh) 一种旋转机械的故障诊断方法
CN110939040B (zh) 一种基于模态参数识别的路基压实质量检测方法及系统
Jin et al. Intelligent vibration detection and control system of agricultural machinery engine
CN106124126B (zh) 整车状态下传动系动不平衡分离的测试分析方法
CN104515661B (zh) 一种测量悬置点的振动贡献量的方法
CN104897354A (zh) 一种飞机发动机隔振器刚度及阻尼的测试装置及测试方法
CN106524967A (zh) 一种汽车轮心实际行驶位移测量与提取方法
CN104019952A (zh) 一种用于电抗器故障诊断的振动检测方法
CN112162034B (zh) 一种应用结构噪声的钢-混凝土组合梁损伤识别方法
CN203824640U (zh) 汽车转向系统固有频率测量系统
CN109977629B (zh) 自动变速箱的壳体优化方法
KR102032490B1 (ko) 능동 진동 제어 기술을 이용한 모형 선박의 저항 계측 시스템
CN109815553A (zh) 一种悬置系统的评价方法及系统
CN106468623A (zh) 一种整车状态下动力总成悬置系统刚体模态参数测试方法
CN103823406A (zh) 一种基于模态质量分布矩阵的数控机床敏感环节辨识方法
CN106872105A (zh) 整车状态下传动系多面剩余动不平衡测试方法
CN107144435B (zh) 一种动力吸振器频率测试方法
CN108414221A (zh) 一种液力变矩器端盖扭转疲劳强度测试方法
CN106759538A (zh) 一种基于频域分析的低应变检测方法
CN105825029A (zh) 一种用于优化设计高频振动能量放大装置的方法
CN106768767A (zh) 一种基于频响函数的轴承座特性参数的测量系统及测量方法
CN103837223A (zh) 汽车转向系统固有频率测量系统及方法
CN108593308B (zh) 一种基于卡车转向振动路径的故障区定位方法
CN105043696A (zh) 一种飞机发动机隔振器的刚度及阻尼的测试装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant