CN109945073A - 一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统 - Google Patents

一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统 Download PDF

Info

Publication number
CN109945073A
CN109945073A CN201910165282.3A CN201910165282A CN109945073A CN 109945073 A CN109945073 A CN 109945073A CN 201910165282 A CN201910165282 A CN 201910165282A CN 109945073 A CN109945073 A CN 109945073A
Authority
CN
China
Prior art keywords
jet chimney
strain transducer
sensor
displacement sensor
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910165282.3A
Other languages
English (en)
Inventor
冯亦武
范炜
黄海舟
何桂宽
陈锐
刘明
解鑫
李日照
白佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huadian Electric Power Research Institute Co Ltd
Original Assignee
Huadian Electric Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huadian Electric Power Research Institute Co Ltd filed Critical Huadian Electric Power Research Institute Co Ltd
Priority to CN201910165282.3A priority Critical patent/CN109945073A/zh
Publication of CN109945073A publication Critical patent/CN109945073A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明涉及一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统,属于金属材料及自动控制技术领域。在蒸汽管道上以及管道各吊架上安装不同的传感器,并将各传感器与计算机连接,进行采集、分析管道的工作情况。本发明使得蒸汽管道状态监测及时、快速、可视化,大大提高了机组运行的可靠性和安全性,同时事前控制和状态检修又极大的提高了机组的经济性。通过本发明的状态监测手段、设备特性评价手段以及风险预测手段,判断设备状态,识别故障的早期征兆,对故障部位及其严重程度、故障发展趋势做出判断,为状态检修提供科学参考依据。

Description

一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统
技术领域
本发明涉及一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统,属于金属材料及自动控制技术领域。
背景技术
目前,国内火电机组DCS系统主要关注蒸汽管道内介质的参数及运行情况,对蒸汽温度、压力、流量等进行实时监视,这主要是停留在系统层,如申请号为200410018142.7的中国专利。对于设备层,特别是基础装备的材料状态没有任何监视手段,主要依靠专业人员进行现场巡检来发现是否存在问题,这就造成材料状态反馈的不及时和不全面。
同时,每次在大小修时均进行管道及支吊架调整,还必须要进行严格规范的管道材料理化试验,有些工况变化较大的机组,还需进行一二次应力校核、冲击载荷计算等管系应力分析;每次检修发生管道普查、支吊架更换、调整、管道改造、技术服务等费用较大。管道系统没有在线监测系统,对于管道应变、支吊架位移情况不了解;对于运行中,对管道及部件的风险、失效等没有及时评价,安全风险较高,也会引起较高的改造费用。
近年来机组频繁调峰,运行工况多变等新的运行方式的普遍化,对设备可靠性提出苛刻要求。与此同时,为追求电厂经济效益最大化,客观上要求进一步合理安排检修周期与检修内容,压缩检修费用。因此,实现既能提高设备可靠性又能降低检修费用的双向需求就越来越强烈,火力发电厂蒸汽管道实时状态信息采集及风险预测系统的研究和建设到了非常紧迫的关头。
因此,火力发电厂蒸汽管道实时状态信息采集及风险预测系统的研究意义重大且很有必要。
发明内容
本发明的目的在于克服现有技术中存在的上述不足,而提供一种设计合理的用于火力发电厂蒸汽管道实时状态信息采集及风险预测系统,既能解决不能实时监督管道运行状态的问题,又能根据调峰期间蒸汽参数变化引起的二次应力的变化,以及位移状态参数,判断蒸汽管道安全风险情况。通过本发明的状态监测手段、设备特性评价手段以及风险预测手段,判断设备状态,识别故障的早期征兆,对故障部位及其严重程度、故障发展趋势做出判断,为状态检修提供科学参考依据。由于提高了设备的可用率和明确了检修目标,检修费用低,损失小。
本发明解决上述问题所采用的技术方案是:一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统,包括蒸汽管道,所述蒸汽管道上连接有刚性吊架、双拉杆恒力弹簧支吊架、弹簧支架、导向支架和滑动支架;其特征在于,所述蒸汽管道的前端外壁上安装有前端蒸汽管道外壁温度传感器、前端蒸汽管道X向应变传感器、前端蒸汽管道Y向应变传感器和前端蒸汽压力传感器,所述刚性吊架的吊杆上安装有刚性吊架应变传感器,且刚性吊架位于蒸汽管道的前端;所述蒸汽管道的后端外壁上安装有后端蒸汽管道X向应变传感器、后端蒸汽管道Y向应变传感器、后端蒸汽管道外壁温度传感器和后端蒸汽压力传感器,所述弹簧支架上安装有弹簧支架Z向位移传感器,且弹簧支架位于蒸汽管道的后端,在蒸汽管道上弹簧支架相邻的位置安装有弹簧支架位置管道X向位移传感器和弹簧支架位置管道Y向位移传感器;所述双拉杆恒力弹簧支吊架上安装有双拉杆恒力弹簧支吊架位移传感器,且双拉杆恒力弹簧支吊架位于蒸汽管道的弯头处,并且在蒸汽管道的弯头外壁上安装有蒸汽管道弯头处外壁温度传感器、蒸汽管道弯头处X向应变传感器和蒸汽管道弯头处Y向应变传感器;所述导向支架上安装有导向支架X向位移传感器,所述滑动支架上安装有滑动支架X向位移传感器和滑动支架Y向位移传感器;蒸汽温度传感器和加速度传感器也安装在蒸汽管道上;所述前端蒸汽管道外壁温度传感器、前端蒸汽管道X向应变传感器、前端蒸汽管道Y向应变传感器、刚性吊架应变传感器、前端蒸汽压力传感器、双拉杆恒力弹簧支吊架位移传感器、后端蒸汽管道X向应变传感器、后端蒸汽管道Y向应变传感器、后端蒸汽管道外壁温度传感器、后端蒸汽压力传感器、弹簧支架Z向位移传感器、弹簧支架位置管道X向位移传感器、弹簧支架位置管道Y向位移传感器、蒸汽管道弯头处外壁温度传感器、蒸汽管道弯头处X向应变传感器、蒸汽管道弯头处Y向应变传感器、导向支架X向位移传感器、蒸汽温度传感器、滑动支架X向位移传感器、滑动支架Y向位移传感器和加速度传感器均与计算机连接。
所述前端蒸汽管道外壁温度传感器、前端蒸汽管道X向应变传感器和前端蒸汽管道Y向应变传感器安装在蒸汽管道的相同位置,用于测量应变时同时进行温度测量;所述蒸汽管道弯头处外壁温度传感器、蒸汽管道弯头处X向应变传感器和蒸汽管道弯头处Y向应变传感器安装在蒸汽管道的相同位置,用于测量应变时同时进行温度测量;所述后端蒸汽管道X向应变传感器、后端蒸汽管道Y向应变传感器和后端蒸汽管道外壁温度传感器安装在蒸汽管道的相同位置,用于测量应变时同时进行温度测量;所有的位移传感器均为非接触式的位移传感器。
所述的火力发电厂蒸汽管道实时状态信息采集及风险预测系统,信息采集及风险预测方法如下:
(1)前端蒸汽管道外壁温度传感器和后端蒸汽管道外壁温度传感器,分别与蒸汽管道上的蒸汽温度传感器进行比较,温度差作为热应力计算依据;计算公式为:
其中α为材料的线性膨胀系数;ΔT为蒸汽管道内外壁温差;v为泊松比;f为结构系数;经过系统实时计算得到蒸汽管道的不同部位的热应力数据;
(2)前端蒸汽压力传感器和后端蒸汽压力传感器将信号实时送到计算机,经过计算得出环向切应力;计算公式为:
其中:σn为内压折算应力,MPa;p为蒸汽管道正常运行下的压力,MPa;Do为蒸汽管道外径,mm;S为蒸汽管道壁厚,mm;α为考虑腐蚀、磨损和机械强度的附加壁厚,mm;Y为温度对计算蒸汽管道壁厚公式的修正系数;
(3)前端蒸汽管道X向应变传感器、前端蒸汽管道Y向应变传感器、刚性吊架应变传感器、后端蒸汽管道X向应变传感器、后端蒸汽管道Y向应变传感器、蒸汽管道弯头处X向应变传感器和蒸汽管道弯头处Y向应变传感器均通过应变到应力的计算,得到蒸汽管道的实时应力状态;
(4)双拉杆恒力弹簧支吊架位移传感器、弹簧支架Z向位移传感器、弹簧支架位置管道X向位移传感器、弹簧支架位置管道Y向位移传感器、导向支架X向位移传感器、滑动支架X向位移传感器和滑动支架Y向位移传感器将信号传递到计算机,作为蒸汽管道位移状态实时监测数据;
(5)加速度传感器将信号传递到计算机,作为蒸汽管道振动状态实时监测数据;
(6)将计算后的应力、形变数据根据蒸汽温度和压力对应起来,利用计算机自动生成温度和压力对应的应力计形变曲线图;
(7)收集资料,建立蒸汽管道模型,计算出不同温度、压力等工况下蒸汽管道的应力和形变曲线图,将这些曲线按照规律存储起来;第(6)步中的计算结果出来后,将结果曲线与系统中的曲线对比,偏离较大的,进行风险预警;
(8)计算机将上述采集及计算的信息进行自学习,对于正常的工况进行数据存储,作为标准样本建设数据库;一段时间后样本曲线建立,将采集系统实时数据对照曲线进行判断,超出正常曲线范围内的数据,进行风险预警。
本发明与现有技术相比,具有以下优点和效果:本发明结合管道压力/温度/壁厚/管径、材料强度参数进行详细的应力计算,并将大量不同结果样本存储起来,然后将蒸汽管道信息采集系统的数据进行对比,形成模拟状态应力位移曲线,进行风险预测。将事后的被动失效分析变为事前的主动失效控制。由此可见,本发明使得蒸汽管道状态监测及时、快速、可视化,大大提高了机组运行的可靠性和安全性,同时事前控制和状态检修又极大的提高了机组的经济性。
附图说明
图1是本发明实施例中系统应用在蒸汽管道上的结构示意图。
图中编号:蒸汽管道1、前端蒸汽管道外壁温度传感器2、前端蒸汽管道X向应变传感器3、前端蒸汽管道Y向应变传感器4、刚性吊架5、刚性吊架应变传感器6、前端蒸汽压力传感器7、双拉杆恒力弹簧支吊架8、双拉杆恒力弹簧支吊架位移传感器9、后端蒸汽管道X向应变传感器10、后端蒸汽管道Y向应变传感器11、后端蒸汽管道外壁温度传感器12、后端蒸汽压力传感器13、弹簧支架Z向位移传感器14、弹簧支架位置管道X向位移传感器15、弹簧支架位置管道Y向位移传感器16、弹簧支架17、蒸汽管道弯头处外壁温度传感器18、蒸汽管道弯头处X向应变传感器19、蒸汽管道弯头处Y向应变传感器20、导向支架21、导向支架X向位移传感器22、蒸汽温度传感器23、滑动支架24、滑动支架X向位移传感器25、滑动支架Y向位移传感器26、计算机27、加速度传感器28。
具体实施方式
下面结合附图并通过实施例对本发明作进一步的详细说明,以下实施例是对本发明的解释而本发明并不局限于以下实施例。
实施例。
参见图1,本实施例中的火力发电厂蒸汽管道实时状态信息采集及风险预测系统,包括蒸汽管道1,蒸汽管道1上连接有刚性吊架5、双拉杆恒力弹簧支吊架8、弹簧支架17、导向支架21和滑动支架24;
蒸汽管道1的前端外壁上安装有前端蒸汽管道外壁温度传感器2、前端蒸汽管道X向应变传感器3、前端蒸汽管道Y向应变传感器4和前端蒸汽压力传感器7,刚性吊架5的吊杆上安装有刚性吊架应变传感器6,且刚性吊架5位于蒸汽管道1的前端;蒸汽管道1的后端外壁上安装有后端蒸汽管道X向应变传感器10、后端蒸汽管道Y向应变传感器11、后端蒸汽管道外壁温度传感器12和后端蒸汽压力传感器13,弹簧支架17上安装有弹簧支架Z向位移传感器14,且弹簧支架17位于蒸汽管道1的后端,在蒸汽管道1上弹簧支架17相邻的位置安装有弹簧支架位置管道X向位移传感器15和弹簧支架位置管道Y向位移传感器16;双拉杆恒力弹簧支吊架8上安装有双拉杆恒力弹簧支吊架位移传感器9,且双拉杆恒力弹簧支吊架8位于蒸汽管道1的弯头处,并且在蒸汽管道1的弯头外壁上安装有蒸汽管道弯头处外壁温度传感器18、蒸汽管道弯头处X向应变传感器19和蒸汽管道弯头处Y向应变传感器20;导向支架21上安装有导向支架X向位移传感器22,滑动支架24上安装有滑动支架X向位移传感器25和滑动支架Y向位移传感器26;蒸汽温度传感器23和加速度传感器28也安装在蒸汽管道1上。
前端蒸汽管道外壁温度传感器2、前端蒸汽管道X向应变传感器3、前端蒸汽管道Y向应变传感器4、刚性吊架应变传感器6、前端蒸汽压力传感器7、双拉杆恒力弹簧支吊架位移传感器9、后端蒸汽管道X向应变传感器10、后端蒸汽管道Y向应变传感器11、后端蒸汽管道外壁温度传感器12、后端蒸汽压力传感器13、弹簧支架Z向位移传感器14、弹簧支架位置管道X向位移传感器15、弹簧支架位置管道Y向位移传感器16、蒸汽管道弯头处外壁温度传感器18、蒸汽管道弯头处X向应变传感器19、蒸汽管道弯头处Y向应变传感器20、导向支架X向位移传感器22、蒸汽温度传感器23、滑动支架X向位移传感器25、滑动支架Y向位移传感器26和加速度传感器28均与计算机27连接。
前端蒸汽管道外壁温度传感器2、前端蒸汽管道X向应变传感器3和前端蒸汽管道Y向应变传感器4安装在蒸汽管道1的相同位置,用于测量应变时同时进行温度测量;蒸汽管道弯头处外壁温度传感器18、蒸汽管道弯头处X向应变传感器19和蒸汽管道弯头处Y向应变传感器20安装在蒸汽管道1的相同位置,用于测量应变时同时进行温度测量;后端蒸汽管道X向应变传感器10、后端蒸汽管道Y向应变传感器11和后端蒸汽管道外壁温度传感器12安装在蒸汽管道1的相同位置,用于测量应变时同时进行温度测量;所有的位移传感器均为非接触式的位移传感器。
本实施例中,火力发电厂蒸汽管道实时状态信息采集及风险预测系统,信息采集及风险预测方法如下:
(1)前端蒸汽管道外壁温度传感器2和后端蒸汽管道外壁温度传感器12,分别与蒸汽管道1上的蒸汽温度传感器23进行比较,温度差作为热应力计算依据;计算公式为:
其中α为材料的线性膨胀系数;ΔT为蒸汽管道1内外壁温差;v为泊松比;f为结构系数;经过系统实时计算得到蒸汽管道1的不同部位的热应力数据;
(2)前端蒸汽压力传感器7和后端蒸汽压力传感器13将信号实时送到计算机27,经过计算得出环向切应力;计算公式为:
其中:σn为内压折算应力,MPa;p为蒸汽管道1正常运行下的压力,MPa;Do为蒸汽管道1外径,mm;S为蒸汽管道1壁厚,mm;α为考虑腐蚀、磨损和机械强度的附加壁厚,mm;Y为温度对计算蒸汽管道1壁厚公式的修正系数;
(3)前端蒸汽管道X向应变传感器3、前端蒸汽管道Y向应变传感器4、刚性吊架应变传感器6、后端蒸汽管道X向应变传感器10、后端蒸汽管道Y向应变传感器11、蒸汽管道弯头处X向应变传感器19和蒸汽管道弯头处Y向应变传感器20均通过应变到应力的计算,得到蒸汽管道1的实时应力状态;
(4)双拉杆恒力弹簧支吊架位移传感器9、弹簧支架Z向位移传感器14、弹簧支架位置管道X向位移传感器15、弹簧支架位置管道Y向位移传感器16、导向支架X向位移传感器22、滑动支架X向位移传感器25和滑动支架Y向位移传感器26将信号传递到计算机27,作为蒸汽管道1位移状态实时监测数据;
(5)加速度传感器28将信号传递到计算机27,作为蒸汽管道1振动状态实时监测数据;
(6)将计算后的应力、形变数据根据蒸汽温度和压力对应起来,利用计算机27自动生成温度和压力对应的应力计形变曲线图;
(7)收集资料,建立蒸汽管道1模型,计算出不同温度、压力等工况下蒸汽管道1的应力和形变曲线图,将这些曲线按照规律存储起来;第6步中的计算结果出来后,将结果曲线与系统中的曲线对比,偏离较大的,进行风险预警;
(8)计算机27将上述采集及计算的信息进行自学习,对于正常的工况进行数据存储,作为标准样本建设数据库;一段时间后样本曲线建立,将采集系统实时数据对照曲线进行判断,超出正常曲线范围内的数据,进行风险预警。
虽然本发明以实施例公开如上,但其并非用以限定本发明的保护范围,任何熟悉该项技术的技术人员,在不脱离本发明的构思和范围内所作的更动与润饰,均应属于本发明的保护范围。

Claims (3)

1.一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统,包括蒸汽管道(1),所述蒸汽管道(1)上连接有刚性吊架(5)、双拉杆恒力弹簧支吊架(8)、弹簧支架(17)、导向支架(21)和滑动支架(24);其特征在于,所述蒸汽管道(1)的前端外壁上安装有前端蒸汽管道外壁温度传感器(2)、前端蒸汽管道X向应变传感器(3)、前端蒸汽管道Y向应变传感器(4)和前端蒸汽压力传感器(7),所述刚性吊架(5)的吊杆上安装有刚性吊架应变传感器(6),且刚性吊架(5)位于蒸汽管道(1)的前端;所述蒸汽管道(1)的后端外壁上安装有后端蒸汽管道X向应变传感器(10)、后端蒸汽管道Y向应变传感器(11)、后端蒸汽管道外壁温度传感器(12)和后端蒸汽压力传感器(13),所述弹簧支架(17)上安装有弹簧支架Z向位移传感器(14),且弹簧支架(17)位于蒸汽管道(1)的后端,在蒸汽管道(1)上弹簧支架(17)相邻的位置安装有弹簧支架位置管道X向位移传感器(15)和弹簧支架位置管道Y向位移传感器(16);所述双拉杆恒力弹簧支吊架(8)上安装有双拉杆恒力弹簧支吊架位移传感器(9),且双拉杆恒力弹簧支吊架(8)位于蒸汽管道(1)的弯头处,并且在蒸汽管道(1)的弯头外壁上安装有蒸汽管道弯头处外壁温度传感器(18)、蒸汽管道弯头处X向应变传感器(19)和蒸汽管道弯头处Y向应变传感器(20);所述导向支架(21)上安装有导向支架X向位移传感器(22),所述滑动支架(24)上安装有滑动支架X向位移传感器(25)和滑动支架Y向位移传感器(26);蒸汽温度传感器(23)和加速度传感器(28)也安装在蒸汽管道(1)上;所述前端蒸汽管道外壁温度传感器(2)、前端蒸汽管道X向应变传感器(3)、前端蒸汽管道Y向应变传感器(4)、刚性吊架应变传感器(6)、前端蒸汽压力传感器(7)、双拉杆恒力弹簧支吊架位移传感器(9)、后端蒸汽管道X向应变传感器(10)、后端蒸汽管道Y向应变传感器(11)、后端蒸汽管道外壁温度传感器(12)、后端蒸汽压力传感器(13)、弹簧支架Z向位移传感器(14)、弹簧支架位置管道X向位移传感器(15)、弹簧支架位置管道Y向位移传感器(16)、蒸汽管道弯头处外壁温度传感器(18)、蒸汽管道弯头处X向应变传感器(19)、蒸汽管道弯头处Y向应变传感器(20)、导向支架X向位移传感器(22)、蒸汽温度传感器(23)、滑动支架X向位移传感器(25)、滑动支架Y向位移传感器(26)和加速度传感器(28)均与计算机(27)连接。
2.根据权利要求1所述的火力发电厂蒸汽管道实时状态信息采集及风险预测系统,其特征在于,所述前端蒸汽管道外壁温度传感器(2)、前端蒸汽管道X向应变传感器(3)和前端蒸汽管道Y向应变传感器(4)安装在蒸汽管道(1)的相同位置,用于测量应变时同时进行温度测量;所述蒸汽管道弯头处外壁温度传感器(18)、蒸汽管道弯头处X向应变传感器(19)和蒸汽管道弯头处Y向应变传感器(20)安装在蒸汽管道(1)的相同位置,用于测量应变时同时进行温度测量;所述后端蒸汽管道X向应变传感器(10)、后端蒸汽管道Y向应变传感器(11)和后端蒸汽管道外壁温度传感器(12)安装在蒸汽管道(1)的相同位置,用于测量应变时同时进行温度测量;所有的位移传感器均为非接触式的位移传感器。
3.根据权利要求1或2所述的火力发电厂蒸汽管道实时状态信息采集及风险预测系统,其特征在于,信息采集及风险预测方法如下:
(1)前端蒸汽管道外壁温度传感器(2)和后端蒸汽管道外壁温度传感器(12),分别与蒸汽管道(1)上的蒸汽温度传感器(23)进行比较,温度差作为热应力计算依据;计算公式为:
其中α为材料的线性膨胀系数;ΔT为蒸汽管道(1)内外壁温差;v为泊松比;f为结构系数;经过系统实时计算得到蒸汽管道(1)的不同部位的热应力数据;
(2)前端蒸汽压力传感器(7)和后端蒸汽压力传感器(13)将信号实时送到计算机(27),经过计算得出环向切应力;计算公式为:
其中:σn为内压折算应力,MPa;p为蒸汽管道(1)正常运行下的压力,MPa;Do为蒸汽管道(1)外径,mm;S为蒸汽管道(1)壁厚,mm;α为考虑腐蚀、磨损和机械强度的附加壁厚,mm;Y为温度对计算蒸汽管道(1)壁厚公式的修正系数;
(3)前端蒸汽管道X向应变传感器(3)、前端蒸汽管道Y向应变传感器(4)、刚性吊架应变传感器(6)、后端蒸汽管道X向应变传感器(10)、后端蒸汽管道Y向应变传感器(11)、蒸汽管道弯头处X向应变传感器(19)和蒸汽管道弯头处Y向应变传感器(20)均通过应变到应力的计算,得到蒸汽管道(1)的实时应力状态;
(4)双拉杆恒力弹簧支吊架位移传感器(9)、弹簧支架Z向位移传感器(14)、弹簧支架位置管道X向位移传感器(15)、弹簧支架位置管道Y向位移传感器(16)、导向支架X向位移传感器(22)、滑动支架X向位移传感器(25)和滑动支架Y向位移传感器(26)将信号传递到计算机(27),作为蒸汽管道(1)位移状态实时监测数据;
(5)加速度传感器(28)将信号传递到计算机(27),作为蒸汽管道(1)振动状态实时监测数据;
(6)将计算后的应力、形变数据根据蒸汽温度和压力对应起来,利用计算机(27)自动生成温度和压力对应的应力计形变曲线图;
(7)收集资料,建立蒸汽管道(1)模型,计算出不同温度、压力等工况下蒸汽管道(1)的应力和形变曲线图,将这些曲线按照规律存储起来;第(6)步中的计算结果出来后,将结果曲线与系统中的曲线对比,偏离较大的,进行风险预警;
(8)计算机(27)将上述采集及计算的信息进行自学习,对于正常的工况进行数据存储,作为标准样本建设数据库;一段时间后样本曲线建立,将采集系统实时数据对照曲线进行判断,超出正常曲线范围内的数据,进行风险预警。
CN201910165282.3A 2019-03-05 2019-03-05 一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统 Pending CN109945073A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910165282.3A CN109945073A (zh) 2019-03-05 2019-03-05 一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910165282.3A CN109945073A (zh) 2019-03-05 2019-03-05 一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统

Publications (1)

Publication Number Publication Date
CN109945073A true CN109945073A (zh) 2019-06-28

Family

ID=67008524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910165282.3A Pending CN109945073A (zh) 2019-03-05 2019-03-05 一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统

Country Status (1)

Country Link
CN (1) CN109945073A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398306A (zh) * 2019-07-08 2019-11-01 华电电力科学研究院有限公司 一种火力发电厂管道应力解耦分析系统与分析方法
CN110414081A (zh) * 2019-07-08 2019-11-05 华电电力科学研究院有限公司 一种火力发电厂管道应力耦合分析系统及分析方法
CN110440057A (zh) * 2019-08-13 2019-11-12 三门核电有限公司 一种ap1000核电厂主冷却剂管道的稳固结构及其振动调整工艺
CN112728416A (zh) * 2020-12-18 2021-04-30 苏州热工研究院有限公司 一种高温高压动力管道状态监测系统
CN113324180A (zh) * 2021-04-25 2021-08-31 华电电力科学研究院有限公司 火电厂高温/高压管道状态监测与风险评估系统
CN113739079A (zh) * 2021-09-22 2021-12-03 西安热工研究院有限公司 基于数字孪生技术的电站管道在线监测预警系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE814203A (fr) * 1973-04-26 1974-08-16 Procede d'etablissement de systemes de tuyaux pour fluides chauds
JP2004176791A (ja) * 2002-11-26 2004-06-24 Mitsubishi Heavy Ind Ltd 配管の補強方法、ボイラ設備、配管部材
KR20110030523A (ko) * 2010-09-10 2011-03-23 주식회사백상 운전환경을 반영한 고온고압배관 및 지지시스템의 신뢰성 평가 및 회복방법
CN104019849A (zh) * 2014-06-09 2014-09-03 河海大学 压力钢管及伸缩节运行参数自动监测系统及其评价方法
CN104613318A (zh) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 一种隧道内管道在线监测方法
CN106567997A (zh) * 2016-04-24 2017-04-19 内蒙古科技大学 基于物联网的油气管道远程实时健康监测系统
CN210088474U (zh) * 2019-03-05 2020-02-18 华电电力科学研究院有限公司 火力发电厂蒸汽管道实时状态信息采集及风险预测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE814203A (fr) * 1973-04-26 1974-08-16 Procede d'etablissement de systemes de tuyaux pour fluides chauds
JP2004176791A (ja) * 2002-11-26 2004-06-24 Mitsubishi Heavy Ind Ltd 配管の補強方法、ボイラ設備、配管部材
KR20110030523A (ko) * 2010-09-10 2011-03-23 주식회사백상 운전환경을 반영한 고온고압배관 및 지지시스템의 신뢰성 평가 및 회복방법
CN104613318A (zh) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 一种隧道内管道在线监测方法
CN104019849A (zh) * 2014-06-09 2014-09-03 河海大学 压力钢管及伸缩节运行参数自动监测系统及其评价方法
CN106567997A (zh) * 2016-04-24 2017-04-19 内蒙古科技大学 基于物联网的油气管道远程实时健康监测系统
CN210088474U (zh) * 2019-03-05 2020-02-18 华电电力科学研究院有限公司 火力发电厂蒸汽管道实时状态信息采集及风险预测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨杰, 李俊昆, 王敏明, 方安千, 王新民: "火力发电厂变形蒸汽管道的分析调整和监督研究", 中国电力, no. 01, pages 4400 - 4412 *
杨杰, 王敏明, 李俊昆, 方安千, 王新民: "娘子关电厂3号机组变形蒸汽管道的分析调整和运行监督", 山西电力, no. 04 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398306A (zh) * 2019-07-08 2019-11-01 华电电力科学研究院有限公司 一种火力发电厂管道应力解耦分析系统与分析方法
CN110414081A (zh) * 2019-07-08 2019-11-05 华电电力科学研究院有限公司 一种火力发电厂管道应力耦合分析系统及分析方法
CN110414081B (zh) * 2019-07-08 2024-03-26 华电电力科学研究院有限公司 一种火力发电厂管道应力耦合分析系统及分析方法
CN110398306B (zh) * 2019-07-08 2024-05-07 华电电力科学研究院有限公司 一种火力发电厂管道应力解耦分析系统与分析方法
CN110440057A (zh) * 2019-08-13 2019-11-12 三门核电有限公司 一种ap1000核电厂主冷却剂管道的稳固结构及其振动调整工艺
CN110440057B (zh) * 2019-08-13 2020-11-27 三门核电有限公司 一种ap1000核电厂主冷却剂管道的稳固结构及其振动调整工艺
CN112728416A (zh) * 2020-12-18 2021-04-30 苏州热工研究院有限公司 一种高温高压动力管道状态监测系统
CN113324180A (zh) * 2021-04-25 2021-08-31 华电电力科学研究院有限公司 火电厂高温/高压管道状态监测与风险评估系统
CN113739079A (zh) * 2021-09-22 2021-12-03 西安热工研究院有限公司 基于数字孪生技术的电站管道在线监测预警系统及方法

Similar Documents

Publication Publication Date Title
CN109945073A (zh) 一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统
CN106546422A (zh) 一种在线测量支吊架弹簧刚度的方法
CN107036508B (zh) 发动机动态气门间隙信号检测装置及方法
CN108846197A (zh) 一种架桥机主梁损伤识别及损伤程度量化分析方法
CN104019849B (zh) 压力钢管及伸缩节运行参数自动监测系统及其监测方法
CN102706317B (zh) 电站锅炉承压部件热膨胀量在线监测装置
CN112728416B (zh) 一种高温高压动力管道状态监测系统
CN103775832A (zh) 基于瞬变流反问题方法的输油管道漏失检测的装置
CN101972948A (zh) 模拟工况载荷条件下机床主轴热误差试验装置
CN106321968A (zh) 一种具有自动监测分析和预警功能的弹簧支吊架
CN109253870A (zh) 生物质燃料锅炉热交换管寿命的评估装置及方法
CN2632662Y (zh) 弹性元件蠕变试验机
CN105738223A (zh) 一种单轴bree解的实验装置及其测试方法
KR101045884B1 (ko) 운전환경을 반영한 고온고압배관 및 지지시스템의 신뢰성 평가 및 회복방법
CN208223442U (zh) 一种h型钢翼板厚度在线检测装置
CN206112258U (zh) 一种具有自动监测分析和预警功能的弹簧支吊架
CN1525140A (zh) 油气管道壁厚及缺陷检测系统
CN210088474U (zh) 火力发电厂蒸汽管道实时状态信息采集及风险预测系统
KR20100117214A (ko) 배관계의 스프링행거 하중 신뢰성 평가 방법 및 조정 지그 시스템
CN101596432B (zh) 一种炉管平衡配重结构
CN200986498Y (zh) 安全阀在线校验装置
CN208223436U (zh) 一种h型钢梁高在线检测装置
CN107830973A (zh) 一种千斤顶标定装置及标定方法
CN213902710U (zh) 火力发电厂管道支吊架应力检测测量系统
CN203465160U (zh) 一种热环境下动响应传递特性试验的耐高温落锤装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination