CN109971018B - 一种复合柔性电阻膜、其制备方法及其应用 - Google Patents

一种复合柔性电阻膜、其制备方法及其应用 Download PDF

Info

Publication number
CN109971018B
CN109971018B CN201910272663.1A CN201910272663A CN109971018B CN 109971018 B CN109971018 B CN 109971018B CN 201910272663 A CN201910272663 A CN 201910272663A CN 109971018 B CN109971018 B CN 109971018B
Authority
CN
China
Prior art keywords
flexible
resistive film
nano
carbon nano
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910272663.1A
Other languages
English (en)
Other versions
CN109971018A (zh
Inventor
李锦�
凤飞龙
沈壮志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201910272663.1A priority Critical patent/CN109971018B/zh
Publication of CN109971018A publication Critical patent/CN109971018A/zh
Application granted granted Critical
Publication of CN109971018B publication Critical patent/CN109971018B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09D139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2439/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种复合柔性电阻膜及其制备方法和应用,制备方法包括以下步骤:利用低密度聚乙烯、聚酰亚胺、碳纳米管、氧化钇纳米粉、六钛酸钾晶须制备柔性碳纳米纸;利用聚乙烯吡咯烷酮、硅烷偶联剂、纳米银粉、胶接剂、异氰酸酯制备纳米银柔性涂料溶液;将柔性碳纳米纸在纳米银柔性涂料溶液里浸渍,制得复合柔性电阻膜。本发明的复合柔性电阻膜具备良好的力学性能,还体现出对声音敏感的特性,其能够准确的分辨20Hz‑20000Hz频率范围、10‑160dB范围内的声音,能够很好的应用于声音传感器,具备广泛的应用前景。

Description

一种复合柔性电阻膜、其制备方法及其应用
技术领域
本发明属于电子材料技术领域,具体涉及一种复合柔性电阻膜、其制备方法及其应用。
背景技术
随着传感器技术的迅速发展,声音传感器也迅速崛起。声音传感器是现代社会发展所不能缺少的部分,其是一种用来接收声波,显示声音振动图象的设备。对于声音传感器来说,声电转换的关键元件是驻极体振动膜,现有技术中,驻极体振动膜是一片极薄的塑料膜片,膜片的一面蒸发有一层纯金薄膜,另一面与金属极板之间用薄的绝缘衬圈隔离开,这样,纯金薄膜与金属极板之间就形成一个电容。当驻极体振动膜遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。
近年来,便携式的柔性器件逐渐成为当前炙手可热的研究课题,随着半导体技术的发展,传感器也逐渐向小型化、仿生化发展,从而对传感器的柔性化提出了新的要求。对于现有的声音传感器来说,驻极体振动膜的一面蒸发有一层纯金薄膜,纯金薄膜虽然具有很好的导电性能,但是金属材料的弹性极限较低,制作的应变片测量范围比较小,这是金属材料在柔性应变传感器上的短板。因此,很有必要开发出一种导电性能良好的柔性驻极体振动膜,以解决金属材料弹性极限低,制作的应变片测量范围较小的缺陷,进而拓展柔性化的声音传感器的应用范围。
发明内容
本发明提供了一种复合柔性电阻膜,解决了现有技术中声音传感器的驻极体振动膜的纯金薄膜虽然具有很好的导电性能,弹性极限低,制作的应变片测量范围较小的问题。
本发明的第一个目的是提供一种复合柔性电阻膜的制备方法,包括以下步骤:
步骤1,制备柔性碳纳米纸
步骤1.1,将低密度聚乙烯和聚酰亚胺溶于N,N-二甲基甲酰胺中,得到混合物;
其中,低密度聚乙烯、聚酰亚胺、N,N-二甲基甲酰胺的用量比为5g:0.5-1g:30ml;
步骤1.2,将碳纳米管、氧化钇纳米粉、六钛酸钾晶须加入步骤1.1的混合物中,超声分散,得到悬浊液A;
往悬浊液A中加入固化剂,混合均匀,得到悬浊液B;
其中,碳纳米管、氧化钇纳米粉、六钛酸钾晶须、固化剂、低密度聚乙烯的质量比为1.5-2:0.02-0.05:0.05:1:10;
步骤1.3,将步骤1.2中悬浊液B均匀涂抹在玻璃基板上,固化后得到柔性薄膜,将柔性薄膜从玻璃基板上揭下来干燥,干燥完毕即得到柔性碳纳米纸;
步骤2,制备纳米银柔性涂料溶液
将聚乙烯吡咯烷酮与硅烷偶联剂混合均匀后往其中依次加入纳米银粉和胶接剂,搅拌20-25min后往其中加入异氰酸酯,超声分散,得到纳米银柔性涂料溶液;
其中,聚乙烯吡咯烷酮、硅烷偶联剂、纳米银粉、胶接剂、异氰酸酯的质量比为100-75:1:5-10:2:0.5;
步骤3,制备复合柔性电阻膜
将步骤1.3制得的柔性碳纳米纸放入步骤2制得的纳米银柔性涂料溶液里浸渍,取出后干燥,干燥完毕即制得所述复合柔性电阻膜。
优选的,所述低密度聚乙烯的密度为0.918-0.922g/cm3,熔体流动指数为0.1-10g/10min。其中,低密度聚乙烯密度的测定参照GB/T1033-2008的方法测量,低密度聚乙烯熔体流动指数的测定参照GB/T3682-2000的方法测量,测定测定温度为190℃,负荷为2.16kg。
优选的,所述碳纳米管的外径为8-15nm,长度为50μm;所述氧化钇纳米粉的粒径为40-50nm;所述六钛酸钾晶须的直径为200-500nm,长度为20-30μm。
优选的,所述固化剂为对羟基苯磺酸。
优选的,所述硅烷偶联剂为KH550硅烷偶联剂。
优选的,所述胶接剂为二甲基硅油。
优选的,所述纳米银粉的粒径为40-50nm。
优选的,所述步骤1.2和步骤2中超声分散条件为:在功率范围为300-600W,频率为40kHz的条件下分散30-60min。
本发明的第二个目的是提供一种利上述方法制备得到的复合柔性电阻膜。
本发明的第三个目的是提供一种上述的复合柔性电阻膜在声音传感器中的应用。
与现有技术相比,本发明的有益效果在于:
本发明首先在低密度聚乙烯和聚酰亚胺的N,N-二甲基甲酰胺溶液中加入碳纳米管、氧化钇纳米粉和六钛酸钾晶须来制备柔性碳纳米纸,柔性碳纳米纸中的碳纳米管形成一级导电网络,由于碳纳米管形成的导电网络电性能和稳定性均不是很理想,一般不适于作通用电阻器,因此,本发明在柔性碳纳米纸中加入了氧化钇纳米粉来增强其导电性能;
在本发明的体系中,氧化钇所起的作用类似于伪电容材料,它能够提高碳纳米管和低密度聚乙烯形成的复合膜的功率密度及比电容,同时,在六钛酸钾晶须的作用下,碳纳米管不仅可以放大氧化钇的赝电容特性,而且还可以形成有效的电子传输通道,进一步增强复合膜的比电容,使其导电性能更为优异。
在制备出柔性碳纳米纸后,本发明又在柔性碳纳米纸的表面负载了纳米银层,且考虑到电阻膜的柔韧性,本发明将柔性碳纳米纸浸渍在低浓度的纳米银聚乙烯吡咯烷酮分散液中,在柔性碳纳米纸表面形成疏散的纳米银层,纳米银层的存在进一步增强了柔性电阻膜的电性能,同时增强了其稳定性和灵敏度,使整个柔性膜的电阻体现出对声音敏感的特性,其能够准确的分辨20Hz-20000Hz频率范围、10-160dB范围内的声音,能够很好的应用于声音传感器。
此外,本发明还考虑到了柔性电阻膜的力学性能,采用柔韧性强的低密度聚乙烯作为成膜材料,由于在柔性薄膜的制备过程中容易出现龟裂、脱落现象,影响柔性薄膜的可靠性,因此,本发明在低密度聚乙烯中添加聚酰亚胺来提高膜的致密性,含有胺基的聚酰亚胺有很强的粘附特性,可明显增强低密度聚乙烯与其他原料之间结合的牢固程度,避免薄膜出现龟裂和脱落,此外,聚酰亚胺还可以避免低密度聚乙烯在成膜时发生塌陷、粘连的缺陷;六钛酸钾晶须是一种内部缺陷少、强度高、模量高的晶体,应用到本发明的体系中,可以增加电阻膜的强度和韧性,同时还具备很好的隔热性能,可以减少高温对电阻膜的影响,避免老化,延长其使用时间;异氰酸酯能够提高纳米银和柔性碳纳米纸的粘附强度,提高二者之间的结合牢固强度,从而使纳米银层能够稳定的发挥作用。
本发明制备出的复合柔性电阻膜不仅力学性能优异,还能够很好的应用于声音传感器,具备广泛的应用前景。
附图说明
图1是本发明实施例1和对比例1-5制备出的复合柔性电阻膜的电阻变化-声音响应曲线图。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。
下述实施例中所用聚酰亚胺购买自常州万汇新材料科技有限公司,牌号为pi2000;下述各实施例中未注明具体条件的试验方法,均按照本领域的常规方法和条件进行,所述原料如无特殊说明,均为市售。
实施例1
一种复合柔性电阻膜的制备方法,具体按照以下步骤实施:
步骤1,制备柔性碳纳米纸
步骤1.1,将50g低密度聚乙烯和5g聚酰亚胺溶于300ml的N,N-二甲基甲酰胺中,得到混合物;
其中,低密度聚乙烯的密度为0.918g/cm3,熔体流动指数为0.1g/10min;
步骤1.2,将7.5g外径为8nm,长度为50μm的碳纳米管、0.1g粒径为40nm的氧化钇纳米粉、0.25g直径为200nm,长度为20μm的六钛酸钾晶须加入步骤1.1的混合物中,在超声功率为300W,频率为40kHz的条件下超声分散60min,得到悬浊液A;
往悬浊液A中加入5g对羟基苯磺酸,混合均匀,得到悬浊液B;
步骤1.3,将步骤1.2中悬浊液B均匀涂抹在玻璃基板上,固化后得到柔性薄膜,将柔性薄膜从玻璃基板上揭下来,于60℃下干燥3h,干燥完毕即得到柔性碳纳米纸;
步骤2,制备纳米银柔性涂料溶液
将500g聚乙烯吡咯烷酮与5g的KH550硅烷偶联剂混合均匀后往其中依次加入25g粒径为40nm纳米银粉和10g二甲基硅油,搅拌20min后往其中加入2.5g异氰酸酯,在超声功率为300W,频率为40kHz的条件下超声分散60min,得到纳米银柔性涂料溶液;
步骤3,制备复合柔性电阻膜
将步骤1.3制得的柔性碳纳米纸放入步骤2制得的纳米银柔性涂料溶液里浸渍,取出后于60℃下干燥5h,干燥完毕即制得复合柔性电阻膜。
实施例2
一种复合柔性电阻膜的制备方法,具体按照以下步骤实施:
步骤1,制备柔性碳纳米纸
步骤1.1,将50g低密度聚乙烯和8g聚酰亚胺溶于300ml的N,N-二甲基甲酰胺中,得到混合物;
其中,低密度聚乙烯的密度为0.920g/cm3,熔体流动指数为3g/10min;
步骤1.2,将9g外径为12nm、长度为50μm的碳纳米管、0.15g粒径为45nm的氧化钇纳米粉、0.25g直径为300nm,长度为25μm的六钛酸钾晶须加入步骤1.1的混合物中,在超声功率为500W,频率为40kHz的条件下超声分散40min,得到悬浊液A;
往悬浊液A中加入5g对羟基苯磺酸,混合均匀,得到悬浊液B;
步骤1.3,将步骤1.2中悬浊液B均匀涂抹在玻璃基板上,固化后得到柔性薄膜,将柔性薄膜从玻璃基板上揭下来干燥,干燥完毕即得到柔性碳纳米纸;
步骤2,制备纳米银柔性涂料溶液
将450g聚乙烯吡咯烷酮与5g的KH550硅烷偶联剂混合均匀后往其中依次加入40g粒径为45nm的纳米银粉和10g二甲基硅油,搅拌25min后往其中加入2.5g异氰酸酯,超声分散,得到纳米银柔性涂料溶液;
步骤3,制备复合柔性电阻膜
将步骤1.3制得的柔性碳纳米纸放入步骤2制得的纳米银柔性涂料溶液里浸渍,取出后于60℃下干燥5h,干燥完毕即制得复合柔性电阻膜。
实施例3
一种复合柔性电阻膜的制备方法,具体按照以下步骤实施:
步骤1,制备柔性碳纳米纸
步骤1.1,将50g低密度聚乙烯和10g聚酰亚胺溶于300ml的N,N-二甲基甲酰胺中,得到混合物;
其中,低密度聚乙烯的密度为0.922g/cm3,熔体流动指数为10g/10min。
步骤1.2,将10g外径为15nm、长度为50μm的碳纳米管、0.25g粒径为50nm的氧化钇纳米粉、0.25g直径为500nm,长度为30μm的六钛酸钾晶须加入步骤1.1的混合物中,在超声功率为600W,频率为40kHz的条件下超声分散30min,得到悬浊液A;
得到悬浊液A;
往悬浊液A中加入5g对羟基苯磺酸,混合均匀,得到悬浊液B;
步骤1.3,将步骤1.2中悬浊液B均匀涂抹在玻璃基板上,固化后得到柔性薄膜,将柔性薄膜从玻璃基板上揭下来干燥,干燥完毕即得到柔性碳纳米纸;
步骤2,制备纳米银柔性涂料溶液
将375g聚乙烯吡咯烷酮与5g的KH550硅烷偶联剂混合均匀后往其中依次加入50g粒径为50nm的纳米银粉和10g二甲基硅油,搅拌25min后往其中加入2.5g异氰酸酯,在超声功率为600W,频率为40kHz的条件下超声分散30min,得到纳米银柔性涂料溶液;
步骤3,制备复合柔性电阻膜
将步骤1.3制得的柔性碳纳米纸放入步骤2制得的纳米银柔性涂料溶液里浸渍,取出后于60℃下干燥5h,干燥完毕即制得复合柔性电阻膜。
为了进一步说明本发明的效果,本发明还设置了对比例,具体如下。
对比例1
一种复合柔性电阻膜的制备方法,具体制备方法同实施例1,不同之处在于,对比例1中制备柔性碳纳米纸时没有加入氧化钇纳米粉,其他步骤和实施例1完全相同。
对比例2
一种复合柔性电阻膜的制备方法,具体制备方法同实施例1,不同之处在于,对比例2中制备柔性碳纳米纸时没有加入六钛酸钾晶须,其他步骤和实施例1完全相同。
对比例3
一种复合柔性电阻膜的制备方法,具体制备方法同实施例1,不同之处在于,对比例3中制备柔性碳纳米纸时没有加入氧化钇纳米粉和六钛酸钾晶须,其他步骤和实施例1完全相同。
对比例4
一种复合柔性电阻膜的制备方法,具体按照以下步骤实施:
步骤1,将50g低密度聚乙烯和5g聚酰亚胺溶于300ml的N,N-二甲基甲酰胺中,得到混合物;
其中,低密度聚乙烯的密度为0.918g/cm3,熔体流动指数为0.1g/10min;
步骤2,将7.5g外径为8nm,长度为50μm的碳纳米管、0.1g粒径为40nm的氧化钇纳米粉、0.25g直径为200nm,长度为20μm的六钛酸钾晶须加入步骤1的混合物中,在超声功率为300W,频率为40kHz的条件下超声分散60min,得到悬浊液A;
往悬浊液A中加入5g对羟基苯磺酸,混合均匀,得到悬浊液B;
步骤3,将步骤2中悬浊液B均匀涂抹在玻璃基板上,固化后得到柔性薄膜,将柔性薄膜从玻璃基板上揭下来,于60℃下干燥3h,干燥完毕即得到柔性碳纳米纸,所述柔性碳纳米纸即为复合柔性电阻膜。
对比例5
步骤1、步骤3和实施例1完全相同,步骤2制备纳米银柔性涂料溶液的步骤如下:
将500g聚乙烯吡咯烷酮与5g的KH550硅烷偶联剂混合均匀后往其中依次加入25g粒径为40nm纳米银粉和10g二甲基硅油,在超声功率为300W,频率为40kHz的条件下超声分散60min,得到纳米银柔性涂料溶液。
对实施例1-3和对比例1-5制备出的复合柔性电阻膜的力学性能进行检测,具体结果如表1所示。
表1力学性能检测结果
项目 拉伸强度(MPa) 拉伸弹性模量(MPa) 断裂伸长率(%)
实施例1 6.52 271 121
实施例2 6.48 268 123
实施例3 6.37 272 119
对比例1 6.13 256 106
对比例2 4.38 212 95
对比例3 3.21 172 84
对比例4 5.47 237 102
对比例5 5.87 251 110
从表1可以看出,实施例1-3制备出的复合柔性电阻膜的拉伸强度、拉伸弹性模量以及断裂伸长率均较好,力学性能优异,制备出的复合柔性电阻膜的弹性极限高,作为应变片使用时测量范围广,能够满足声音传感器的使用要求。
对比例1的复合柔性电阻膜在制备时没有加入氧化钇纳米粉,由于氧化钇纳米粉主要影响的是电阻膜的电性能,对其力学性能影响不大,所以对比例1的电阻膜力学性能和实施例1-3相当;
对比例2的复合柔性电阻膜在制备时没有加入六钛酸钾晶须,六钛酸钾晶须是一种内部缺陷少、强度高、模量高的晶体,应用到本发明的体系中,可以增加电阻膜的强度和韧性,同时还具备很好的隔热性能,可以减少高温对电阻膜的影响,避免老化,延长其使用时间;对比例2中没有加入六钛酸钾晶须,因此其力学性能受到影响,不及实施例1-3和对比例1好;
对比例3的复合柔性电阻膜在制备时既没有加入氧化钇纳米粉,也没有加入六钛酸钾晶须,相当于仅用碳纳米管来制备柔性碳纳米纸,因此其力学性能主要取决于碳纳米管和低密度聚乙烯的力学性能,而两者的力学性能均一般,所以对比例3中得到的电阻膜的力学性能不及对比例2好;
对比例4相当于仅用柔性碳纳米纸来作为电阻膜使用,其力学性能相当于柔性碳纳米纸的力学性能,由于纳米银柔性涂料溶液中含有的异氰酸酯也具备一定的韧性增强作用,所以,仅就柔性碳纳米纸的力学性能来说,其不及实施例1-3的,但是比对比例2-3的好;
对比例5的复合柔性电阻膜在制备时没有加入异氰酸酯,异氰酸酯对力学性能有一定影响,但是影响力不及六钛酸钾晶须,因此电阻膜的力学性能稍有影响。
为了验证实施例1和对比例1-5制备出的复合柔性电阻膜的声学性能,将其应用于声音传感器中,使用的声音传感器为TZ-2KA噪声传感器,然后将TZ-2KA噪声传感器中的驻极体振动膜替换成本发明实施例1和对比例1-5的复合柔性电阻膜,再对其声性能进行检测,具体见图1。
图1是本发明实施例1和对比例1-5的复合柔性电阻膜的电阻变化-声音响应曲线图,从图1可以看出,实施例1的复合柔性电阻膜对10-160dB的声音强度范围内的声音都有很好的电阻变化响应特性,说明实施例1的复合柔性电阻膜对电阻变化感应灵敏,测量范围广;
对比例1中复合柔性电阻膜对30-100dB声音强度范围内的声音有很好的电阻变化响应特性,性能不及实施例1,这是因为对比例1的复合柔性电阻膜在制备时没有加入氧化钇纳米粉,氧化钇纳米粉对电阻膜的电性能影响较大;
对比例2中复合柔性电阻膜对20-100dB声音强度范围内的声音有很好的电阻变化响应特性,性能和对比例1相当,这是因为对比例2的复合柔性电阻膜在制备时没有加入六钛酸钾晶须,一般来说,六钛酸钾晶须本身对电阻膜的电性能不会产生影响,但是试验中发现,六钛酸钾晶须因为具有极性纤维的特征,其能够和碳纳米管配合,协同增效,提高电阻膜的电性能;
对比例3中复合柔性电阻膜对40-90dB声音强度范围内的声音有很好的电阻变化响应特性,性能不及对比例1-2,这是因为对比例3的复合柔性电阻膜在制备时既没有加入氧化钇纳米粉,也没有加入六钛酸钾晶须,因此其不具备二者的电性能增效效果;
对比例4中复合柔性电阻膜对50-90dB声音强度范围内的声音有很好的电阻变化响应特性,性能不及对比例3,这是因为对比例4相当于仅用柔性碳纳米纸来作为电阻膜使用,没有纳米氧化银的增效作用,因此其电性能是最差的;
对比例5中复合柔性电阻膜对20-120dB声音强度范围内的声音有很好的电阻变化响应特性,性能和实施例1相当,这是因为对比例5的复合柔性电阻膜在制备时没有加入异氰酸酯,而异氰酸酯对电阻膜的电学性能基本没有影响。
将实施例1和对比例1-5制备出的复合柔性电阻膜应用于TZ-2KA噪声传感器后检测该声音传感器的性能,具体结果见表2。
表2声音传感器性能指标
项目 250Hz灵敏度(mv/Pa) 测量范围(dB) 频率范围(Hz)
实施例1 50 10-160 20-25000
对比例1 40 30-100 30-12500
对比例2 48 20-100 20-18000
对比例3 25 40-90 70-15000
对比例4 20 50-90 50-10000
对比例5 50 20-120 20-20000
从表2可以看出,本发明实施例1制备出的复合柔性电阻膜应用于声音传感器后,得到的传感器的相应迅速,检测范围广,灵敏度高,明显优于对比例1-5的声音传感器。
本发明的描述了优选的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种复合柔性电阻膜的制备方法,其特征在于,具体按照以下步骤实施:
步骤1,制备柔性碳纳米纸
步骤1.1,将低密度聚乙烯和聚酰亚胺溶于N,N-二甲基甲酰胺中,得到混合物;
其中,低密度聚乙烯、聚酰亚胺、N,N-二甲基甲酰胺的用量比为5g:0.5-1g:30ml;
步骤1.2,将碳纳米管、氧化钇纳米粉、六钛酸钾晶须加入步骤1.1的混合物中,超声分散,得到悬浊液A;
往悬浊液A中加入固化剂,混合均匀,得到悬浊液B;
其中,碳纳米管、氧化钇纳米粉、六钛酸钾晶须、固化剂、低密度聚乙烯的质量比为1.5-2:0.02-0.05:0.05:1:10;
步骤1.3,将步骤1.2中悬浊液B均匀涂抹在玻璃基板上,固化后得到柔性薄膜,将柔性薄膜从玻璃基板上揭下来干燥,干燥完毕即得到柔性碳纳米纸;
步骤2,制备纳米银柔性涂料溶液
将聚乙烯吡咯烷酮与硅烷偶联剂混合均匀后往其中依次加入纳米银粉和胶接剂,搅拌20-25min后往其中加入异氰酸酯,超声分散,得到纳米银柔性涂料溶液;
其中,聚乙烯吡咯烷酮、硅烷偶联剂、纳米银粉、胶接剂、异氰酸酯的质量比为100-75:1:5-10:2:0.5;
步骤3,制备复合柔性电阻膜
将步骤1.3制得的柔性碳纳米纸放入步骤2制得的纳米银柔性涂料溶液里浸渍,取出后干燥,干燥完毕即制得所述复合柔性电阻膜。
2.根据权利要求1所述的复合柔性电阻膜的制备方法,其特征在于,所述低密度聚乙烯的密度为0.918-0.922g/cm3,熔体流动指数为0.1-10g/10min。
3.根据权利要求1所述的复合柔性电阻膜的制备方法,其特征在于,所述碳纳米管的外径为8-15nm,长度为50μm;所述氧化钇纳米粉的粒径为40-50nm;所述六钛酸钾晶须的直径为200-500nm,长度为20-30μm。
4.根据权利要求1所述的复合柔性电阻膜的制备方法,其特征在于,所述固化剂为对羟基苯磺酸。
5.根据权利要求1所述的复合柔性电阻膜的制备方法,其特征在于,所述硅烷偶联剂为KH550硅烷偶联剂。
6.根据权利要求1所述的复合柔性电阻膜的制备方法,其特征在于,所述胶接剂为二甲基硅油。
7.根据权利要求1所述的复合柔性电阻膜的制备方法,其特征在于,所述纳米银粉的粒径为40-50nm。
8.根据权利要求1所述的复合柔性电阻膜的制备方法,其特征在于,所述步骤1.2和步骤2中超声分散条件为:在功率范围为300-600W,频率为40kHz的条件下分散30-60min。
9.一种利用权利要求1所述方法制备得到的复合柔性电阻膜。
10.一种权利要求9所述的复合柔性电阻膜在声音传感器中的应用。
CN201910272663.1A 2019-04-04 2019-04-04 一种复合柔性电阻膜、其制备方法及其应用 Expired - Fee Related CN109971018B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910272663.1A CN109971018B (zh) 2019-04-04 2019-04-04 一种复合柔性电阻膜、其制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910272663.1A CN109971018B (zh) 2019-04-04 2019-04-04 一种复合柔性电阻膜、其制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109971018A CN109971018A (zh) 2019-07-05
CN109971018B true CN109971018B (zh) 2020-09-11

Family

ID=67083128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910272663.1A Expired - Fee Related CN109971018B (zh) 2019-04-04 2019-04-04 一种复合柔性电阻膜、其制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109971018B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903819A (zh) * 2014-04-14 2014-07-02 黄河科技学院 一种柔性透明导电膜的制备方法
CN103992495A (zh) * 2014-04-21 2014-08-20 东莞市纳利光学材料有限公司 一种纳米银柔性导电膜及其制备方法
CN109422877A (zh) * 2017-09-01 2019-03-05 富士施乐株式会社 聚酰亚胺前体溶液和聚酰亚胺成型体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489495B (zh) * 2014-06-04 2015-06-21 Taiwan Carbon Nanotube Technology Corp A method of making transparent conductive film by using carbon nanotubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903819A (zh) * 2014-04-14 2014-07-02 黄河科技学院 一种柔性透明导电膜的制备方法
CN103992495A (zh) * 2014-04-21 2014-08-20 东莞市纳利光学材料有限公司 一种纳米银柔性导电膜及其制备方法
CN109422877A (zh) * 2017-09-01 2019-03-05 富士施乐株式会社 聚酰亚胺前体溶液和聚酰亚胺成型体

Also Published As

Publication number Publication date
CN109971018A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
Liu et al. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications
Yang et al. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range
Cai et al. Extraordinarily Stretchable All‐Carbon Collaborative Nanoarchitectures for Epidermal Sensors
CN108562219B (zh) 一种柔性应变传感器及其制备方法与应用
Fu et al. Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance
Zhou et al. Polymer-carbon nanotube sheets for conformal load bearing antennas
CN109576905A (zh) 一种基于MXene的柔性聚氨酯纤维膜应变传感器
CN109945999A (zh) 一种柔性薄膜压力传感器的制备方法
Lu et al. Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending
Yuan et al. Synergistic resistance modulation toward ultrahighly sensitive piezoresistive pressure sensors
Groo et al. In situ damage detection for fiber‐reinforced composites using integrated zinc oxide nanowires
Ji et al. Highly sensitive wearable flexible pressure sensor based on conductive carbon black/sponge
Gu et al. Flexible electronic eardrum
Ma et al. Flexible Ti3C2Tx MXene/ink human wearable strain sensors with high sensitivity and a wide sensing range
CN109914146A (zh) 一种超疏水纸基柔性应变传感器及其制备方法
Gao et al. Flexible and sensitive piezoresistive electronic skin based on TOCN/PPy hydrogel films
Meng et al. Degradable and highly sensitive CB-based pressure sensor with applications for speech recognition and human motion monitoring
Xu et al. Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability
CN109971018B (zh) 一种复合柔性电阻膜、其制备方法及其应用
Li et al. Eggshell-inspired membrane—shell strategy for simultaneously improving the sensitivity and detection range of strain sensors
CN115975253A (zh) 可拉伸压电薄膜和超声换能器
Madhavan Epidermis‐Like High Performance Wearable Strain Sensor for Full‐Range Monitoring of the Human Activities
CN112461414B (zh) 一种导电泡沫电极结合柔性应变片的传感器及制备方法
Yang et al. Highly sensitive and dynamically stable strain sensors based on porous-designed Fe nanowires/multi-walled carbon nanotubes with stable bi-conducting networks
Xu et al. Flexible piezoresistive sensors based on porous PDMS/CB composite materials prepared by the solvothermal method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Jin

Inventor after: Feng Feilong

Inventor after: Shen Zhuangzhi

Inventor before: Feng Feilong

Inventor before: Shen Zhuangzhi

Inventor before: Li Jin

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200911

Termination date: 20210404