CN109957118B - 一种pH响应型生物质纳米复合水凝胶的构建方法 - Google Patents

一种pH响应型生物质纳米复合水凝胶的构建方法 Download PDF

Info

Publication number
CN109957118B
CN109957118B CN201910289181.7A CN201910289181A CN109957118B CN 109957118 B CN109957118 B CN 109957118B CN 201910289181 A CN201910289181 A CN 201910289181A CN 109957118 B CN109957118 B CN 109957118B
Authority
CN
China
Prior art keywords
nano
composite hydrogel
solution
hydrogel
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910289181.7A
Other languages
English (en)
Other versions
CN109957118A (zh
Inventor
卢麒麟
李永贵
卢琳娜
柯惠珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang University
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN201910289181.7A priority Critical patent/CN109957118B/zh
Publication of CN109957118A publication Critical patent/CN109957118A/zh
Application granted granted Critical
Publication of CN109957118B publication Critical patent/CN109957118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明提供了一种pH响应型生物质纳米复合水凝胶的构建方法。将机械强度高、反应活性强的多羟基结构纳米纤维素作为构建生物质纳米复合水凝胶的基质及增强相,以来源广泛、易得、价格便宜的天然活性物质‑‑单宁作为桥联,在纳米纤维素与生物高分子之间产生物理交联,构建多个交联点,形成强韧的凝胶网络,无需任何交联剂;所构建的生物质纳米复合水凝胶呈现出优异的pH响应性,生物相容性好,机械性能高。本发明方法过程简单,反应时间短,绿色环保,安全无毒。

Description

一种pH响应型生物质纳米复合水凝胶的构建方法
技术领域
本发明属于天然高分子材料领域,具体涉及一种pH响应型生物质纳米复合水凝胶的构建。
背景技术
pH响应型水凝胶是溶胀率随着pH值的改变而发生显著变化的一种智能水凝胶,凝胶结构中常含有羧基、氨基、羟基等极性基团。溶液pH值改变时,这些基团会发生电离导致水凝胶中的氢键作用和离子相互作用发生变化,引起凝胶网络结构伸展或收缩,溶胀体积发生改变,即对pH表现出敏感性。pH响应型水凝胶在药物缓释、生物传感器等方面具有广阔的应用前景。目前,pH响应型水凝胶主要分为合成高分子水凝胶和天然高分子水凝胶。合成高分子水凝胶力学性能好,但是生物相容性差,难以生物降解,而且制备过程中通常使用化学交联剂进行交联,导致水凝胶对生物组织具有潜在的生物毒性,安全性较低。天然高分子水凝胶具有优良的生物相容性和生物可降解性,可应用于组织工程、药物缓释等领域,但是天然高分子水凝胶的机械性能较差,限制了其实际应用。
纳米纤维素作为一种具有纳米尺度的天然高分子纳米材料,不但具有纳米粒子的高透明性,高强度,高反应活性,纳米尺度效应,而且拥有生物高分子的良好生物相容性,可作为基质及增强相与生物高分子结合,构建高机械性能的pH响应型水凝胶。单宁作为一种结构中富含酚羟基的天然植物代谢产物,来源广泛,价格便宜,其酚羟基能够与生物高分子结构中的羟基、羧基、氨基等基团通过氢键或共价键作用结合,对生物高分子水凝胶起到增强、增韧的作用。将纳米纤维素、单宁、生物高分子三者进行有机结合,发挥纳米纤维素的增强作用、纳米效应和单宁的交联作用,使三者在水凝胶网络中产生协同增强效应,可赋予凝胶良好的机械性能和优异的pH响应性。
发明内容
本发明的目的是克服现有pH响应型水凝胶机械强度低,安全性低,生物相容性差,制备过程复杂,所用交联剂常含有生物毒性等缺陷,提供一种pH响应型生物质纳米复合水凝胶的构建方法。将机械强度高、反应活性强的多羟基结构纳米纤维素作为构建生物质纳米复合水凝胶的基质及增强相,以来源广泛、易得、价格便宜的天然活性物质--单宁作为桥联,在纳米纤维素与生物高分子之间产生物理交联,构建多个交联点,形成强韧的凝胶网络,基于凝胶中的氢键网络对pH的敏感性,所构建的生物质纳米复合水凝胶呈现出优异的pH响应性。本发明方法过程简单,反应时间短,无需任何交联剂,绿色环保,安全无毒,所制备的生物质纳米复合水凝胶对pH响应性好,生物相容性好,机械性能高。
为实现上述目的,本发明采用如下技术方案:
一种pH响应型生物质纳米复合水凝胶的构建,包括以下步骤:
(1)将一定量的生物高分子加入至水溶液中,加热至设定的溶解温度后,恒温搅拌直至生物高分子完全溶解,形成均一的高分子溶液;
(2)将适量的纳米纤维加入到高分子溶液中,超声分散均匀后,向混合液中加入一定量的单宁,加热冷凝回流反应一定的时间,形成均一的悬浮液,将该悬浮液倒入模具中冷却至室温后得到pH响应型生物质纳米复合水凝胶。
步骤(1)中所述的生物高分子包括胶原、淀粉、黄原胶、阿拉伯胶、羧甲基壳聚糖、羧甲基纤维素、羟乙基纤维素中的任意一种。
步骤(1)中设定的溶解温度为50-100℃,形成的高分子溶液中,生物高分子的质量分数为10%-60%。
步骤(2)中所述的纳米纤维包括纤维素纳米晶须、纳米纤维素纤丝、细菌纤维素中的一种。
步骤(2)中所述的纳米纤维与生物高分子的质量比为1:1-1:10,单宁与生物高分子的质量比为1:1-1:20 。
步骤(2)中所述的超声分散时间为20-60min,加热温度80-120℃,冷凝回流反应时间60-90min。
进一步地,利用所述一种pH响应型生物质纳米复合水凝胶的构建制备pH响应型水凝胶。
本发明的显著优点:
(1)以来源广泛、易得、价格便宜的天然活性物质--单宁作为桥联,以机械强度高、反应活性强的多羟基结构纳米纤维素作为基质及增强相,在生物高分子材料中构建多个交联点,形成凝胶网络,无需任何交联剂,绿色环保;
(2)本发明方法过程简单,反应时间短,无任何化学药品的使用,安全无毒,所制备的pH响应型水凝胶对pH变化的敏感度高,生物相容性好,机械性能好,安全性高。
附图说明
图1为本发明制得的pH响应型生物质纳米复合水凝胶的扫描电镜图;
图2为pH响应型生物质纳米复合水凝胶对不同pH值的响应曲线。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
(1)将20g淀粉加入至100mL水溶液中,加热至70℃,恒温搅拌直至淀粉完全溶解,形成均一的淀粉溶液。
(2)量取100mL制备得到的淀粉溶液,取10g纳米纤维素纤丝加入其中,超声20min分散均匀后,向混合液中加入8g单宁,加热至90℃冷凝回流反应65min,形成均一的悬浮液,将该悬浮液倒入方形模具中冷却至室温后得到pH响应型生物质纳米复合水凝胶。
本实例中得到的pH响应型生物质纳米复合水凝胶的压缩强度可达到2MPa,其扫描电镜图如图1所示,水凝胶内部呈现相互交织的网络结构,孔隙结构较为均匀,孔径尺寸较小。
实施例2
(1)取15g羧甲基壳聚糖加入至100mL水溶液中,加热至60℃,恒温搅拌直至羧甲基壳聚糖完全溶解,形成均一透明的羧甲基壳聚糖溶液。
(2)取80mL制备得到的羧甲基壳聚糖溶液,称量5g细菌纤维素加入其中,超声分散40min,向混合液中加入5g单宁,加热至100℃冷凝回流反应80min,形成均一的悬浮液,将该悬浮液倒入圆柱形模具中冷却至室温后得到pH响应型生物质纳米复合水凝胶。
本实例中得到的pH响应型生物质纳米复合水凝胶的压缩强度可达到3MPa,其在不同pH值下的平衡溶胀率变化如图2所示,平衡溶胀率在pH=5时最小;pH<5时,随着pH值的增加,平衡溶胀率逐渐下降;pH值在5-8之间时,随着pH值的增加,平衡溶胀率逐渐增大。
实施例3
(1)将40g黄原胶加入至100mL水溶液中,加热至80℃,恒温搅拌直至黄原胶完全溶解,形成均一的黄原胶溶液。
(2)量取100mL制备得到的黄原胶溶液,取6g纤维素纳米晶须加入其中,超声60min分散均匀后,向混合液中加入3g单宁,加热至80℃冷凝回流反应90min,形成均一的悬浮液,将该悬浮液倒入方形模具中冷却至室温后得到pH响应型生物质纳米复合水凝胶。
本实例中得到的pH响应型生物质纳米复合水凝胶的压缩强度可达到2.5MPa。
实施例4
(1)取30g羟乙基纤维素加入至200mL水溶液中,加热至90℃,恒温搅拌直至羟乙基纤维素完全溶解,形成均一透明的羟乙基纤维素溶液。
(2)量取200mL制备得到的羟乙基纤维素溶液,称取8g纳米纤维素纤丝加入其中,超声分散30min,向混合液中加入10g单宁,加热至110℃冷凝回流反应60min,形成均一的悬浮液,将该悬浮液倒入圆柱形模具中冷却至室温后得到pH响应型生物质纳米复合水凝胶。
本实例中得到的pH响应型生物质纳米复合水凝胶的压缩强度可达到3.5MPa。
对比例1
(1)取15g羧甲基壳聚糖加入至100mL水溶液中,加热至60℃,恒温搅拌直至羧甲基壳聚糖完全溶解,形成均一透明的羧甲基壳聚糖溶液。
(2)量取80mL制备得到的羧甲基壳聚糖溶液,称量5g细菌纤维素加入其中,超声分散40min,加热至100℃冷凝回流反应80min,形成均一的悬浮液,将该悬浮液倒入圆柱形模具中冷却至室温后得到pH响应型生物质纳米复合水凝胶。
本实例中得到的pH响应型生物质纳米复合水凝胶的压缩强度可达到3MPa,其在不同pH值下的平衡溶胀率变化如图2所示。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种pH响应型生物质纳米复合水凝胶的构建方法,其特征在于:包括以下步骤:
(1)取30g羟乙基纤维素加入至200mL水溶液中,加热至90℃,恒温搅拌直至羟乙基纤维素完全溶解,形成均一透明的羟乙基纤维素溶液;
(2)量取200mL制备得到的羟乙基纤维素溶液,称取8g纳米纤维素纤丝加入其中,超声分散30min,向混合液中加入10g单宁,加热至110℃冷凝回流反应60min,形成均一的悬浮液,将该悬浮液倒入圆柱形模具中冷却至室温后得到pH响应型生物质纳米复合水凝胶。
CN201910289181.7A 2019-04-11 2019-04-11 一种pH响应型生物质纳米复合水凝胶的构建方法 Active CN109957118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910289181.7A CN109957118B (zh) 2019-04-11 2019-04-11 一种pH响应型生物质纳米复合水凝胶的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910289181.7A CN109957118B (zh) 2019-04-11 2019-04-11 一种pH响应型生物质纳米复合水凝胶的构建方法

Publications (2)

Publication Number Publication Date
CN109957118A CN109957118A (zh) 2019-07-02
CN109957118B true CN109957118B (zh) 2022-05-13

Family

ID=67026035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910289181.7A Active CN109957118B (zh) 2019-04-11 2019-04-11 一种pH响应型生物质纳米复合水凝胶的构建方法

Country Status (1)

Country Link
CN (1) CN109957118B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853952B (zh) * 2022-06-10 2024-03-08 闽江学院 一种超拉伸、自修复纳米纤维素凝胶及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962729A (zh) * 2006-11-29 2007-05-16 武汉理工大学 pH敏感型羧甲基壳聚糖水凝胶的制备方法
CN108264743A (zh) * 2018-02-08 2018-07-10 福建农林大学 一种基于多重氢键作用的植物多酚/纳米纤维素高分子复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642088B2 (en) * 2009-09-04 2014-02-04 Wisconsin Alumni Research Foundation Tannin-chitosan composites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962729A (zh) * 2006-11-29 2007-05-16 武汉理工大学 pH敏感型羧甲基壳聚糖水凝胶的制备方法
CN108264743A (zh) * 2018-02-08 2018-07-10 福建农林大学 一种基于多重氢键作用的植物多酚/纳米纤维素高分子复合材料的制备方法

Also Published As

Publication number Publication date
CN109957118A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
Zhu et al. Research progress in bio-based self-healing materials
Wang et al. Wood‐derived functional polymeric materials
Wu et al. Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel
Liu et al. Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties
Syverud et al. Controlling the elastic modulus of cellulose nanofibril hydrogels—scaffolds with potential in tissue engineering
Liu et al. Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation
Ma et al. Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan
Wang et al. Effects of cellulose nanofibrils on dialdehyde carboxymethyl cellulose based dual responsive self-healing hydrogel
Xu et al. Doubly cross-linked nanocellulose hydrogels with excellent mechanical properties
CN105153438A (zh) 高强度高溶胀性纳米纤维素/聚乙烯醇复合水凝胶的制备方法
CN106867042A (zh) 流延法制备纳米纤维素/壳聚糖/聚乙烯醇复合膜及其在生物抗菌膜中的应用
CN106349488B (zh) 一种多重化学交联增强纤维素气凝胶及其制备方法
CN111690240A (zh) 一种聚乳酸/纳米纤维素复合材料及其制备方法
CN103087336B (zh) 氧化石墨烯/魔芋葡甘聚糖可降解复合薄膜材料的制备方法
Liu et al. Conductive hydrogels based on industrial lignin: Opportunities and challenges
Esen et al. Sustainable functionalization of 2, 3-dialdehyde cellulose via the Passerini three-component reaction
Huang et al. Co-precipitated poly (vinyl alcohol)/chitosan composites with excellent mechanical properties and tunable water-induced shape memory
NL2030477B1 (en) Underwater Elastic Cellulose Aerogel and Preparation Method and Application Thereof
CN109796606A (zh) 一种基于多重动态化学键的自愈合水凝胶及其制备方法
CN107417934A (zh) 一种具有力致光学异性结构的高强、高韧纤维素水凝胶及其制备方法
Vadanan et al. Bacterial cellulose production, functionalization, and development of hybrid materials using synthetic biology
Zou et al. Temperature‐Sensitive Poly (N‐isopropylacrylamide)/Konjac Glucomannan/Graphene Oxide Composite Membranes with Improved Mechanical Property, Swelling Capability, and Degradability
Ma et al. In situ photocrosslinked hyaluronic acid and poly (γ-glutamic acid) hydrogels as injectable drug carriers for load-bearing tissue application
Rao et al. Genipin-crosslinked gelatin-based composite hydrogels reinforced with amino-functionalized microfibrillated cellulose
Jia et al. Construction of highly stretchable silica/polyacrylamide nanocomposite hydrogels through hydrogen bond strategy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant