CN109952635B - 用于晶片检验临界区域的产生的方法及系统 - Google Patents

用于晶片检验临界区域的产生的方法及系统 Download PDF

Info

Publication number
CN109952635B
CN109952635B CN201780068638.0A CN201780068638A CN109952635B CN 109952635 B CN109952635 B CN 109952635B CN 201780068638 A CN201780068638 A CN 201780068638A CN 109952635 B CN109952635 B CN 109952635B
Authority
CN
China
Prior art keywords
primitive
primitives
wafer
inspection
sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780068638.0A
Other languages
English (en)
Other versions
CN109952635A (zh
Inventor
P·俄珀鲁里
R·马内帕利
A·V·库尔卡尼
S·巴纳吉
J·柯克兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Corp
Original Assignee
KLA Tencor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLA Tencor Corp filed Critical KLA Tencor Corp
Priority to CN202310673613.0A priority Critical patent/CN116705637A/zh
Publication of CN109952635A publication Critical patent/CN109952635A/zh
Application granted granted Critical
Publication of CN109952635B publication Critical patent/CN109952635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明揭示一种方法,其包含:接收一或多组晶片数据;从所述一或多组晶片数据中的一或多个层中的一或多个形状识别一或多个基元;将所述一或多个基元中的每一者分类为特定基元类型;识别所述一或多个基元中的每一者的一或多个基元特性;产生所述一或多个基元的基元数据库;基于所述基元数据库来产生一或多个规则;接收一或多组设计数据;将所述一或多个规则应用于所述一或多组设计数据以识别一或多个临界区域;及产生用于检验子系统的包含所述一或多个临界区域的一或多个晶片检验方案。

Description

用于晶片检验临界区域的产生的方法及系统
相关申请案的交叉参考
本申请案主张名为普拉萨尼·吴帕路瑞(Prasanti Uppaluri)、拉杰什·曼娜帕里(Rajesh Manepalli)、阿肖克·库尔卡尼(Ashok Kulkarni)、塞巴·班纳吉(SaibalBanerjee)及约翰·柯克兰(John Kirkland)的发明者于2016年11月8日申请的标题为“从设计数据及样本图像实例自动产生检测区的方法(A METHOD FOR AUTOMATIC GENERATIONOFINSPECTION REGIONS FROM DESIGN DATA AND SAMPLE IMAGE EXAMPLES)”的第201641038208号印度临时专利申请案的优先权,所述申请案的全部内容以引用的方式并入本文中。
技术领域
本发明涉及晶片检验及重检,且更特定来说,本发明涉及基于设计数据、SEM(扫描电子显微镜)样品图像、表示设计意图的高分辨率图像或用于产生一或多个晶片检验方案的模拟图像来产生一或多个临界区域。
背景技术
制造例如逻辑及存储器装置的半导体装置通常包含:使用大量半导体制造工艺来处理例如半导体晶片的衬底以形成半导体装置的各种特征及多个层级。多个半导体装置可制造于单个半导体晶片上的布置中且接着分离成个别半导体装置。
半导体装置会在制造工艺期间产生缺陷。在半导体制造工艺期间的各种步骤中执行检验过程以检测样本上的缺陷。检验过程是制造例如集成电路的半导体装置的重要部分,随着半导体装置的尺寸减小,其变成成功制造可接受半导体装置的越来越重要部分。例如,随着半导体装置的尺寸减小,检测缺陷已变得非常迫切,这是因为即使缺陷相对较小也会引起半导体装置中的无用像差。
缺陷检测的方法包含:产生具有一或多个临界区域的一或多个晶片检验方案,所述一或多个临界区域基于晶片设计数据、表示设计意图的SEM或高分辨率光学检验图像或模拟图像。然而,界定临界区域的这些方法会较复杂及/或计算量大,因此需要检验专业知识。另外,界定临界区域的这些方法会导致范围过度受限而可能遗漏缺陷的晶片检验方案。此外,这些方法可能会遗漏缺陷,因为一或多个缺陷及信号噪声是不可分离的(即,缺陷迷失于噪声中)。因而,将期望提供一种用于改进晶片检验及缺陷分类的解决方案以解决制造问题且提供改进晶片检验能力。
发明内容
根据本发明的一或多个实施例,揭示一种用于产生晶片检验的一或多个晶片检验方案的系统。在一个说明性实施例中,所述系统包含检验子系统。在另一说明性实施例中,所述系统包含通信地耦合到所述检验子系统的控制器。在另一说明性实施例中,所述控制器包含经配置以执行存储于存储器中的一组程序指令的一或多个处理器。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器接收一或多组晶片数据。在另一说明性实施例中,所述一或多组晶片数据包含一或多个层。在另一说明性实施例中,所述一或多个层包含一或多个形状。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器从所述一或多个形状识别一或多个基元。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器将所述一或多个基元分类为特定基元类型。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器识别所述一或多个基元中的每一者的一或多个基元特性。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器产生所述一或多个基元的基元数据库。在另一说明性实施例中,所述基元数据库包含所述一或多个基元中的每一者的所述特定基元类型分类及所述一或多个基元特性。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器基于所述基元数据库来产生一或多个规则。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器接收一或多组设计数据。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器将所述一或多个规则应用于所述一或多组设计数据以识别一或多个临界区域。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器产生用于所述检验子系统的一或多个晶片检验方案。在另一说明性实施例中,所述方案包含所述一或多个临界区域。
根据本发明的一或多个实施例,揭示一种用于产生晶片检验的一或多个晶片检验方案的方法。在一个说明性实施例中,所述方法包含:接收一或多组晶片数据。在另一说明性实施例中,所述一或多组晶片数据包含一或多个层。在另一说明性实施例中,所述一或多个层包含一或多个形状。在另一说明性实施例中,所述方法包含:从所述一或多个形状识别一或多个基元。在另一说明性实施例中,所述方法包含:将所述一或多个基元中的每一者分类为特定基元类型。在另一说明性实施例中,所述方法包含:识别所述一或多个基元中的每一者的一或多个基元特性。在另一说明性实施例中,所述方法包含:产生所述一或多个基元的基元数据库。在另一说明性实施例中,所述基元数据库包含所述一或多个基元中的每一者的所述特定基元类型分类及所述一或多个经识别基元特性。在另一说明性实施例中,所述方法包含:基于所述基元数据库来产生一或多个规则。在另一说明性实施例中,所述方法包含:接收一或多组设计数据。在另一说明性实施例中,所述方法包含:将所述一或多个规则应用于所述一或多组设计数据以识别一或多个临界区域。在另一说明性实施例中,所述方法包含用于检验子系统的一或多个晶片检验方案。在另一说明性实施例中,所述方案包含所述一或多个临界区域。
根据本发明的一或多个实施例,揭示一种用于产生晶片检验的一或多个晶片检验方案的系统。在一个说明性实施例中,所述系统包含检验子系统。在另一说明性实施例中,所述系统包含通信地耦合到所述检验子系统的控制器。在另一说明性实施例中,所述控制器包含经配置以执行存储于存储器中的一组程序指令的一或多个处理器。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器接收一或多组晶片数据。在另一说明性实施例中,所述一或多组晶片数据包含一或多个层。在另一说明性实施例中,所述一或多个层包含一或多个形状。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器从所述一或多个形状识别一或多个基元。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器识别所述一或多个基元中的每一者的组合分类。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器产生所述一或多个基元的基元数据库。在另一说明性实施例中,所述基元数据库包含所述一或多个基元中的每一者的所述组合分类。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器基于所述基元数据库来产生一或多个规则。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器接收一或多组设计数据。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器将所述一或多个规则应用于所述一或多组设计数据以识别一或多个临界区域。在另一说明性实施例中,所述程序指令经配置以致使所述一或多个处理器产生用于所述检验子系统的一或多个晶片检验方案。在另一说明性实施例中,所述方案包含所述一或多个临界区域。
根据本发明的一或多个实施例,揭示一种用于产生晶片检验的一或多个晶片检验方案的方法。在一个说明性实施例中,所述方法包含:接收一或多组晶片数据。在另一说明性实施例中,所述一或多组晶片数据包含一或多个层。在另一说明性实施例中,所述一或多个层包含一或多个形状。在另一说明性实施例中,所述方法包含:从所述一或多个形状识别一或多个基元。在另一说明性实施例中,所述方法包含:识别所述一或多个基元中的每一者的组合分类。在另一说明性实施例中,所述方法包含:产生所述一或多个基元的基元数据库。在另一说明性实施例中,所述基元数据库包含所述一或多个基元中的每一者的所述组合分类。在另一说明性实施例中,所述方法包含:基于所述基元数据库来产生一或多个规则。在另一说明性实施例中,所述方法包含:接收一或多组设计数据。在另一说明性实施例中,所述方法包含:将所述一或多个规则应用于所述一或多组设计数据以识别一或多个临界区域。在另一说明性实施例中,所述方法包含用于检验子系统的一或多个晶片检验方案。在另一说明性实施例中,所述方案包含所述一或多个临界区域。
应了解,以上一般描述及以下详细描述两者仅供例示及说明且未必限制本发明。并入本说明书中且构成本说明书的部分的附图说明本发明的目标。描述及图式一起用于阐释本发明的原理。
附图说明
所属领域的技术人员可通过参考附图来更好理解本发明的众多优点,其中:
图1说明根据本发明的一或多个实施例的用于晶片检验的系统的框图。
图2说明根据本发明的一或多个实施例的用于产生用于一或多个晶片检验方案中的一或多个临界区域的框图。
图3A说明根据本发明的一或多个实施例的晶片图案中的形状交互作用。
图3B说明根据本发明的一或多个实施例的晶片图案中的形状交互作用。
图3C说明根据本发明的一或多个实施例的晶片图案中的形状交互作用。
图4说明根据本发明的一或多个实施例的用于自动产生用于一或多个晶片检验方案中的一或多个临界区域的过程流程图。
具体实施方式
现将详细参考附图中所说明的揭示标的物。
参考图1到4,其揭示根据本发明的一或多个实施例的用于自动产生一或多个临界区域以在晶片检验期间使用的方法及系统。
一种用于产生一或多个临界区域以在晶片检验期间使用的方法包含:使用图案搜索算法(例如快速图案搜索算法)搜索关注图案(POI)。接着,算法可搜索与POI匹配的设计以输出其中存在POI的所有位置的列表。然而,图案搜索算法仅可输出与POI完全匹配的所有位置的列表,从而可能遗漏类似于POI且对晶片具有相同临界性的区域(就图案失效的可能性来说)。用于产生一或多个临界区域以在晶片检验期间使用的另一方法包含基于规则的解决方案,其可用于找到与POI匹配的设计中的所有位置。然而,这些规则必须人工编写,这需要专业知识、枯燥乏味且易错。
因而,本发明的实施例涉及用于产生能够更广泛检测一或多个缺陷以在晶片检验及重检过程中使用的一或多个临界区域的改进系统及方法。本发明的实施例还涉及抑制来自经检验晶片上的周围区域的噪声。
出于本发明的目的,本文所使用的术语“设计”、“设计数据”及“裸片设计”是指集成电路(IC)的物理设计(布局)及通过复杂模拟或简单几何及布尔(Boolean)运算从物理设计导出的数据。例如,物理设计可存储于数据结构(例如图形数据系统(GDS)文件、任何其它标准机器可读文件或所属领域中已知的任何其它合适文件)中。IC布局数据或芯片设计数据以包含(但不限于)GDSII及OASIS格式的若干格式提供。GDSII文件是用于表示设计布局数据的一类文件中的一者。此类文件的其它实例包含(但不限于)GL1及OASIS文件及专属文件格式(例如主光罩设计文件(RDF)数据,其专属于加利福尼亚州米尔皮塔斯市的科磊公司(KLA-Tencor,Milpitas,Calif)(“KT”)。
使用特定芯片的制造、逻辑及电意图编码设计数据。设计数据可为电子设计自动化(EDA)工具的输出。例如,从EDA工具输出的设计数据可由分析软件处理且转换为RDF格式。出于本发明的目的,晶片数据是表示实际制造及/或印刷的事物的图像表示。
本文中应注意,由主光罩检验系统及/或其衍生物获取的主光罩的图像可用作为设计的一或若干“代理”。此主光罩图像或其衍生物可在使用设计的本文所描述的任何实施例中充当设计布局的替代物。设计可包含2009年8月4日发布的第7,570,796号美国专利及2010年3月9日发布的第7,676,077号美国专利中所描述的任何其它设计数据或设计数据代理,所述两个专利的全部内容以引用的方式并入。另外,设计数据可为标准单元库数据、集成布局数据、一或多个层的设计数据、设计数据的衍生物及全部或部分芯片设计数据。
本文中应进一步注意,从晶片或主光罩模拟或获取的图像可用作为设计的代理。图像分析还可用作为设计分析的代理。例如,可从印刷于晶片及/或主光罩上的设计的图像提取设计的形状或多边形,假定以足以使设计的多边形适当成像的分辨率获取所述晶片及/或主光罩的图像。
图1说明根据本发明的一或多个实施例的用于样品检验的系统100。在一个实施例中,系统100包含检验子系统102。在另一实施例中,系统100包含用于固定样品104的样品载台106。在另一实施例中,系统100包含控制器110。在另一实施例中,系统100包含用户接口120。
在另一实施例中,检验子系统102经配置以检测样品104中的一或多个缺陷。例如,检验子系统102可包含所属领域中已知的任何适当特性化工具,例如(但不限于)检验子系统或重检工具。例如,检验子系统102可包含(但不限于)电子束检验或重检工具(例如扫描电子显微镜(SEM)系统)。通过另一实例的方式,检验子系统102可包含(但不限于)光学检验子系统。例如,光学检验子系统可包含能够产生表示晶片104的电意图的一或多个高分辨率图像的光学检验子系统。另外,光学检验子系统可包含宽带检验子系统,其包含(但不限于)基于激光维持等离子体(LSP)的检验子系统。此外,光学检验子系统可包含窄带检验子系统,例如(但不限于)激光扫描检验子系统。此外,光学检验子系统可包含(但不限于)亮场成像工具或暗场成像工具。本文中应注意,检验子系统102可包含经配置以收集及分析从样品104的表面反射、散射、衍射及/或辐射的照明的任何光学系统。在以下各者中描述检验子系统的实例:2006年8月8日发布的第7,092,082号美国专利、2003年9月16日发布的第6,621,570号美国专利及1998年9月9日发布的第5,805,278号美国专利,其全部内容各自以引用的方式并入本文中。还在以下各者中描述检验子系统的实例:2014年4月4日发布的第8,664,594号美国专利、2014年4月8日发布的第8,692,204号美国专利、2014年4月15日发布的第8,698,093号美国专利、2014年5月6日发布的第8,716,662号美国专利、2015年4月29日申请的第14/699,781号美国专利申请案、2015年3月24日申请的第14/667,235号美国专利申请案及2014年8月13日申请的第14/459,155号美国专利申请案,其全部内容各自以引用的方式并入本文中。
出于本发明的目的,可将缺陷分类为空隙、短路、颗粒、残留物、浮渣或所属领域中已知的任何其它缺陷。
在另一实施例中,尽管未展示,但检验子系统102可包含照明源、检测器及用于执行检验的各种光学组件(例如透镜、光束分离器及其类似者)。例如,检验子系统102的照明源可包含所属领域中已知的任何照明源。例如,照明源可包含(但不限于)宽带光源或窄带光源。另外,照明源可经配置以将光导引到安置于样品载台106上的样品104的表面(经由各种光学组件)。此外,检验子系统102的各种光学组件可经配置以将从样品104的表面反射及/或散射的光导引到检验子系统102的检测器。通过另一实例的方式,检验子系统102的检测器可包含所属领域中已知的任何适当检测器。例如,检测器可包含(但不限于)光电倍增管(PMT)、电荷耦合装置(CCD)、时间延迟积分(TDI)照相机及其类似者。另外,检测器的输出可通信地耦合到控制器110,如本文将进一步详细描述。
在一个实施例中,样品104包含晶片。例如,样品104可包含(但不限于)半导体晶片。如本发明中所使用,术语“晶片”是指由半导体及/或非半导体材料形成的衬底。例如,半导体或半导体材料可包含(但不限于)单晶硅、砷化镓及磷化铟。
在另一实施例中,使用一或多组晶片设计数据制造样品104。在另一实施例中,晶片设计数据组包含一或多组层。例如,此类层可包含(但不限于)光致抗蚀剂、电介质材料、导电材料及半导电材料。此类层的许多不同类型是所属领域中已知的,且本文所使用的术语“晶片”希望涵盖其上可形成此类层的所有类型的晶片。通过另一实例的方式,形成于晶片上的层可在晶片内重复一或多次。此类材料层的形成及处理可最终导致完成的装置。许多不同类型的装置可形成于晶片上,且本文所使用的术语“晶片”希望涵盖其上制造所属领域中已知的任何类型的装置的晶片。
在另一实施例中,层组包含一或多组形状。例如,形状组可在层组内重复一或多次。通过另一实例的方式,形状组可呈规则或不规则形状。在另一实施例中,一或多个形状是一或多个多边形。在另一实施例中,形状/多边形由一或多个基元构成,如本文将进一步详细论述。在以下各者中描述检验装置的设计数据时的多边形的实施:2014年12月30日发布的第8,923,600号美国专利及2014年2月12日申请的第14/178,866号美国专利申请案,其全部内容各自以引用的方式并入本文中。
在另一实施例中,层组包含一或多组单元。例如,单元组可在层组内重复一或多次。通过另一实例的方式,单元组可呈规则或不规则形状。本文中应注意,特定单元可在晶片设计数据组的多个层之间重复。
在另一实施例中,晶片设计数据组包含所关注的一或多个设计。例如,所关注的设计可在晶片设计数据组内重复一或多次。在另一实施例中,所关注的特定设计可与定位于晶片设计数据组内的特定单元相关联。
本文中应注意,所关注的特定设计可对应于晶片设计数据组的特定电意图。如本发明中所使用,一或多组设计数据的电意图包含(但不限于)电力线、接地线、计时线、字线、位线、数据线、逻辑线及其类似者。
在另一实施例中,样品载台106可包含所属领域中已知的任何适当机械及/或机器人组合件。例如,样品载台106可经配置以将样品104致动到选定位置或定向。例如,样品载台106可包含或可机械地耦合到例如电动机或伺服器的一或多个致动器,所述一或多个致动器经配置以平移或旋转样品104以根据选定检验或度量算法定位、聚焦及/或扫描(选定检验或度量算法中的若干者是所属领域中已知的)。
在一个实施例中,控制器110包含一或多个处理器112及存储器媒体114。在另一实施例中,一或多组程序指令116存储于存储器媒体114中。在另一实施例中,一或多个处理器112经配置以执行程序指令组116以实施本发明中所描述的各种步骤中的一或多者。
在另一实施例中,用户接口120通信地耦合到控制器110的一或多个处理器112。在另一实施例中,用户接口120包含显示装置122。在另一实施例中,用户接口120包含用户输入124。
在另一实施例中,控制器110经配置以通过可包含有线及/或无线部分的传输媒体从其它系统或子系统接收及/或获取数据或信息(例如,从检验子系统102或检验子系统102的任何组件接收及/或获取一或多组信息,或接收及/或获取经由用户接口120所接收的一或多个用户输入)。在另一实施例中,系统100的控制器110经配置以通过可包含有线及/或无线部分的传输媒体将数据或信息(例如本文所揭示的一或多个过程的输出)传输到一或多个系统或子系统(例如,将一或多个命令传输到检验子系统102或检验子系统102的任何组件,或传输显示于用户接口120上的一或多个输出)。据此来说,传输媒体可充当控制器110与系统100的其它子系统之间的数据链路。在另一实施例中,控制器110经配置以经由传输媒体(例如网络连接)将数据发送到外部系统。
在一个实例中,检验子系统102的检测器可以任何合适方式(例如,通过图1中所展示的虚线指示的一或多个传输媒体)耦合到控制器110,使得控制器110可接收由检测器产生的输出。通过另一实例的方式,如果检验子系统102包含一个以上检测器,那么控制器110可如上文所描述那样耦合到多个检测器。本文中应注意,控制器110可经配置以使用由检验子系统102收集及传输的检测数据检测具有晶片104的缺陷的一或多个位点,其利用所属领域中已知的任何方法及/或算法检测晶片104上的具有缺陷的位点。例如,检验子系统102可经配置以接受来自系统100的另一子系统(其包含(但不限于)控制器110)的指令。在从控制器110接收指令之后,检验子系统102可在所提供指令中所识别的样品104的位置处执行检验过程(即,检验方案),从而将检验过程的结果传输到控制器110。
在一个实施例中,程序指令组116经编程以致使一或多个处理器112产生用于检验样品104的一或多个晶片检验方案。例如,程序指令组116可经编程以致使一或多个处理器112接收一或多组晶片数据。例如,一或多组晶片数据可包含一或多个层。另外,一或多个层可包含一或多个形状。此外,一或多个形状可包含一或多个基元。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112从一或多个形状识别一或多个基元。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112将一或多个基元中的每一者分类为特定基元类型。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112识别一或多个基元中的每一者的一或多个基元特性。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112产生一或多个基元的基元数据库。例如,基元数据库可包含特定基元类型分类及一或多个基元的一或多个经识别基元特性。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112基于基元数据库来产生一或多个规则。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112接收一或多组设计数据。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112将一或多个规则应用于一或多组设计数据以识别一或多个临界区域。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112产生一或多个晶片检验方案,其中方案包含检验子系统的一或多个临界区域。
在另一实施例中,程序指令组116经编程以致使一或多个处理器112产生用于检验样品104的一或多个晶片检验方案。例如,程序指令组116可经编程以致使一或多个处理器112接收一或多组晶片数据。例如,一或多组晶片数据可包含一或多个层。另外,一或多个层可包含一或多个形状。此外,一或多个形状可包含一或多个基元。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112从一或多个形状识别一或多个基元。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112识别一或多个基元中的每一者的组合分类。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112产生一或多个基元的基元数据库。例如,基元数据库可包含一或多个基元中的每一者的组合分类。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112基于基元数据库来产生一或多个规则。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112接收一或多组设计数据。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112将一或多个规则应用于一或多组设计数据以识别一或多个临界区域。通过另一实例的方式,程序指令组116可经编程以致使一或多个处理器112产生一或多个晶片检验方案,其中方案包含检验子系统的一或多个临界区域。
在一个实施例中,控制器110的一或多个处理器112包含所属领域中已知的任何一或多个处理元件。在此意义上,一或多个处理器112可包含经配置以执行算法及/或指令的任何微处理器装置。例如,一或多个处理器112可由以下各者组成:桌面型计算机、主计算机系统、工作站、图像计算机、并行处理器、车载计算机、手持计算机(例如平板计算机、智能电话或平板手机)或经配置以执行程序(其经配置以操作系统100)的其它计算机系统(例如网络计算机),如本发明中所描述。应认识到,本发明中所描述的步骤可由单个计算机系统或替代地,多个计算机系统实施。一般来说,术语“处理器”可经广义定义以涵盖具有一或多个处理元件的任何装置,其执行来自非暂时性存储器媒体(例如存储器114)的程序指令116。此外,系统100的不同子系统(例如检验子系统102或用户接口120)可包含适合于实施本发明中所描述的步骤的至少一部分的处理器或逻辑元件。因此,以上描述不应被解释为对本发明的限制,而是仅为说明。
在一个实施例中,控制器110的存储器媒体114包含适合于存储可由一或多个相关联处理器112执行的程序指令116的所属领域中已知的任何存储媒体。例如,存储器媒体114可包含非暂时性存储器媒体。例如,存储器媒体114可包含(但不限于)只读存储器、随机存取存储器、磁性或光学存储器装置(例如磁盘)、磁带、固态驱动器及其类似者。在另一实施例中,本文中应注意,存储器114经配置以将显示信息提供到显示装置122及/或提供本文所描述的各种步骤的输出。应进一步注意,存储器114可与一或多个处理器112一起容置于共同控制器外壳中。在替代实施例中,存储器114可相对于处理器112及控制器110的物理位置远程定位。例如,控制器110的一或多个处理器112可存取可通过网络(例如因特网、内部网络及其类似者)存取的远程存储器(例如服务器)。在另一实施例中,存储器媒体114存储用于致使一或多个处理器112实施本发明中所描述的各种步骤的程序指令116。
在一个实施例中,显示装置122包含所属领域中已知的任何显示装置。例如,显示装置可包含(但不限于)液晶显示器(LCD)。通过另一实例的方式,显示装置可包含(但不限于)基于有机发光二极管(OLED)的显示器。通过另一实例的方式,显示装置可包含(但不限于)CRT显示器。所属领域的技术人员应认识到,各种显示装置可适合于实施于本发明中且显示装置的特定选择可取决于包含(但不限于)形状因子、成本及其类似者的各种因素。一般来说,能够与用户输入装置(例如触摸屏、边框安装接口、键盘、鼠标、触摸板及其类似者)集成的任何显示装置适合于实施于本发明中。
在一个实施例中,用户输入装置124包含所属领域中已知的任何用户输入装置。例如,用户输入装置124可包含(但不限于)键盘、小键盘、触摸屏、操纵杆、旋钮、滚轮、轨迹球、开关、刻度盘、滑杆、滚动条、滑块、手柄、触摸板、桨、方向盘、游戏杆、边框输入装置或其类似者。就触摸屏接口来说,所属领域的技术人员应认识到,大量触摸屏接口可适合于实施于本发明中。例如,显示装置122可与触摸屏接口(例如(但不限于)电容触摸屏、电阻触摸屏、基于表面声波的触摸屏、基于红外线的触摸屏或其类似者)集成。一般来说,能够与显示装置的显示部分集成的任何触摸屏接口适合于实施于本发明中。在另一实施例中,用户输入装置124可包含(但不限于)边框安装接口。
图1中所说明的系统100的实施例可如本文所描述那样经进一步配置。另外,系统100可经配置以执行本文所描述的系统及方法实施例中的任何者的任何其它步骤。
图2说明根据本发明的一或多个实施例的用于产生用于晶片检验中的一或多个临界区域的系统200。本文中应注意,本文先前所描述的各种系统及方法实施例、组件及架构应被解释为扩展到图2的系统200。
在一个实施例中,系统200包含由控制器110接收的一或多组晶片数据202。在另一实施例中,晶片数据组202包含一或多个层。在另一实施例中,层组包含一或多组形状。在另一实施例中,形状组包含一或多个基元212。本文中应注意,形状可为多边形。
本文中应注意,晶片数据202可包含一或多个缺陷位点。例如,一或多个缺陷位点可表示其中已观察到图案失效的晶片104上的位置。通过另一实例的方式,一或多个缺陷位点可表示被认为“薄弱”或“潜在失效位点”的位置(例如可能失效的晶片上的位置及/或图案布置)。
在另一实施例中,晶片数据组202包含一或多组设计片段204。例如,设计片段组204可呈二进制图像格式。例如,设计片段组204可转换为用于图案的值1及用于背景的值0,从此形成一或多个二进制设计图像片段204。通过另一实例的方式,设计片段204可描述于一或多个文字描述中,其中文字描述将设计片段204描述为多边形。在此实例中,文字描述可由控制器110接收。
在另一实施例中,晶片数据组202中的一或多个缺陷位点可经由检验子系统定位或由从检验子系统获取的信息库定位。在另一实施例中,晶片数据组202包含样品104的选定区域的一或多个检验图像206。在另一实施例中,检验图像206可由检验子系统102收集。例如,检验子系统102可包含(但不限于)能够产生表示晶片104的电意图的一或多个高分辨率图像的电子束检验或重检工具(例如SEM系统)或光学检验子系统。通过另一实例的方式,样品104的选定区域可为整个样品104。通过另一实例的方式,样品104的选定区域可为样品104的部分。在另一实施例中,由光学检验系统产生的表示晶片104的电意图的一或多个高分辨率图像转换为晶片数据202。
在另一实施例中,晶片数据组202包含从模拟子系统(其包含(但不限于)加利福尼亚州米尔皮塔斯市的科磊公司(“KT”)的PROLITHTM)接收的一或多组模拟数据208。在另一实施例中,模拟数据组208是基于设计数据。在另一实施例中,模拟数据组208预测晶片数据组202。
本文中应注意,晶片数据202可仅包含特定晶片104的数据的部分。例如,数据的部分可包含晶片104上的一或多个潜在失效位点,所述部分含于晶片104的设计片段204、高分辨率检验图像206或模拟数据组208中的任何者中。
在另一实施例中,系统200包含控制器110中的基元提取引擎210。在另一实施例中,基元提取引擎210接收晶片数据组202。在另一实施例中,基元提取引擎210从晶片数据组202提取基元212。在另一实施例中,基元提取引擎210将基元212中的每一者分类为基元类型214。例如,基元类型214可包含(但不限于)线或角。在另一实施例中,基元提取引擎210识别基元212中的每一者的一或多个特性216。例如,一或多个特性216可包含(但不限于)线的宽度(例如粗、粗细适中或细)、线的长度、线的部分(例如,长边是线“侧”,短边是线“端”)、角方向(例如凸角或凹角)或基元212相对于晶片104的一或多个空间位置、基元212相对于晶片104的空间定向(例如2D图像上的水平或垂直布局)或晶片104上的两个或两个以上基元212之间的间距。本文中应注意,2016年11月18日申请的第15/355,606号美国专利申请案中进一步描述用于晶片检验及重检的基元类型214及基元特性216的应用,所述申请案的全部内容以引用的方式并入本文中。
尽管本发明的实施例涉及为基元212的单独信息组的基元类型214及基元特性216,但本文中应注意,可识别基元212中的每一者的组合分类。例如,组合分类可包含(但不限于)“粗线”、“粗细适中线”、“细线”、“凸角”或“凹角”。通过另一实例的方式,组合分类可包含(但不限于)一或多个形状交互作用,其包含(但不限于)基元212相对于晶片104的空间位置、基元212相对于晶片104的空间定向(例如2D图像上的水平或垂直布局)或晶片104上的两个或两个以上基元212之间的间距。
图3A到3C说明根据本发明的一或多个实施例的晶片上的特定形状交互作用。
在一个实施例中,图3A说明晶片104上的可能图案300。在另一实施例中,图案300包含由间距301分离的一组302的一或多个密集细线。在另一实施例中,图案300包含单独结构304。在另一实施例中,图案300包含形状交互作用306。例如,形状交互作用306可界定为垂直于密集细线组302的侧的单独结构304的线端之间的交互作用。
在一个实施例中,图3B说明晶片104上的可能图案310。在另一实施例中,图案310包含由间距311分离的一组312的一或多个密集细线。在另一实施例中,图案310包含单独结构314。在另一实施例中,图案310包含形状交互作用316。例如,形状交互作用316可界定为平行于密集细线组312的侧的单独结构314的线端之间的交互作用。
在一个实施例中,图3C说明晶片104上的可能图案320。在另一实施例中,图案320包含第一结构322。在另一实施例中,图案320包含第二结构324。在另一实施例中,第二结构324的凸角由第一结构322的凹角包围,使得第一结构322及第二结构324由间距321分离。在另一实施例中,图案300包含形状交互作用326。例如,形状交互作用326可界定为结构324的凸角与结构322的凹角之间的交互作用。
本文中应注意,形状交互作用不限于为所体现的交互作用306、316、326,而是可包含任何数目个额外形状交互作用。
在另一实施例中,基元提取引擎210将关于基元212的信息记录到基元数据库218中。例如,基元数据库218可包含每一基元212的基元类型214及特性216。通过另一实例的方式,基元数据库218可包含每一基元212的组合分类。通过另一实例的方式,基元数据库218可包含(但不限于)列表、表或格式化文本数据文件。
在另一实施例中,系统200包含规则脚本产生器220。在另一实施例中,规则脚本产生器220接收基元212的基元数据库218。在另一实施例中,规则脚本产生器220分析基元212的基元数据库218以产生一或多个规则222。在另一实施例中,一或多个规则222使一或多个图案化布置中的基元212中的一或多者与一或多个潜在失效位点相关联。例如,一或多个潜在失效位点可包含可能失效的晶片104的电意图。
在另一实施例中,规则脚本产生器220从一或多个规则222产生一或多个可执行脚本224。在另一实施例中,可执行脚本224的语法取决于执行可执行脚本224的规则脚本执行引擎230的类型。例如,可执行脚本224可呈
Figure BDA0002051084290000131
格式,其中规则脚本执行引擎230是专属于俄勒冈州威尔逊维尔的明导国际(Mentor Graphics,Wilsonville,Oregon)的DRC引擎。然而,本文中应注意,还可通过修改通过执行规则脚本产生器220所产生的可执行脚本224的格式来采用任何其它规则引擎作为规则脚本执行引擎230。
在另一实施例中,系统200包含规则脚本执行引擎230。在另一实施例中,规则脚本执行引擎230接收可执行脚本224。在另一实施例中,规则脚本执行引擎230接收被接收到控制器110中的一或多组设计数据232。在另一实施例中,规则脚本执行引擎230将一或多个可执行脚本224应用于一或多组设计数据232以识别一或多个临界区域234。在另一实施例中,临界区域234经识别为满足可执行脚本224中的一或多个约束的设计数据组232中的位置。例如,一或多个约束可与一或多个潜在失效位点有关。据此来说,临界区域234是设计数据232的子集。
本文中应进一步注意,设计数据232可包含特定晶片104的整个设计数据。例如,设计数据232可为待印刷的晶片104的理想表示。
在另一实施例中,产生一或多个晶片检验方案240。在另一实施例中,所产生的晶片检验方案240包含从规则脚本执行引擎230输出的临界区域234。在另一实施例中,控制器110实施晶片检验方案240以定位从检验子系统102接收的检验晶片的一或多个图像中的一或多个缺陷。在另一实施例中,一或多个晶片检验方案240通过控制器110传输到检验子系统102。
本发明的优点包含:分析晶片数据组202以基于失效的可能性来确定所关注的特定几何形状或形状交互作用。本发明的优点还包含:产生一或多个规则222,所述一或多个规则包含一或多组晶片数据中的潜在失效图案的通用描述而非潜在失效图案的一组或一系列特定组件。通用描述包含比先前方法更可能标记可能失效的较大组设计图案的一组“模糊”规则。
本文中应注意,基元提取引擎210、规则脚本产生器220或规则脚本执行引擎230中的一或多者的执行可由控制器110自动执行。因而,本发明的优点还包含:自动产生用于标记晶片的关注区域的基元数据库218、规则222、可执行脚本224或临界区域234中的一或多者。据此来说,可无需人为制定一或多个规则,从而消除错误的潜在来源且无需理解用于制定规则的临界形状交互作用所需的专业知识。
然而,本文中应进一步注意,基元提取引擎210、规则脚本产生器220或规则脚本执行引擎230中的一或多者的实施可由控制器110遵循用户的提示或命令来执行。
图4说明用于基于一或多个临界区域来产生一或多个晶片检验方案的方法400。方法400还可包含可由本文所描述的输出获取子系统及/或计算机子系统或系统执行的任何其它步骤。步骤可由可根据本文所描述的实施例中的任何者来配置的一或多个计算机系统执行。本文中应注意,方法400的步骤可完全或部分由系统100实施。然而,应认识到,方法400不受限于系统100,这是因为额外或替代系统级实施例可实施方法400的所有或部分步骤。
在步骤402中,接收一或多组晶片数据202。例如,晶片数据组202可由控制器110接收。在一个实施例中,一或多个图像包含一或多个层。在另一实施例中,一或多个层包含一或多个形状。在另一实施例中,一或多个形状包含一或多个基元212。本文中应注意,晶片数据组202可包含具有晶片104的缺陷的一或多个位点。
在另一实施例中,晶片数据组202包含一或多组设计片段204。例如,设计片段204可呈二进制图像格式。在另一实施例中,设计片段204描述于一或多个文字描述中,文字描述由控制器110接收。在另一实施例中,晶片数据组202包含样品104的选定区域的一或多个检验图像206。例如,检验图像206可由检验子系统102收集。例如,检验子系统102可包含(但不限于)能够产生表示晶片104的电意图的一或多个高分辨率图像的电子束检验或重检工具(例如SEM系统)或光学检验子系统。在另一实施例中,晶片数据组202包含从模拟子系统接收的一或多组模拟数据208。在另一实施例中,模拟数据组208是基于设计数据。在另一实施例中,模拟数据组208预测晶片数据组202。
在步骤404中,产生晶片数据组202中的基元212的基元数据库218。在一个实施例中,基元提取引擎210识别基元212。在另一实施例中,基元提取引擎210将每一基元212分类为特定基元类型214(例如线、角及其类似者)。在另一实施例中,基元提取引擎210识别基元212中的每一者的一或多个基元特性216。例如,一或多个特性216可包含(但不限于)线的宽度(例如粗、粗细适中或细)、线的长度、线的部分(例如,长边是线“侧”,短边是线“端”)、角方向(例如凸角或凹角)或基元212相对于晶片104的一或多个空间位置、基元212相对于晶片104的空间定向(例如2D图像上的水平或垂直布局)或晶片104上的两个或两个以上基元212之间的间距。
替代地,基元提取引擎210可识别基元212中的每一者的组合分类。例如,针对特定基元212所提取的信息组可包含组合分类,例如(但不限于)“粗线”、“粗细适中线”、“细线”、“凸角”或“凹角”。另外,组合分类可包含(但不限于)一或多个形状交互作用,其包含(但不限于)基元212相对于晶片104的空间位置、基元212相对于晶片104的空间定向(例如2D图像上的水平或垂直布局)或晶片104上的两个或两个以上基元212之间的间距。
在另一实施例中,通过执行基元提取引擎210来产生基元212的基元数据库218。例如,基元212的基元数据库218可包含基元212中的每一者的基元类型214及基元特性216的单独信息组。通过另一实例的方式,基元数据库218可包含基元212中的每一者的组合分类。
在步骤406中,基于基元数据库218来产生一或多个规则222。在一个实施例中,通过执行规则脚本产生器220来产生规则222。在另一实施例中,规则222是基于基元212的基元数据库218。在另一实施例中,一或多个规则222使一或多个图案化布置中的基元212中的一或多者与一或多个潜在失效位点相关联。例如,一或多个潜在失效位点可包含可能失效的晶片104的一或多个电意图。
在步骤408中,接收一或多组设计数据232。在另一实施例中,一或多组设计数据232由控制器110接收。在另一实施例中,一或多组设计数据232由规则脚本执行引擎230经由控制器110来接收。
在步骤410中,将一或多个规则222应用于一或多组设计数据232以识别一或多个临界区域234。在一个实施例中,通过执行规则脚本产生器220来自规则222产生一或多个可执行脚本224。在另一实施例中,可执行脚本224由规则脚本执行引擎230接收。在另一实施例中,临界区域234经识别为满足可执行脚本224中的一或多个约束的接收设计数据组232中的位置。例如,一或多个约束可与一或多个潜在失效位点有关。据此来说,临界区域234是设计数据232的子集。
在步骤412中,产生一或多个晶片检验方案240。在一个实施例中,晶片检验方案240包含从规则脚本执行引擎230输出的临界区域234。在另一实施例中,晶片检验方案240通过控制器110传输到检验子系统102。在另一实施例中,晶片检验方案240由控制器110实施以定位从检验子系统102接收的检验晶片的一或多个图像中的一或多个缺陷。
本文中应注意,本发明的结果(例如包含临界区域234的晶片检验方案240)可由控制器110(或另一控制器、用户或远程服务器)用于将反馈或前馈信息提供到半导体装置生产线的一或多个处理工具。据此来说,由系统100观察或测量的一或多个结果可用于调整半导体装置生产线的先前阶段(反馈)或后续阶段(前馈)中的工艺条件。
本文所描述的所有方法可包含:将方法实施例的一或多个步骤的结果存储于存储媒体中。结果可包含本文所描述的结果中的任何者且可以所属领域中已知的任何方式存储。存储媒体可包含本文所描述的任何存储媒体或所属领域中已知的任何其它合适存储媒体。在已存储结果之后,结果可存取于存储媒体中且由本文所描述的方法或系统实施例中的任何者使用,经格式化以显示给用户,由另一软件模块、方法或系统使用,等等。此外,结果可被“永久”存储、“半永久”存储、暂时存储或存储段时间。例如,存储媒体可为随机存取媒体(RAM)且结果可无需无限期地存留于存储媒体中。
所属领域的技术人员应认识到,最新技术已发展到系统的方面的硬件与软件实施方案之间几乎无差别的程度;使用硬件或软件一般(但并不是总是,因为在某些情境中硬件与软件之间的选择会变得很重要)为表示成本与效率的权衡的设计选择。所属领域的技术人员应了解,存在可通过其来实现本文所描述的过程及/或系统及/或其它技术的各种媒介物(例如硬件、软件及/或固件)且优选媒介物将随其中部署过程及/或系统及/或其它技术的情境而变化。例如,如果实施者确定速度及准确度是最重要的,那么实施者可主要选择硬件及/或固件媒介物;替代地,如果灵活性是最重要的,那么实施者可主要选择软件实施方案;或替代地,实施者还可选择硬件、软件及/或固件的某种组合。因此,存在可通过其来实现本文所描述的过程及/或装置及/或其它技术的若干可能媒介物,其本身不优于其它媒介物,因为待利用的任何媒介物是取决于其中将部署媒介物的情境及实施者的特别关注(例如速度、灵活性或可预测性)(其任何者会变化)的选择。所属领域的技术人员应认识到,实施方案的光学方面通常将采用光学定向硬件、软件及/或固件。
所属领域的技术人员应认识到,在本技术内,通常以本文所阐述的方式描述装置及/或过程,且其后使用工程实践来将此类描述装置及/或过程集成到数据处理系统中。即,本文所描述的装置及/或过程的至少一部分可经由合理实验量来集成到数据处理系统中。所属领域的技术人员应认识到,典型数据处理系统大体上包含以下中的一或多者:系统单元外壳、视频显示装置、存储器(例如易失性及非易失性存储器)、处理器(例如微处理器及数字信号处理器)、计算实体(例如操作系统、驱动程序、图形用户接口及应用程序)、一或多个交互作用装置(例如触摸板或屏幕)及/或控制系统(其包含反馈回路及控制电动机(例如用于感测位置及/或速度的反馈;用于移动及/或调整组件及/或数量的控制电动机))。可利用任何合适市售组件(例如常见于数据计算/通信及/或网络计算/通信系统中的组件)来实施典型数据处理系统。
据信,将通过以上描述来理解本发明及其许多伴随优点,且应明白,可在不背离本发明或不牺牲其所有材料优点的情况下对组件的形式、构造及布置作出各种改变。所描述的形式仅供示范,且所附权利要求书希望涵盖且包含此类改变。
尽管已说明本发明的特定实施例,但应明白,所属领域的技术人员可在不背离本发明的范围及精神的情况下进行本发明的各种修改及实施例。因此,本发明的范围应仅受限于其所附权利要求书。

Claims (34)

1.一种用于产生晶片检验的一或多个晶片检验方案的系统,其包括:
检验子系统;及
控制器,其通信地耦合到所述检验子系统,其中所述控制器包含经配置以执行存储于存储器中的一组程序指令的一或多个处理器,其中所述程序指令经配置以致使所述一或多个处理器:
接收一或多组晶片数据,其中所述一或多组晶片数据包含一或多个层,其中所述一或多个层包含一或多个形状;
从所述一或多个形状识别一或多个基元;
将所述一或多个基元中的每一者分类为特定基元类型;
识别所述一或多个基元中的每一者的一或多个基元特性;
产生所述一或多个基元的基元数据库,其中所述基元数据库包含所述一或多个基元中的每一者的所述特定基元类型及所述一或多个基元特性;
基于所述基元数据库来产生一或多个规则;
接收一或多组设计数据;
将所述一或多个规则应用于所述一或多组设计数据以识别一或多个临界区域,其中所述一或多个规则使所述设计数据中的一或多个图案化布置中的一或多个基元与一或多个潜在失效位点相关联,其中所述一或多个潜在失效位点包括所述一或多个晶片的一或多个电意图失效的潜在位点;及
产生用于所述检验子系统的一或多个晶片检验方案,其中所述一或多个晶片检验方案包含所述一或多个临界区域,其中具体临界区域包含所述一或多个潜在失效位点;及
将所述检验方案传输至所述检验子系统以检验所述一或多个晶片。
2.根据权利要求1所述的系统,其中所述一或多组晶片数据包括一或多个设计片段。
3.根据权利要求2所述的系统,其中所述一或多个设计片段包含一或多个二进制设计图像。
4.根据权利要求3所述的系统,其中所述一或多个二进制设计图像包含图案及背景,其中所述图案具有值1且所述背景具有值0。
5.根据权利要求2所述的系统,其中将所述一或多个设计片段描述于一或多个文字描述中。
6.根据权利要求1所述的系统,其中所述一或多组晶片数据包括一或多个高分辨率检验图像。
7.根据权利要求1所述的系统,其中所述一或多组晶片数据包括从模拟子系统接收的一或多组模拟数据。
8.根据权利要求1所述的系统,其中所述程序指令经配置以致使所述一或多个处理器:
通过执行基元提取引擎来将所述一或多个基元分类为特定基元类型。
9.根据权利要求1所述的系统,其中所述程序指令经配置以致使所述一或多个处理器:
通过执行基元提取引擎来识别所述一或多个基元的一或多个基元特性。
10.根据权利要求1所述的系统,其中所述程序指令经配置以致使所述一或多个处理器:
通过执行基元提取引擎来产生所述基元数据库。
11.根据权利要求1所述的系统,其中所述程序指令经配置以致使所述一或多个处理器:
通过执行规则脚本产生器来基于所述基元数据库产生所述一或多个规则。
12.根据权利要求1所述的系统,其中所述一或多个规则使一或多个图案化布置中的一或多个基元与一或多个潜在失效位点相关联。
13.根据权利要求1所述的系统,其中通过执行规则脚本执行引擎来识别所述一或多组设计数据中的所述一或多个临界区域,其中所述一或多个临界区域满足一或多个可执行脚本中的一或多个约束,其中通过执行规则脚本产生器来产生所述一或多个可执行脚本,其中所述一或多个可执行脚本包含所述一或多个规则。
14.根据权利要求1所述的系统,其中所述特定基元类型包括:
线或角中的至少一者。
15.根据权利要求1所述的系统,其中所述一或多个基元特性包括:
粗线、粗细适中线、细线、线端、线侧、凸角、凹角或形状交互作用中的至少一者,
其中所述形状交互作用包含所述一或多个基元的空间位置、所述一或多个基元的空间定向、或两或两个以上基元之间的间距中的至少一者。
16.根据权利要求1所述的系统,其中所述基元数据库包括:
列表、表或格式化文本数据文件中的至少一者。
17.根据权利要求1所述的系统,其中所述检验子系统包括:
能够产生一或多个高分辨率图像的电子束检验子系统或光学检验子系统中的至少一者。
18.一种用于产生晶片检验的一或多个晶片检验方案的方法,其包括:
接收一或多组晶片数据,其中所述一或多组晶片数据包含一或多个层,其中所述一或多个层包含一或多个形状;
从所述一或多个形状识别一或多个基元;
将所述一或多个基元中的每一者分类为特定基元类型;
识别所述一或多个基元中的每一者的一或多个基元特性;
产生所述一或多个基元的基元数据库,其中所述基元数据库包含所述一或多个基元中的每一者的所述特定基元类型及所述一或多个基元特性;
基于所述基元数据库来产生一或多个规则;
接收一或多组设计数据;
将所述一或多个规则应用于所述一或多组设计数据以识别一或多个临界区域,其中所述一或多个规则使所述设计数据中的一或多个图案化布置中的一或多个基元与一或多个潜在失效位点相关联,其中所述一或多个潜在失效位点包括所述一或多个晶片的一或多个电意图失效的潜在位点;及
产生用于检验子系统的一或多个晶片检验方案,其中所述一或多个晶片检验方案包含所述一或多个临界区域,其中具体临界区域包含所述一或多个潜在失效位点;及
将所述检验方案传输至所述检验子系统以检验所述一或多个晶片。
19.根据权利要求18所述的方法,其中所述一或多组晶片数据包括一或多个设计片段。
20.根据权利要求19所述的方法,其中所述一或多个设计片段包含一或多个二进制设计图像。
21.根据权利要求20所述的方法,其中所述一或多个二进制设计图像包含图案及背景,其中所述图案具有值1且所述背景具有值0。
22.根据权利要求19所述的方法,其中将所述一或多个设计片段描述于一或多个文字描述中。
23.根据权利要求18所述的方法,其中所述一或多组晶片数据包括一或多个高分辨率检验图像。
24.根据权利要求18所述的方法,其中所述一或多组晶片数据包括从模拟子系统接收的一或多组模拟数据。
25.根据权利要求18所述的方法,其进一步包括:
通过执行基元提取引擎来将所述一或多个基元分类为特定基元类型。
26.根据权利要求18所述的方法,其进一步包括:
通过执行基元提取引擎来识别所述一或多个基元的一或多个基元特性。
27.根据权利要求18所述的方法,其进一步包括:
通过执行基元提取引擎来产生所述基元数据库。
28.根据权利要求18所述的方法,其进一步包括:
通过执行规则脚本产生器来基于所述基元数据库产生所述一或多个规则。
29.根据权利要求18所述的方法,其中所述一或多个规则使一或多个图案化布置中的一或多个基元与一或多个潜在失效位点相关联。
30.根据权利要求18所述的方法,其中通过执行规则脚本执行引擎来识别所述一或多组设计数据中的所述一或多个临界区域,其中所述一或多个临界区域满足一或多个可执行脚本中的一或多个约束,其中通过执行规则脚本产生器来产生所述一或多个可执行脚本,其中所述一或多个可执行脚本包含所述一或多个规则。
31.根据权利要求18所述的方法,其中所述特定基元类型包括:
线或角中的至少一者。
32.根据权利要求18所述的方法,其中所述一或多个基元特性包括:
粗线、粗细适中线、细线、线端、线侧、凸角、凹角或形状交互作用中的至少一者,
其中所述形状交互作用包含所述一或多个基元的空间位置、所述一或多个基元的空间定向、或两或两个以上基元之间的间距中的至少一者。
33.根据权利要求18所述的方法,其中所述基元数据库包括:
列表、表或格式化文本数据文件中的至少一者。
34.根据权利要求18所述的方法,其中所述检验子系统包括:
能够产生一或多个高分辨率图像的电子束检验子系统或光学检验子系统中的至少一者。
CN201780068638.0A 2016-11-08 2017-10-27 用于晶片检验临界区域的产生的方法及系统 Active CN109952635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310673613.0A CN116705637A (zh) 2016-11-08 2017-10-27 用于晶片检验临界区域的产生的方法及系统

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IN201641038208 2016-11-08
IN201641038208 2016-11-08
US15/394,545 2016-12-29
US15/394,545 US10706522B2 (en) 2016-11-08 2016-12-29 System and method for generation of wafer inspection critical areas
PCT/US2017/058887 WO2018089216A1 (en) 2016-11-08 2017-10-27 System and method for generation of wafer inspection critical areas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310673613.0A Division CN116705637A (zh) 2016-11-08 2017-10-27 用于晶片检验临界区域的产生的方法及系统

Publications (2)

Publication Number Publication Date
CN109952635A CN109952635A (zh) 2019-06-28
CN109952635B true CN109952635B (zh) 2023-06-09

Family

ID=62064731

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780068638.0A Active CN109952635B (zh) 2016-11-08 2017-10-27 用于晶片检验临界区域的产生的方法及系统
CN202310673613.0A Pending CN116705637A (zh) 2016-11-08 2017-10-27 用于晶片检验临界区域的产生的方法及系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310673613.0A Pending CN116705637A (zh) 2016-11-08 2017-10-27 用于晶片检验临界区域的产生的方法及系统

Country Status (7)

Country Link
US (2) US10706522B2 (zh)
KR (1) KR102515237B1 (zh)
CN (2) CN109952635B (zh)
IL (1) IL265904B (zh)
SG (1) SG11201903722YA (zh)
TW (2) TWI755442B (zh)
WO (1) WO2018089216A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10565702B2 (en) * 2017-01-30 2020-02-18 Dongfang Jingyuan Electron Limited Dynamic updates for the inspection of integrated circuits
WO2020250402A1 (ja) * 2019-06-13 2020-12-17 株式会社Nttドコモ 端末及び無線通信方法
US11379972B2 (en) * 2020-06-03 2022-07-05 Applied Materials Israel Ltd. Detecting defects in semiconductor specimens using weak labeling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619588A (en) * 1992-07-27 1997-04-08 Orbot Instruments Ltd. Apparatus and method for comparing and aligning two digital representations of an image

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805278A (en) 1995-02-09 1998-09-08 Inspex, Inc. Particle detection method and apparatus
US6621570B1 (en) 1999-03-04 2003-09-16 Inspex Incorporated Method and apparatus for inspecting a patterned semiconductor wafer
US7092082B1 (en) 2003-11-26 2006-08-15 Kla-Tencor Technologies Corp. Method and apparatus for inspecting a semiconductor wafer
JP5519936B2 (ja) * 2005-08-26 2014-06-11 スモルテック エービー ナノ構造体に基づく相互接続および熱の散逸体
WO2007026361A2 (en) * 2005-09-01 2007-03-08 Camtek Limited A method and a system for establishing an inspection recipe
US7570796B2 (en) 2005-11-18 2009-08-04 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US7676077B2 (en) 2005-11-18 2010-03-09 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US7877722B2 (en) 2006-12-19 2011-01-25 Kla-Tencor Corp. Systems and methods for creating inspection recipes
US8698093B1 (en) 2007-01-19 2014-04-15 Kla-Tencor Corporation Objective lens with deflector plates immersed in electrostatic lens field
TW200832533A (en) * 2007-01-31 2008-08-01 Inotera Memories Inc A method for categorizing wafers and related method for production
US8139844B2 (en) * 2008-04-14 2012-03-20 Kla-Tencor Corp. Methods and systems for determining a defect criticality index for defects on wafers
US8339449B2 (en) * 2009-08-07 2012-12-25 Globalfoundries Singapore Pte. Ltd. Defect monitoring in semiconductor device fabrication
US8699784B2 (en) 2010-08-10 2014-04-15 Camtek Ltd. Inspection recipe generation and inspection based on an inspection recipe
TWI475187B (zh) * 2010-10-27 2015-03-01 Hitachi High Tech Corp Image processing devices and computer programs
US8656323B2 (en) 2011-02-22 2014-02-18 Kla-Tencor Corporation Based device risk assessment
US8664594B1 (en) 2011-04-18 2014-03-04 Kla-Tencor Corporation Electron-optical system for high-speed and high-sensitivity inspections
US8692204B2 (en) 2011-04-26 2014-04-08 Kla-Tencor Corporation Apparatus and methods for electron beam detection
US20140177940A1 (en) 2011-08-03 2014-06-26 Hitachi High-Technologies Corporation Recipe generation apparatus, inspection support apparatus, inspection system, and recording media
KR101939701B1 (ko) * 2012-02-14 2019-01-18 삼성전자주식회사 전원 공급 회로 및 전원 공급 방법
US8716662B1 (en) 2012-07-16 2014-05-06 Kla-Tencor Corporation Methods and apparatus to review defects using scanning electron microscope with multiple electron beam configurations
US9098891B2 (en) * 2013-04-08 2015-08-04 Kla-Tencor Corp. Adaptive sampling for semiconductor inspection recipe creation, defect review, and metrology
US9558858B2 (en) 2013-08-14 2017-01-31 Kla-Tencor Corporation System and method for imaging a sample with a laser sustained plasma illumination output
US9941655B2 (en) 2014-03-25 2018-04-10 Kla-Tencor Corporation High power broadband light source
US10032620B2 (en) 2014-04-30 2018-07-24 Kla-Tencor Corporation Broadband light source including transparent portion with high hydroxide content
US9965848B2 (en) 2015-12-23 2018-05-08 Kla-Tencor Corporation Shape based grouping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619588A (en) * 1992-07-27 1997-04-08 Orbot Instruments Ltd. Apparatus and method for comparing and aligning two digital representations of an image

Also Published As

Publication number Publication date
US11410291B2 (en) 2022-08-09
TW201834098A (zh) 2018-09-16
TWI771152B (zh) 2022-07-11
WO2018089216A1 (en) 2018-05-17
US20200334807A1 (en) 2020-10-22
IL265904B (en) 2021-07-29
TWI755442B (zh) 2022-02-21
CN116705637A (zh) 2023-09-05
TW202145400A (zh) 2021-12-01
SG11201903722YA (en) 2019-05-30
KR20190069588A (ko) 2019-06-19
CN109952635A (zh) 2019-06-28
IL265904A (en) 2019-06-30
KR102515237B1 (ko) 2023-03-28
US20180130195A1 (en) 2018-05-10
US10706522B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6580179B2 (ja) 混合モードのウェハ検査のための方法
US11410291B2 (en) System and method for generation of wafer inspection critical areas
CN108780051B (zh) 用于界定设计数据的重复结构中的关注区域的系统及方法
US10209628B2 (en) System and method for defect classification based on electrical design intent
CN108886007B (zh) 用于基于电设计意图的缺陷分类的系统及方法
TWI732803B (zh) 用於儲存動態層內容於一設計檔案中之方法、系統及非暫時性電腦可讀媒體
WO2017180399A1 (en) System and method for defect classification based on electrical design intent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant