CN109970813A - 一种有机金属催化剂及其制备方法与应用 - Google Patents

一种有机金属催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN109970813A
CN109970813A CN201910311100.9A CN201910311100A CN109970813A CN 109970813 A CN109970813 A CN 109970813A CN 201910311100 A CN201910311100 A CN 201910311100A CN 109970813 A CN109970813 A CN 109970813A
Authority
CN
China
Prior art keywords
organo
metallic catalyst
formula
reaction
opv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910311100.9A
Other languages
English (en)
Other versions
CN109970813B (zh
Inventor
王树
戴楠
刘礼兵
吕凤婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN201910311100.9A priority Critical patent/CN109970813B/zh
Publication of CN109970813A publication Critical patent/CN109970813A/zh
Application granted granted Critical
Publication of CN109970813B publication Critical patent/CN109970813B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/646Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of aromatic or heteroaromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种有机金属催化剂及其制备方法与应用,所述有机金属催化剂的结构式如式I所示,其中n为2‑10的整数,R为过渡金属元素。该催化剂是一种含寡聚(对苯撑乙烯基)结构的Noyori型过渡金属复合物,具有荧光性质和良好的水分散性,可高效催化氢转移还原反应,并且可应用于活细胞等生物体系。

Description

一种有机金属催化剂及其制备方法与应用
技术领域
本发明涉及生物催化技术领域,具体涉及一种有机金属催化剂及其制备方法与应用,更具体涉及一种含寡聚(对苯撑乙烯基)结构的Noyori型过渡金属复合物及其制备方法与其在氢转移还原反应上的应用。
背景技术
氢转移反应是一种特殊的有机还原反应,是用氢供体对氢受体进行氢化或氢解的还原反应,多在有催化剂的条件下进行。有机金属催化剂用于生物活性分子的转化是生物化学领域的重要研究方向,与酶相比,化学合成的金属催化剂具有更好的稳定性,结构的可设计性。目前已有钯、铱、钌、铜、铑等各种类型的有机金属催化剂被应用于生物体系,主要集中在催化碳碳偶联,click反应,氧化还原反应等。这些催化剂一般都不具有荧光性质,难以通过便捷的荧光共聚焦技术进行示踪。故需要设计一种具有荧光性质的金属催化剂用于生物体系中的催化反应。
发明内容
为了解决上述技术问题,本发明提供了一种有机金属催化剂,该催化剂具有荧光性质和良好的水分散性,可高效催化氢转移还原反应,并且可应用于活细胞等生物体系。
为此,第一方面,本发明提供了一种有机金属催化剂,其结构式如式I所示,
其中,
n为2-10的整数;
R为过渡金属元素。
进一步,R为Pt、Pd、Ir、Ru、Cu或Rh,在一个具体的实施例中,为Ru。
进一步,n为4-8的整数,在一个具体的实施例中,为6。
进一步,所述有机金属催化剂的结构式如式II所示,
第二方面,本发明提供了结构式B所示的中间体,
或其盐,或其保护形式;
其中,n为2-10的整数,优选为4-8的整数,在一个具体的实施例中为6。
在一个实施方式中,结构式B所示的中间体的保护形式为结构式A,
其中,n为2-10的整数,优选为4-8的整数,在一个具体的实施例中为6。
第三方面,本发明提供了结构式D所示的中间体,
或其盐,或其保护形式;
其中,n为2-10的整数,优选为4-8的整数,在一个具体的实施例中为6。
在一个实施方式中,结构式D所示的中间体的保护形式为结构式C,
其中,n为2-10的整数,优选为4-8的整数,在一个具体的实施例中为6。
第四方面,本发明提供了所述有机金属催化剂的制备方法,包括通过本发明所述的中间体进行制备。
进一步,所述制备方法包括通过酰胺缩合反应和配位反应进行制备。
在一个实施方式中,所述制备方法包括a)由结构式B所示中间体通过酰胺缩合反应和脱保护,制备得到结构式D所示中间体;b)结构式D所示中间体通过配位反应,制备得到本发明所述有机金属催化剂。
进一步,步骤a)之前,还包括:
步骤a’):由结构式E所示化合物与苯乙烯通过Heck反应和脱保护,制备得到结构式D所示中间体,
第五方面,本发明提供了所述有机金属催化剂在催化氢转移还原反应的应用。
进一步,所述氢转移还原反应为不对称氢转移还原反应。
进一步,所述氢转移还原反应为:氧化型烟酰胺腺嘌呤二核苷酸发生氢转移反应,还原为还原型烟酰胺腺嘌呤二核苷酸。
本发明提供的有机金属催化剂具有良好的荧光性和水分散性,可高效催化氢转移还原反应,进一步地,可催化水溶液体系中氧化型烟酰胺腺嘌呤二核苷酸NAD+的还原,其原理为:寡聚(对苯撑乙烯基)结构是一种共轭π体系结构,具有高荧光强度,生物相容性较好,通过引入阳离子季膦盐基团增加其在水中的分散性,末端引入noyori型的过渡金属催化剂结构,得到具有荧光性质和水分散性的高效催化剂,该催化剂具有两个正电荷以及一定的疏水性,在水中与NAD+具有静电相互作用和疏水作用,在甲酸钠为氢源的条件下,可高效实现氢转移反应,得到产物还原型烟酰胺腺嘌呤二核苷酸NADH。
与现有技术相比,本发明具有以下优点:
(1)本发明提供的催化剂具有荧光性质,在紫外可见光区有明显吸收,可被激发产生荧光,便于通过荧光共聚焦技术进行示踪,可用于生物成像。
(2)现有技术中已有有机金属催化剂被应用于生物体系,但大多水溶性较差,本发明提供的催化剂具有良好的水溶性,在细胞内溶解性好。
(3)本发明提供的催化剂具有较高的催化效率,例如在催化氧化型烟酰胺腺嘌呤二核苷酸的还原反应中,与一个催化中心结构相同的小分子相比,催化效率是其12倍。
(4)本发明提供的催化剂可用于活细胞生物体系,具有广阔的应用前景。
(5)本发明提供的催化剂的制备方法简单,生产效率高。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。在附图中:
图1为OPV-Ru的紫外吸收和荧光发射光谱图;
图2为不同浓度的OPV-Ru催化NAD+发生还原反应,随着反应的进行,反应溶液在340nm处吸光值变化;
图3为OPV-Ru催化NAD+发生还原反应,随着反应的进行,不同甲酸钠浓度的反应溶液在340nm处吸光值的变化;
图4为OPV-Ru和Ts-Ru分别催化NAD+发生还原反应,随着反应的进行,反应溶液在340nm处吸光值变化;
图5为经与不同试剂孵育1h后,A2780细胞内中NAD+的比例值。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和生物材料,如无特殊说明,均可从商业途径获得。
实施例1制备式a化合物OPV-NHBoc
将349mg苯乙烯、241mg(6-(2,5-二碘-4-甲氧基苯氧基)己基)氨基甲酸叔丁酯(制备方法可见Quanshan W,Hongwei T,Gaomai Y,et al.Synthesis and characterizationof oligofluorene nanoparticles for cell imaging[J].Acta Chimica Sinica,2012,70(20):2137-2143.)、155mg三正丁胺溶解于8ml无水DMF中,通氩气半小时后加入9.4mg醋酸钯、51mg三(邻苯基)膦,在110℃下反应24h。结束后,旋蒸除去溶剂,用柱层析色谱分离,制备得到式a化合物OPV-NHBoc,产率为53%。
产物表征:
1H NMR(400 MHz,CDCl3)δ7.55(t,J=7.4 Hz,4H),7.48(dd,J=16.5,1.3Hz,2H),7.37(dd,J=13.2,7.5 Hz,4H),7.30-7.22(m,2H),7.19-7.07(m,4H),4.06(t,J=6.4 Hz,2H),3.93(s,3H),3.13(d,J=5.6 Hz,2H),1.93-1.84(m,2H),1.55(m,6H),1.43(s,9H).13CNMR(100 MHz,CDCl3)δ151.58,151.06,137.93,137.85,128.98,128.88,128.70,128.64,127.48,126.94,126.66,126.61,126.53,123.48,123.23,110.78,109.14,69.50,56.36,30.15,29.44,28.45,26.63,26.02.HR-MS(ESI)m/z calcd for C34H41NO4[M]+:527.30356,found:527.30309.
实施例2、制备式b化合物OPV-NH2
将118mg式a化合物OPV-NHBoc溶解于1,4-二氧六环,加入2ml盐酸,室温下搅拌24h。移除溶剂,剩余物充溶于甲醇,用氢氧化钠溶液将pH调至7除去溶剂,将固体溶于二氯甲烷,用水洗涤两次,柱层析分离纯化,制备得到式b化合物OPV-NH2,产率为88%。
产物表征:
1H NMR(300 MHz,MeOD)δ7.63–7.42(m,6H),7.35(td,J=7.5,3.5 Hz,4H),7.23(m,6H),4.12(t,J=6.2 Hz,2H),3.94(m,3H),2.88–2.49(m,2H),1.90(dd,J=14.2,6.5Hz,2H),1.57(m,6H).HR-MS(ESI)m/z calcd for C29H34NO2[M+H]+:428.25113,found:428.25877.
实施例3、制备式c化合物OPV-PPh2 +-NHBoc
将化85mg式b化合物OPV-NH2、213mg化合物1溶解于无水DCM中,加入三乙胺100μl,在氩气氛围下反应4h,除去DCM,将剩余物溶解于甲苯25ml,加入249mg化合物2,在氩气氛围下90℃反应过夜。除去溶剂,柱层析色谱分离产物,制备得到式c化合物OPV-PPh2 +-NHBoc,产率57%。
产物表征:
1H NMR(400 MHz,MeOD)δ7.82(t,J=6.9 Hz,2H),7.74–7.63(m,12H),7.53(d,J=7.3 Hz,4H),7.50–7.43(m,2H),7.34(t,J=7.5 Hz,4H),7.27–7.20(m,4H),7.19–7.10(m,2H),4.09(t,J=6.2 Hz,2H),3.92(s,3H),3.10(dd,J=11.4,7.2 Hz,4H),3.03(t,J=6.6Hz,2H),2.86(t,J=6.5 Hz,2H),2.56–2.46(m,2H),1.87(dd,J=13.8,7.1 Hz,2H),1.59(dt,J=14.7,7.4 Hz,2H),1.48(dd,J=14.5,7.2Hz,2H),1.41(m,11H).HR-MS(ESI)m/zcalcd for C58H67N3O7PS[M]+:980.44319,found:980.44221.
实施例4、制备式d化合物OPV-PPh2 +-NH2
将113mg式c化合物OPV-PPh2 +-NHBoc溶解于25ml甲醇中,在冰浴中滴加5M的盐酸的甲醇溶液,混合溶液搅拌24h。反应结束后,用饱和碳酸氢钠溶液将体系pH调至7。移除溶剂,剩余固体溶解于二氯甲烷中,用水洗两次,柱层析分离纯化得到产物,制备得到式d化合物OPV-PPh2 +-NH2,产率为59%。
产物表征:
1H NMR(400 MHz,MeOD)δ7.84(m,2H),7.69(m,12H),7.54(d,J=7.6 Hz,4H),7.49–7.44(m,2H),7.34(t,J=7.6 Hz,4H),7.24(m,4H),7.13(m,2H),4.10(t,J=6.2 Hz,2H),3.92(s,3H),3.16–3.02(m,4H),2.89(t,J=6.1 Hz,2H),2.71(t,J=6.1 Hz,2H),2.49(m,2H),1.92–1.82(m,2H),1.60(m,2H),1.52–1.35(m,4H).HR-MS(ESI)m/z calcd forC53H59N3O5PS[M+H]+:880.39076,found:880.39053;[(M+H)/2]2+:440.69902,found:440.69904.
实施例5、制备化合物式II化合物OPV-Ru
将42mg式d化合物OPV-PPh2 +-NH2、13mg[(RuCl2)2(p-cymene)2]溶于4ml甲醇,加入60μl三乙胺,在氩气氛围下70℃反应过夜。除去溶剂,用石油醚和二氯甲烷进行重结晶得到产物,制备得到式II化合物,产率为45%,将制备得到的式II化合物OPV-Ru用于实施例6-9中。
产物表征:
1H NMR(400 MHz,MeOD)δ7.81(m,4H),7.68(m,9H),7.51(m,8H),7.34(t,J=7.5Hz,4H),7.28–7.11(m,7H),6.88(d,J=8.1 Hz,2H),5.61(s,2H),5.47(s,1H),5.40(s,2H),4.48(s,2H),4.10(t,J=6.1 Hz,2H),3.92(s,3H),3.13–2.97(m,4H),2.55–2.37(m,2H),2.19(m,2H),2.08(s,3H),1.92–1.82(m,2H),1.66–1.57(m,4H),1.51–1.35(m,6H),1.25(t,6H).HR-MS(ESI)m/z:C63H72ClN3O5PRuS[M]+:1150.36623,found:1150.36713.
实施例6表征式II化合物OPV-Ru
本实施例对式II化合物OPV-Ru在水中的紫外吸收光谱和荧光发射光谱图以及量子产率进行测定。
配制10mM的OPV-Ru的DMSO母液,用去离子水将母液稀释至10μM,测试其紫外吸收波长,如图1所示,其最大吸收峰在320nm和380nm,激发波长380nm,最大荧光发射波长为450nm,测试其绝对量子产率为6.7%,表明式II化合物OPV-Ru在紫外可见光区有明显吸收,可被激发产生荧光,可用于生物成像。
实施例7
本实施例对式II化合物OPV-Ru在NAD+的还原反应中的催化活性进行研究,具体实验如下:
配制10mM的OPV-Ru的DMSO母液,10mM的NAD+的水溶液母液,1 M的甲酸钠水溶液母液。测试时,温度设置为37℃,反应体系为去离子水。NAD+稀释到最终浓度为0.1mM,分别固定OPV-Ru或甲酸钠浓度,改变甲酸钠或OPV-Ru的浓度,研究OPV-Ru和甲酸钠浓度对于反应的影响。
NAD+经催化加氢还原为NADH,NADH在260nm和340nm处各有一吸收峰,而NAD+只有260nm一处吸收峰,这也是本领域的代谢试验中,测量代谢率的物理依据。故本实施例通过测量340nm处的吸光值,以生成的NADH的量来表征OPV-Ru催化加氢还原反应的催化能力。
检测结果如图2和图3所示,图2中,固定甲酸浓度为100mM,OPV-Ru的稀释浓度梯度分别为0、5%、10%、15%,由图可知,OPV-Ru具有催化NAD+加氢还原的能力且具有良好的水溶性。图3中,固定OPV-Ru的浓度为0.01mM,甲酸钠的浓度梯度分别为0、5mM、10mM、20mM、50mM、100mM,甲酸钠作为氢供体,随甲酸钠浓度增加,催化反应的速度也相应加快。
实施例8
本实施例将式II化合物OPV-Ru的催化性能与另一个催化中心结构相同的小分子Ts-Ru进行了对比,Ts-Ru的结构式如下,
分别以式II化合物OPV-Ru和Ts-Ru作为催化剂,催化NAD+的还原反应,反应体系为去离子水,反应条件为:[NAD+]=0.1mM,[OPV-Ru]=0.01mM,[Ts-Ru]=0.01mM,[HCOONa]=100mM,37℃。通过检测反应溶液在340nm处的吸光值,比较二者的催化性能,检测结果见图4。经计算,在相同条件下,OPV-Ru的催化效率约为Ts-Ru的12倍。本发明提供的催化剂具有较高的催化效率,可高效催化氧化型烟酰胺腺嘌呤二核苷酸的还原。
实施例9
本实施例对式II化合物OPV-Ru应用于活细胞内催化还原反应的功能进行了验证。实验所用的细胞为A2780卵巢癌细胞,设置三个实验组和一个空白对照组,各实验组与空白对照组的区别在于:实验组1加入OPV-Ru(16μM),实验组2加入HCOONa(2mM),实验组3同时加入HCOONa(2mM)和OPV-Ru(16μM),各组的其余实验条件均相同。各组向细胞中分别加入上述试剂后,与细胞孵育1h,分别测定各组的NAD+的比例,检测结果见图5所示,由测试结果可知,相比于其他组,实验组3中NAD+的比例明显降低,证明本发明提供的催化剂可用于活细胞生物体系中的催化加氢还原反应。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种有机金属催化剂,其结构式如式I所示,
其中,
n为2-10的整数;
R为过渡金属元素。
2.如权利要求1所述的有机金属催化剂,其特征在于,R为Pt、Pd、Ir、Ru、Cu或Rh。
3.如权利要求1所述的有机金属催化剂,其特征在于,所述有机金属催化剂的结构式如式II所示,
4.权利要求1-3任一项所述有机金属催化剂的中间体,其特征在于,所述中间体为结构式B所示化合物,
或其盐,或其保护形式;
其中,n为2-10的整数。
5.权利要求1-3任一项所述有机金属催化剂的中间体,其特征在于,所述中间体为结构式D所示化合物,
或其盐,或其保护形式;
其中,n为2-10的整数。
6.权利要求1-3任一项所述有机金属催化剂的制备方法,其特征在于,包括通过权利要求4所述的中间体和/或权利要求5所述的中间体进行制备。
7.如权利要求6所述的制备方法,其特征呢在于,所述制备方法包括通过酰胺缩合反应和配位反应进行制备。
8.如权利要求1-3任一项所述有机金属催化剂在催化氢转移还原反应的应用。
9.如权利要求8所述的应用,其特征在于,所述氢转移还原反应为不对称氢转移还原反应。
10.如权利要求9所述的应用,其特征在于,所述氢转移还原反应为:氧化型烟酰胺腺嘌呤二核苷酸发生氢转移反应,还原为还原型烟酰胺腺嘌呤二核苷酸。
CN201910311100.9A 2019-04-18 2019-04-18 一种有机金属催化剂及其制备方法与应用 Active CN109970813B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910311100.9A CN109970813B (zh) 2019-04-18 2019-04-18 一种有机金属催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910311100.9A CN109970813B (zh) 2019-04-18 2019-04-18 一种有机金属催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109970813A true CN109970813A (zh) 2019-07-05
CN109970813B CN109970813B (zh) 2020-08-11

Family

ID=67085205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910311100.9A Active CN109970813B (zh) 2019-04-18 2019-04-18 一种有机金属催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109970813B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359883A (zh) * 2001-12-06 2002-07-24 东南大学 双共轭体系宽带双光子吸收分子的合成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359883A (zh) * 2001-12-06 2002-07-24 东南大学 双共轭体系宽带双光子吸收分子的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOAN J. SOLDEVILA-BARREDA等: "Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD+ and pyruvate, and antiproliferative activity", 《JOURNAL OF INORGANIC BIOCHEMISTRY》 *
JOAN J. SOLDEVILA-BARREDA等: "Improved Catalytic Activity of Ruthenium−Arene Complexes in the Reduction of NAD+", 《ORGANOMETALLICS》 *

Also Published As

Publication number Publication date
CN109970813B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
Nazemi et al. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages
Guo et al. Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction
Baratta et al. Pincer and diamine Ru and Os diphosphane complexes as efficient catalysts for the dehydrogenation of alcohols to ketones
Liang et al. Electrochemically induced nickel catalysis for oxygenation reactions with water
Pan et al. Graphene oxide and Rose Bengal: oxidative C–H functionalisation of tertiary amines using visible light
Ma et al. Synthesis and characterization of copper (II) 4′-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols
KR101759433B1 (ko) 수소 기체 발생용 나노 클러스터 촉매 및 이의 제조방법
Xing et al. Acid-catalyzed acylation reaction via C–C bond cleavage: a facile and mechanistically defined approach to synthesize 3-acylindoles
Zhang et al. Direct synthesis of phenol by novel [FeFe]-hydrogenase model complexes as catalysts of benzene hydroxylation with H 2 O 2
Daraosheh et al. Synthesis and electrochemical investigations of the ortho-metalated complexes [Fe2 (CO) 6 {к, μ-S, η2-(R)}] and their substitution reactions
Zhu et al. Iridium and copper supported on silicon dioxide as chemoselective catalysts for dehydrogenation and borrowing hydrogen reactions
Nayek et al. Photochemical and electrochemical regioselective cross-dehydrogenative C (sp 2)–H sulfenylation and selenylation of substituted benzo [a] phenazin-5-ols
Hossaini et al. Hydroxysulfonylation of alkenes: an update
Ye et al. Electrochemical difunctionalization of styrenes via chemoselective oxo-azidation or oxo-hydroxyphthalimidation
Sarmah et al. Selective oxidation of alcohols catalysed by a cubane-like Co (III) oxo cluster immobilised on porous organomodified silica
JP2018034152A (ja) 多電子酸化還元触媒
CN109970813A (zh) 一种有机金属催化剂及其制备方法与应用
Jack et al. Selective ligand modification of cobalt porphyrins for carbon dioxide electrolysis: Generation of a renewable H2/CO feedstock for downstream catalytic hydrogenation
Qi et al. Effect of solvent on conversion and selectivity during the selective oxidation of cyclohexane by nano-V2O5/Ti membrane electrode
Xu et al. Electrocatalytic hydrogen evolution of a cobalt A2B triaryl corrole complex containing–N= PPh3 group
JP2014062038A (ja) 一酸化炭素および/または水素の製造方法
Gao et al. An artificial [FeFe]-hydrogenase mimic with organic chromophore-linked thiolate bridges for the photochemical production of hydrogen
CN112609202B (zh) 一种电催化合成天然产物Xanthoisoxazoline B的方法及其产品
EP4015673A1 (en) Electrocatalytic oxidation of alcohols using acceptor-less dehydrogenation catalysts
Shilpa et al. Zeolite-Y encapsulated VO [2-(2′-hydroxyphenyl) benzimidazole] complex: investigation of its catalytic activity towards oxidation of organic substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant