CN109948245B - 一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法 - Google Patents

一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法 Download PDF

Info

Publication number
CN109948245B
CN109948245B CN201910203304.0A CN201910203304A CN109948245B CN 109948245 B CN109948245 B CN 109948245B CN 201910203304 A CN201910203304 A CN 201910203304A CN 109948245 B CN109948245 B CN 109948245B
Authority
CN
China
Prior art keywords
wing
strain
node
rzt
freedom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910203304.0A
Other languages
English (en)
Other versions
CN109948245A (zh
Inventor
陈熙源
马振
杨萍
柳笛
方琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910203304.0A priority Critical patent/CN109948245B/zh
Publication of CN109948245A publication Critical patent/CN109948245A/zh
Priority to LU102010A priority patent/LU102010B1/en
Priority to PCT/CN2020/076420 priority patent/WO2020186970A1/zh
Application granted granted Critical
Publication of CN109948245B publication Critical patent/CN109948245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0016Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明公开一种基于iFEM(Inverse Finite Element Method)方法及RZT(Refined Zigzag Theory)理论的机翼基线动态位置测量方法,包括四个步骤:确定所选机翼的机翼三维模型,然后设计机翼表面FBG(Fiber Bragg Grating)传感器阵列和应变花布局排布,接着建立基于RZT理论的逆有限元仿真模型,最后测量数据的读取与转换,得出机翼基线的动态位置。本发明实现一种基于RZT理论的机翼基线动态位置测量方法,鲁棒性好,适应性强。

Description

一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法
技术领域
本发明涉及机翼基线动态位置测量的方法,具体涉及一种基于iFEM方法及RZT理论的在机翼基线动态位置测量中的应用。
背景技术
高空长航时飞行的无人机预警越来越受重视,此类飞机普遍采用质量轻展现比大的柔性机翼,具有升阻比大、结构轻、柔性大等特点。在气动载荷载荷下,机翼产生很大的弯曲和扭转变形,严重影响飞机的安全性。然而,机翼同时又是一部长基线天线,机翼的变形将直接影响着阵列天线的性能,为了补偿因变形导致的天线电性能的变化,必须准确获取机翼的变形量。
iFEM方法在对任何约束边界条件的任何拓扑结构的动态变化测量方面具有明显的优势,在对机翼的形状感知和特殊点位置测量时无需先验知识,此外,iFEM方法鲁棒性好,适合于实时在线监测。
发明内容
技术问题:本发明的目的是提供一种基于iFEM(Inverse Finite ElementMethod)方法及RZT(Refined Zigzag Theory)理论的机翼基线动态位置测量方法,包括五个步骤:确定所选机翼的机翼三维模型,然后设计机翼表面FBG传感器阵列和应变花的排布计,接着建立基于RZT理论的逆有限元仿真模型,最后测量数据的读取与转换,得出机翼基线的动态位置。
技术方案:本发明的技术方案是将FBG传感器、应变花与iFEM方法相结合的方式间接的获取机翼基线的动态位置测量。
该测量方法包括以下步骤:
步骤1、机翼模型的确定:根据所选机翼的空间尺寸数据,生成机翼的三维模型,并导入到有限元分析软件中;
步骤2、机翼表面FBG传感器阵列和应变花布局排布的设计:根据机翼的尺寸,在机翼的不同位置布置应变花以及FBG传感器阵列;
步骤3、基于RZT理论的逆有限元仿真模型的建立:网格划分时采用三节点单元;
步骤4、测量数据的读取与转换:结合计算机的数据同步,在机翼上模拟施加弯曲、扭转和膜变形的均匀分布力,分别读取FBG传感器和应变花传感器的数据,通过运算解算出机翼上各点的空间位置坐标;
步骤5、机翼基线动态位置的获取:通过借助于FBG传感器和应变花传感器获取的数据以及有限元分析,最后得出基线的动态测量结果。
其中:
所述的机翼模型通常为大展弦比的机翼,有助于所述的应变花以及FBG传感器阵列的布局排布设计。
所述机翼模型分成3层,坐标系采用正交坐标系(x1,x2,z),其中(x1,x2)为平面内坐标,z为机翼厚度方向即挠度方向坐标;使用的三节点单元具有各向异性,每个节点有9个自由度;
沿x1、x2方向的膜位移及沿着z轴方向横向挠度的推导公式分别为:
Figure BDA0001998150670000021
Figure BDA0001998150670000022
Figure BDA0001998150670000023
式中,u(x)、v(x)分别表示x1、x2方向的膜位移;ω(x)表示z轴方向的横向挠度;i表示第i层,i=1,2,3;ui、vi、wi分别表示三节点单元沿着x1,x2,z轴正方向的自由度;θxi、θyi分别表示沿着x1、x2轴经典逆时针旋转的自由度;
Figure BDA0001998150670000024
分别表示沿着x1、x2轴之字形逆时针旋转的自由度;θzi表示z轴角点旋转的自由度;/>
Figure BDA0001998150670000025
表示z轴人工之字形旋转的自由度;Ni为三角形线性面积参数坐标,Li、Mi为等插值函数;
z轴方向的横向挠度ω(x),以及沿x2轴正方向弯曲幅度P1(x)和x1负方向之字形旋转幅度P2(x)的推导公式可由节点自由度wi、θαi
Figure BDA0001998150670000026
(α=x,y)分别表示为:
Figure BDA0001998150670000031
Figure BDA0001998150670000032
Figure BDA0001998150670000033
每个传感器的配置时,采用平滑单元的分析方法,即根据机翼的尺寸将机翼划分成若干个三角形单元。
在机翼上模拟施加弯曲、扭转和膜变形的均匀分布力时,基于RZT理论的三节点单元的膜应变测量e(ue)、弯曲曲率κ(ue)、之字形扭转应变测量μ(ue)的推导公式分别为:
e(ue)=[u,1v,2u,2+v,1]T=Beue (7)
κ(ue)=[θ1,1θ2,2θ1,22,1]T=Bκue (8)
Figure BDA0001998150670000034
其中
Figure BDA0001998150670000035
Figure BDA0001998150670000036
Figure BDA0001998150670000037
/>
Figure BDA0001998150670000038
Figure BDA0001998150670000039
Figure BDA0001998150670000041
式中,ue表示节点的位移矩阵;φ1、φ2分别表示表示通过将机翼厚度分段后沿着x1,x2方向的基于RZT理论之字形函数;
Figure BDA0001998150670000045
表示膜应变形状导数矩阵;/>
Figure BDA0001998150670000043
表示弯曲变形形状导数矩阵;/>
Figure BDA0001998150670000044
表示之字形扭转变形形状导数矩阵;i=1,2,3。
根据步骤2所描述的根据机翼的尺寸,在机翼上设计应变花以及FBG传感器阵列的布局,应变花以及FBG传感器阵列的密度分为非常密集、密集、稀疏、非常稀疏四类;其中,针对三轴应变测量采用,非常密集、密集、稀疏的方式进行排布;单轴应变测量中,采用非常稀疏的FBG传感器进行测量;在单轴测量中,采用的是非常稀疏的布置方式,传感器的标定非常重要。
步骤4中FBG传感器和应变花传感器的数据,根据获得的数据,利用一阶连续导数C1函数推导测量机翼离散的表面应变数据,单个的RZT单元利用加权最小二乘函数推导计算,其推导公式为:
Figure BDA0001998150670000042
式中:Φe(ue)表示加权最小二乘函数;(k)表示将三节点单元分成3层后的第k层;j表示剖面应变测量中的第j层;E表示膜应变函数、K表示弯曲应变函数、M j表示之字形截面应变;
||e(ue)-E||2、||κ(ue)-K||2、||μ(k)(ue)-Mj||2、|γ(ue)-Γ||2、|||η(ue)-H||2分别表示e(ue)、κ(ue)、μ(ue)、γ(ue)、η(ue)所对应的平方范数γ(ue)、η(ue)分别表示第一层和第二层横向剪切应变测量值;Γ、H分别表示与γ(ue)、η(ue)对应的剪切应变函数;wα(α=e,κ,μ,γ,η)分别代表每个单个的应变的加权常数矢量。
有益效果:本发明的机翼基线动态位置测量方法操作简单方便,对工作人员的技能以及环境要求低,可实现待锁定装置的快速准确锁定,且解除锁定方法简单,通用性强。
附图说明
图1;三节点单元模型,
图2;之字形(Z形)网格划分。
具体实施方式
图1~2为本发明优选的实施方式。
本发明的一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法包括以下五个步骤:
步骤1、机翼模型的确定:根据所选机翼的空间尺寸数据,生成机翼的三维模型,并导入到有限元分析软件中;
步骤2、机翼表面FBG传感器阵列和应变花布局排布的设计:根据机翼的尺寸,在机翼的不同位置布置应变花以及FBG传感器阵列;
步骤3、基于RZT理论的逆有限元仿真模型的建立:网格划分时采用三节点单元;
步骤4、测量数据的读取与转换:结合计算机的数据同步,在机翼上模拟施加弯曲、扭转和膜变形的均匀分布力,分别读取FBG传感器和应变花传感器的数据,通过运算解算出机翼上各点的空间位置坐标。
步骤5、机翼基线动态位置的获取:通过借助于FBG传感器和应变花传感器获取的数据以及有限元分析,最后得出基线的动态测量结果。
所述的机翼模型通常为大展弦比的机翼,有助于所述的应变花以及FBG传感器阵列的布局排布设计。
所述机翼模型分成3层,坐标系采用正交坐标系(x1,x2,z),其中(x1,x2)为平面内坐标,z为机翼厚度方向(挠度方向)坐标;使用的三节点单元具有各向异性,每个节点有9个自由度;
沿x1、x2方向的膜位移及沿着z轴方向横向挠度的推导公式分别为:
Figure BDA0001998150670000051
Figure BDA0001998150670000061
Figure BDA0001998150670000062
式中,u(x)、v(x)分别表示x1、x2方向的膜位移;ω(x)表示z轴方向的横向挠度;i表示第i层,i=1,2,3;ui、vi、wi分别表示三节点单元沿着x1,x2,z轴正方向的自由度;θxi、θyi分别表示沿着x1、x2轴经典逆时针旋转的自由度;
Figure BDA0001998150670000063
分别表示沿着x1、x2轴之字形逆时针旋转的自由度;θzi表示z轴角点旋转的自由度;/>
Figure BDA0001998150670000064
表示z轴人工之字形旋转的自由度;Ni为三角形线性面积参数坐标,Li、Mi为等插值函数。
z轴方向的横向挠度ω(x),以及沿x2轴正方向弯曲幅度P1(x)和x1负方向之字形旋转幅度P2(x)的推导公式可由节点自由度wi、θαi
Figure BDA0001998150670000065
(α=x,y)分别表示为:
Figure BDA0001998150670000066
Figure BDA0001998150670000067
/>
Figure BDA0001998150670000068
每个传感器的配置时,采用平滑单元的分析方法,即根据机翼的尺寸将机翼划分成若干个三角形单元。
在机翼上模拟施加弯曲、扭转和膜变形的均匀分布力时,基于RZT理论的三节点单元的膜应变测量e(ue)、弯曲曲率κ(ue)、之字形扭转应变测量μ(ue)的推导公式分别为:
e(ue)=[u,1v,2u,2+v,1]T=Beue (7)
κ(ue)=[θ1,1θ2,2θ1,22,1]T=Bκue (8)
Figure BDA0001998150670000071
其中
Figure BDA0001998150670000072
Figure BDA0001998150670000073
Figure BDA0001998150670000074
Figure BDA0001998150670000075
Figure BDA0001998150670000076
Figure BDA0001998150670000077
式中,ue表示节点的位移矩阵;φ1、φ2分别表示表示通过将机翼厚度分段后沿着x1,x2方向的基于RZT理论之字形函数;
Figure BDA0001998150670000079
表示膜应变形状导数矩阵;/>
Figure BDA0001998150670000078
表示弯曲变形形状导数矩阵;/>
Figure BDA00019981506700000710
表示之字形扭转变形形状导数矩阵;i=1,2,3。
根据步骤2所描述的根据机翼的尺寸,在机翼上设计应变花以及FBG传感器阵列的布局,应变花以及FBG传感器阵列的密度分为非常密集、密集、稀疏、非常稀疏四类;其中,针对三轴应变测量采用,非常密集、密集、稀疏的方式进行排布;单轴应变测量中,采用非常稀疏的FBG传感器进行测量;在单轴测量中,采用的是非常稀疏的布置方式,传感器的标定非常重要。
根据步骤4中获得的测量数据,利用C1函数(C1表示一阶连续导数)推导测量机翼离散的表面应变数据,单个的RZT单元利用加权最小二乘函数推导计算,其推导公式为:
Figure BDA0001998150670000081
式中:Φe(ue)表示加权最小二乘函数;(k)表示将三节点单元分成3层后的第k层;j表示剖面应变测量中的第j层;E表示膜应变函数、K表示弯曲应变函数、Mj表示之字形截面应变;
||e(ue)-E||2、||κ(ue)-K||2、||μ(k)(ue)-Mj||2、||γ(ue)-Γ||2、||η(ue)-H||2分别表示e(ue)、κ(ue)、μ(ue)、γ(ue)、η(ue)所对应的平方范数γ(ue)、η(ue)分别表示第一层和第二层横向剪切应变测量值;Γ、H分别表示与γ(ue)、η(ue)对应的剪切应变函数;wα(α=e,κ,μ,γ,η)分别代表每个单个的应变的加权常数矢量。

Claims (6)

1.一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法,其特征在于,该测量方法包括以下步骤:
步骤1、机翼模型的确定:根据所选机翼的空间尺寸数据,生成机翼的三维模型,并导入到有限元分析软件中;
步骤2、机翼表面FBG传感器阵列和应变花布局排布的设计:根据机翼的尺寸,在机翼的不同位置布置应变花以及FBG传感器阵列;
步骤3、基于RZT理论的逆有限元仿真模型的建立:网格划分时采用三节点单元;
步骤4、测量数据的读取与转换:结合计算机的数据同步,在机翼上模拟施加弯曲、扭转和膜变形的均匀分布力,分别读取FBG传感器和应变花传感器的数据,通过运算解算出机翼上各点的空间位置坐标;
步骤5、机翼基线动态位置的获取:通过借助于FBG传感器和应变花传感器获取的数据以及有限元分析,最后得出基线的动态测量结果。
2.根据权利要求1所述的一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法,其特征在于:所述的机翼模型为大展弦比的机翼,有助于所述的应变花以及FBG传感器阵列的布局排布设计。
3.根据权利要求1所述的一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法,其特征在于:所述机翼模型分成3层,坐标系采用正交坐标系(x1,x2,z),其中(x1,x2)为平面内坐标,z为机翼厚度方向即挠度方向坐标;使用的三节点单元具有各向异性,每个节点有9个自由度;
沿x1、x2方向的膜位移及沿着z轴方向横向挠度的推导公式分别为:
Figure FDA0004167101780000011
Figure FDA0004167101780000012
Figure FDA0004167101780000013
式中,u(x)、v(x)分别表示x1、x2方向的膜位移;ω(x)表示z轴方向的横向挠度;i表示第i层,i=1,2,3;ui、vi、wi分别表示三节点单元沿着x1,x2,z轴正方向的自由度;θxi、θyi分别表示沿着x1、x2轴经典逆时针旋转的自由度;
Figure FDA0004167101780000028
分别表示沿着x1、x2轴之字形逆时针旋转的自由度;θzi表示z轴角点旋转的自由度;/>
Figure FDA0004167101780000022
表示z轴人工之字形旋转的自由度;Ni为三角形线性面积参数坐标,Li、Mi为等插值函数;
z轴方向的横向挠度ω(x),以及沿x2轴正方向弯曲幅度P1(x)和x1负方向之字形旋转幅度P2(x)的推导公式可由节点自由度wi、θαi
Figure FDA0004167101780000023
分别表示为:
Figure FDA0004167101780000024
Figure FDA0004167101780000025
/>
Figure FDA0004167101780000026
每个传感器的配置时,采用平滑单元的分析方法,即根据机翼的尺寸将机翼划分成若干个三角形单元。
4.根据权利要求1所述的一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法,其特征在于:在机翼上模拟施加弯曲、扭转和膜变形的均匀分布力时,基于RZT理论的三节点单元的膜应变测量e(ue)、弯曲曲率κ(ue)、之字形扭转应变测量μ(ue)的推导公式分别为:
e(ue)=[u,1 v,2 u,2+v,1]T=Beue (7)
κ(ue)=[θ1,1 θ2,2 θ1,22,1]T=Bκue (8)
Figure FDA0004167101780000027
其中
Figure FDA0004167101780000031
Figure FDA0004167101780000032
Figure FDA0004167101780000033
Figure FDA0004167101780000034
Figure FDA0004167101780000035
Figure FDA0004167101780000036
式中,ue表示节点的位移矩阵;
Figure FDA0004167101780000037
分别表示节点1处、节点2处、节点3处的位移矩阵;φ1、φ2分别表示通过将机翼厚度分段后沿着x1,x2方向的基于RZT理论之字形函数;Hφ表示关于φ1、φ2的之字形函数矩阵;/>
Figure FDA0004167101780000038
表示膜应变形状导数矩阵;/>
Figure FDA0004167101780000039
表示弯曲变形形状导数矩阵;/>
Figure FDA00041671017800000310
表示之字形扭转变形形状导数矩阵;Li,1、Li,2分别表示节点1处、节点2处的Li插值函数;Mi,1、Mi,2分别表示节点1处、节点2处的Li插值函数;Ni,1、Ni,2分别表示节点1处、节点2处的Ni三角形线性面积参数坐标;i表示第i层,i=1,2,3;ui、vi、wi分别表示三节点单元沿着x1,x2,z轴正方向的自由度;θxi、θyi分别表示沿着x1、x2轴经典逆时针旋转的自由度;
Figure FDA00041671017800000311
分别表示沿着x1、x2轴之字形逆时针旋转的自由度;θzi表示z轴角点旋转的自由度;
Figure FDA00041671017800000312
表示z轴人工之字形旋转的自由度。/>
5.根据权利要求1所述的一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法,其特征在于:根据步骤2所描述的根据机翼的尺寸,在机翼上设计应变花以及FBG传感器阵列的布局,应变花以及FBG传感器阵列的密度分为非常密集、密集、稀疏、非常稀疏四类;其中,针对三轴应变测量采用非常密集、密集、稀疏的方式进行排布;单轴应变测量中,采用非常稀疏的FBG传感器进行测量;在单轴测量中,采用的是非常稀疏的布置方式,传感器的标定非常重要。
6.根据权利要求1所述的一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法,其特征在于:步骤4中FBG传感器和应变花传感器的数据,根据获得的数据,利用一阶连续导数C1函数推导测量机翼离散的表面应变数据,单个的RZT单元利用加权最小二乘函数推导计算,其推导公式为:
Figure FDA0004167101780000041
式中:Φe(ue)表示加权最小二乘函数;(k)表示将三节点单元分成3层后的第k层;j表示剖面应变测量中的第j层;E表示膜应变函数、K表示弯曲应变函数、Mj表示之字形截面应变;
||e(ue)-E||2、||κ(ue)-K||2、||μ(k)(ue)-Mj||2、||γ(ue)-Γ||2、|η(ue)-H||2分别表示e(ue)、κ(ue)、μ(ue)、γ(ue)、η(ue)所对应的平方范数γ(ue)、η(ue)分别表示第一层和第二层横向剪切应变测量值;Γ、H分别表示与γ(ue)、η(ue)对应的剪切应变函数;wα(α=e,κ,μ,γ,η)分别代表每个单个的应变的加权常数矢量。
CN201910203304.0A 2019-03-18 2019-03-18 一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法 Active CN109948245B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910203304.0A CN109948245B (zh) 2019-03-18 2019-03-18 一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法
LU102010A LU102010B1 (en) 2019-03-18 2020-02-24 Measurement method of dynamic position ofwing baseline based on ifem and rzt
PCT/CN2020/076420 WO2020186970A1 (zh) 2019-03-18 2020-02-24 一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910203304.0A CN109948245B (zh) 2019-03-18 2019-03-18 一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法

Publications (2)

Publication Number Publication Date
CN109948245A CN109948245A (zh) 2019-06-28
CN109948245B true CN109948245B (zh) 2023-06-06

Family

ID=67008852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910203304.0A Active CN109948245B (zh) 2019-03-18 2019-03-18 一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法

Country Status (3)

Country Link
CN (1) CN109948245B (zh)
LU (1) LU102010B1 (zh)
WO (1) WO2020186970A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109948245B (zh) * 2019-03-18 2023-06-06 东南大学 一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法
CN112100735B (zh) * 2020-08-03 2022-11-11 东南大学 一种基于机翼形变的机载imu高精度参考基准获取方法
CN112699480A (zh) * 2020-12-29 2021-04-23 中国航空工业集团公司西安飞机设计研究所 一种动翼面接头布置分析方法
CN114154220A (zh) * 2021-12-03 2022-03-08 山东大学 一种横梁结构的应变变化率损伤识别方法及系统
CN117034711B (zh) * 2023-08-21 2024-05-03 沈阳工业大学 一种基于风力机叶片有限元模型的分布力加载方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443224A (zh) * 2018-10-30 2019-03-08 哈尔滨工业大学 一种雷达天线阵面变形测量系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944183B (zh) * 2012-10-31 2015-10-21 中国航天空气动力技术研究院 一种大展弦比柔性机翼测量方法
CN103852760B (zh) * 2012-12-04 2016-02-03 中国科学院电子学研究所 一种基于刚性和柔性基线组合的多基线测量方法
WO2015085226A1 (en) * 2013-12-05 2015-06-11 Tamarack Aerospace Group, Inc. Wingtip device
CN108801166B (zh) * 2018-05-29 2020-05-26 北京航空航天大学 基于悬臂梁理论的光纤光栅机翼形变测量建模及标定方法
CN109323659B (zh) * 2018-09-29 2024-03-29 株洲菲斯罗克光电科技股份有限公司 一种机载合成孔径雷达基线长度测量方法及装置
CN109948245B (zh) * 2019-03-18 2023-06-06 东南大学 一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443224A (zh) * 2018-10-30 2019-03-08 哈尔滨工业大学 一种雷达天线阵面变形测量系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Optimal Sensor Placement based on Eigenvalues Analysis for Sensing Deformation of Wing Frame using iFEM;Yong Zhao等;《sensors》;20180725;第1-21页 *
一种适用于梁式机翼的变形重构方法;袁慎芳等;《南京航空航天大学学报》;20141215;第46卷(第6期);第825-530页 *

Also Published As

Publication number Publication date
LU102010A1 (en) 2020-09-21
WO2020186970A1 (zh) 2020-09-24
LU102010B1 (en) 2020-12-30
CN109948245A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
CN109948245B (zh) 一种基于iFEM方法及RZT理论的机翼基线动态位置测量方法
CN108413887A (zh) 光纤光栅辅助分布式pos的机翼形变测量方法、装置和平台
CN104296829A (zh) 基于机体坐标系的油位测量方法
CN111504596B (zh) 一种铰链力矩天平
CN111288912B (zh) 一种用于机载分布式pos的光纤光栅形变测量方法
CN106500902A (zh) 一种具有自解耦功能的应变式多维力传感器
CN107917717A (zh) 具有光学变形传感器的飞行参数测量装置和相应测量方法
IL97982A (en) Calibration system and method for internal scales.
CN111232239B (zh) 曲面挠变位移场重构方法、装置及设备
Bernardini et al. Rotor blade shape reconstruction from strain measurements
CN116205115B (zh) 基于逆元法与虚实结合技术的结构形态反演精度提升方法
CN106323587B (zh) 机翼风洞试验模型弹性变形的单目视频高精度测量方法
CN111649907A (zh) 一种筋条式微轴向力环形二分量应变天平
Van Nesselrooij et al. Development of an experimental apparatus for flat plate drag measurements and considerations for such measurements
CN110763424B (zh) 一种机翼表面压力测量方法、系统及装置
Warwick et al. Measurement of aeroelastic wing deflections using modal shapes and strain pattern analysis
CN114993543A (zh) 双多维力测量系统
CN114659709A (zh) 一种用于大型带翼航天飞行器的三维质心测量方法
CN111380476B (zh) 一种基于应变测量数据的梁式结构变形测量方法和装置
CN213631961U (zh) 多自由度电阻式位移传感器的应变片组件
Bol’shakova et al. Examination of systematic bench errors for calibration of a strain-gauge balance
Davis Improved Strain Gage Instrumentation Strategies for Rotorcraft Blade Measurements
CN117708995A (zh) 基于柔性分布式传感器的无人机集群风场建模方法及系统
CN116124793B (zh) 一种基于抗弯刚度相对变化层析成像的壁板损伤辨识方法
CN111612892B (zh) 一种点云的坐标构造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant