CN109937770B - 一种葡萄霜霉病防控方法 - Google Patents

一种葡萄霜霉病防控方法 Download PDF

Info

Publication number
CN109937770B
CN109937770B CN201910337631.5A CN201910337631A CN109937770B CN 109937770 B CN109937770 B CN 109937770B CN 201910337631 A CN201910337631 A CN 201910337631A CN 109937770 B CN109937770 B CN 109937770B
Authority
CN
China
Prior art keywords
temperature
grape
downy mildew
humidity
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910337631.5A
Other languages
English (en)
Other versions
CN109937770A (zh
Inventor
乔宏哲
陶国正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Vocational Institute of Mechatronic Technology
Original Assignee
Changzhou Vocational Institute of Mechatronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Vocational Institute of Mechatronic Technology filed Critical Changzhou Vocational Institute of Mechatronic Technology
Priority to CN201910337631.5A priority Critical patent/CN109937770B/zh
Publication of CN109937770A publication Critical patent/CN109937770A/zh
Application granted granted Critical
Publication of CN109937770B publication Critical patent/CN109937770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明属于植物病害防治领域,涉及一种葡萄霜霉病防控方法。所述防控方法,步骤如下:第一步:根据温度、湿度、葡萄品种、等效持续时间和葡萄感染霜霉病的历史数据,得出关于温度、湿度、葡萄品种、等效持续时间与葡萄感染霜霉病关系的回归系数。第二步:根据所预测可能感染的严重程度概率启动高温及除湿设备并控制其运行时间。本发明能根据历史数据,得出平均温度、平均湿度、葡萄品种、温湿度持续时间多种因素与感染霜霉病的关系,可根据多种因素的影响合理设置采取高温及除湿操作的条件。根据本条件启动高温及除湿设备更全面科学和合理。本发明还能根据所预测感染的可能性大小智能调节控制高温及除湿设备的运行时间,更节能环保。

Description

一种葡萄霜霉病防控方法
技术领域
本发明属于植物病害防治领域,涉及一种葡萄霜霉病防控方法。
背景技术
葡萄霜霉病主要危害叶片,还有植株的新梢、叶柄、幼果及花序等幼嫩部分,具有潜育时间短、传播迅速、侵染频繁、毁灭性强等特点。霜霉病对葡萄无论是产量还是品质的影响都很大,基本上能减产30%左右,情况严峻时甚至高达80%以上。因此,葡萄霜霉病给优质葡萄生产带来了巨大威胁,安全、有效防治霜霉病迫在眉睫。
葡萄霜霉病的滋生与其生长的环境条件有密切关系,潮湿黑暗的条件越容易发病,在春、秋两季少风、多雾、多雨的地区最为明显。影响葡萄霜霉病产生与流行的主要因素有空气相对湿度和光照强度等。病菌以卵孢子的形式随病叶、落叶等在土壤中越冬,在暖冬地区也能附着在未脱落的叶片内越冬,一般卵孢子可以存活2年左右,次年在水滴或潮湿的土壤中萌发为孢子囊,经1到2周的潜育期,在夜间至清晨有露水时发生侵染。强降雨与高湿度非常利于卵孢子的萌发,萌发机率会随湿度的升高而增加。孢子萌发及侵染的环境必备条件:4h连续黑暗且相对湿度高于90%。孢子囊经3h强度102*0.64μw/cm的紫外光照射或4h自然光照射后就会失活。
日常生产中常用化学农药进行喷药防控,而长期对化学农药的使用,不仅影响食品安全与生态环境平衡,而且也无法从根本上消除病情隐患,考虑到霜霉病滋生与环境密切相关,破坏霉变条件是一种防控思路。
现有技术主要采用化学农药进行喷药防控,影响食品安全与生态环境平衡。有部分技术方案采用无线传感网监控温度湿度参数的方法,当温度、湿度到达一定的阈值后采取高温及除湿操作,但这种方法仅仅考虑了温度湿度这两个霜霉病感染的因素。启动高温及除湿操作的设定比较粗,没有考虑众多因素的综合影响,容易漏掉部分霜霉病感染的情况。高温及除湿设备的工作时间不能智能调节,不利于节能。
发明内容
本发明在葡萄大棚布设无线传感器网络,监控当前环境参数,并根据历史数据,得出平均温度、平均湿度、葡萄品种等因素与感染霜霉病的关系,在有可能感染霜霉病时启动高温及除湿设备,并根据所预测可能感染的严重程度智能控制高温及除湿设备的运行时间。
本发明的技术方案如下:
一种葡萄霜霉病防控系统,包括Zigbee节点、Zigbee网关、Internet和云服务器;n个传感器完成对温度、湿度环境指标的监测功能,并上传到Zigbee网关。Zigbee网关通过Internet与云服务器相连,可将检测到的数据上传到云服务器处理,以及将云服务器对数据的处理结果传送给Zigbee网关。
一种葡萄霜霉病防控方法,步骤如下:
采用葡萄霜霉病防控系统,通过传感器得到温度和湿度数据,葡萄品种根据记录数据得到。
第一步:根据温度、湿度、葡萄品种、等效持续时间和葡萄感染霜霉病的历史数据,得出关于温度、湿度、葡萄品种、等效持续时间与葡萄感染霜霉病关系的回归系数。
1.1建立葡萄参数向量:
x=(x(1),x(2),x(3),x(4),1)
其中,x(1)为平均温度,x(2)为平均湿度,x(3)为葡萄品种,x(4)为等效持续时间;
等效持续时间计算方法为:
Te=βTw+(1-β)Ts
其中,Te为等效持续时间;Tw为在总时间段中温度在易感染区间的时间总和;Ts为在总时间段中湿度在易感染区间的时间总和;β为温度/湿度权重系数,可自主设置,经多次测试,认为β=0.3为最佳。
1.2建立系数向量w=(w(1),w(2),w(3),w(4),b);
其中,w(1)为温度系数;w(2)为湿度系数;w(3)为葡萄品种系数,w(4)为等效持续时间系数;b为偏置;
1.3设函数hw(x):
Figure GDA0002682501220000031
1.4求取损失函数,损失函数为:
Figure GDA0002682501220000032
其中,m为数据集样本数;y为类别标签,表示“有感染”和“无感染”两种状态,并且y=1时,代表“感染”,y=0时,表示“无感染”;i为第i个;WT为W的转置;
1.5利用梯度下降法对损失函数J(w)进行迭代,求解使J(w)最小化的w最佳值;迭代函数为:
Figure GDA0002682501220000033
设定w初值为:(2,2,1,1,2)
迭代中系数的以上预设初值有利于提高得到全局最优解的机会。
其中,α表示步长,并且α=0.01;重复迭代计算次数R=800;
该步长保持了适中的迭代速度;既不会出现迭代过快而可能错过最优解。也不会出现迭代速度太慢而造成迭代不能结束。
第二步:根据所预测可能感染的严重程度概率启动高温及除湿设备并控制其运行时间;
设临界感染概率为PL,即认为在该状态不启动设备很快就会出现霜霉病感染,如PL=0.35;该值可由工作人员根据情况设定。
T0为在上述临界感染状态,高温及除湿使孢子失活,应设置的的设备运行时间;如T0=4小时;
2.1根据前述迭代所求得的w,以及当前葡萄的参数,可以求得wTX
则当满足条件
Figure GDA0002682501220000041
时,启动高温及除湿设备;
其中,γ为启动临界系数,范围为1.5-2.5,当γ=2时最佳(较好地兼顾了清除霜霉病感染与降低能耗成本。)
2.2高温及除湿设备的工作时间由下式确定:
Figure GDA0002682501220000042
以上工作时间合适地考虑了工作时间与霜霉病感染程度概率的关系。霜霉病感染程度概率越大,工作时间越长;在降低病害与使用较小能耗两者间取得了合适的折衷。
本发明的有益效果:
本发明能根据历史数据,得出平均温度、平均湿度、葡萄品种、温湿度持续时间多种因素与感染霜霉病的关系,可根据多种因素的影响合理设置采取高温及除湿操作的条件。根据本条件启动高温及除湿设备更全面科学和合理;本发明还能根据所预测感染的可能性大小智能调节控制高温及除湿设备的运行时间,更节能环保。
附图说明
图1为葡萄霜霉病防控系统平台示意图。
图中:1为Zigbee网关;2为Internet;3为云服务器。
具体实施方式
以下结合附图和具体实施例,对本发明进一步详细说明。
一种葡萄霜霉病防控系统,包括Zigbee节点、Zigbee网关1、Internet2和云服务器3;n个Zigbee节点(传感器)完成对温度、湿度环境指标的监测功能,并上传到Zigbee网关1。在Zigbee网关1硬件平台上移植linux操作系统。Zigbee网关1通过Internet2与云服务器3相连,可将检测到的数据上传到云服务器3处理,以及将云服务器3对数据的处理结果传送给Zigbee网关1。
一种葡萄霜霉病防控方法,采用葡萄霜霉病防控系统,通过传感器得到温度和湿度数据,葡萄品种根据记录数据得到。
第一步:根据温度、湿度、葡萄品种、等效持续时间和葡萄感染霜霉病的历史数据,得出关于温度、湿度、葡萄品种、等效持续时间与葡萄感染霜霉病关系的回归系数。
1.1建立葡萄参数向量
x=(x(1),x(2),x(3),x(4),1)
其中,x(1)为平均温度,x(2)为平均湿度,x(3)为葡萄品种,x(4)为等效持续时间;
等效持续时间计算方法为:
Te=βTw+(1-β)Ts
其中,Te为等效持续时间;Tw为在总时间段中温度在易感染区间的时间总和;Ts为在总时间段中湿度在易感染区间的时间总和;β为温度/湿度权重系数,可自主设置,经多次测试,认为β=0.3为最佳。
1.2建立系数向量w=(w(1),w(2),w(3),w(4),b);
其中,w(1)为温度系数;w(2)为湿度系数;w(3)为葡萄品种系数,w(4)为等效持续时间系数;b为偏置;
1.3设函数hw(x):
Figure GDA0002682501220000061
1.4求取损失函数,损失函数为:
Figure GDA0002682501220000062
其中,m为数据集样本数;y为类别标签,表示“有感染”和“无感染”两种状态,并且y=1时,代表“感染”,y=0时,表示“无感染”;i为第i个;WT为W的转置;
1.5利用梯度下降法对所述损失函数J(w)进行迭代,求解使J(w)最小化的w最佳值;迭代函数为:
Figure GDA0002682501220000063
设定w初值为:(2,2,1,1,2)
迭代中系数的以上预设初值有利于提高得到全局最优解的机会。
其中,α表示步长,并且α=0.01;重复迭代计算次数R=800;
该步长保持了适中的迭代速度;既不会出现迭代过快而可能错过最优解。也不会出现迭代速度太慢而造成迭代不能结束。
第二步:根据所预测可能感染的严重程度概率启动高温及除湿设备并控制其运行时间;
假设临界感染概率为PL,即认为在该状态不启动设备很快就会出现霜霉病感染,如PL=0.35;该值可由工作人员根据情况设定。
T0为在上述临界感染状态,高温及除湿使孢子失活,应设置的的设备运行时间;如T0=4小时;
2.1根据前述迭代所求得的w,以及当前葡萄的参数,可以求得wTX
则当满足条件
Figure GDA0002682501220000071
时,启动高温及除湿设备;
其中,γ为启动临界系数,范围为1.5-2.5,当γ=2时最佳(较好地兼顾了清除霜霉病感染与降低能耗成本。)
2.2高温及除湿设备的工作时间由下式确定:
Figure GDA0002682501220000072
以上工作时间合适地考虑了工作时间与霜霉病感染程度概率的关系。霜霉病感染程度概率越大,工作时间越长;在降低病害与使用较小能耗两者间取得了合适的折衷。

Claims (4)

1.一种葡萄霜霉病防控方法,其特征在于,步骤如下:
第一步:
1.1建立葡萄参数向量:
x=(x(1),x(2),x(3),x(4),1)
其中,x(1)为平均温度,x(2)为平均湿度,x(3)为葡萄品种,x(4)为等效持续时间;
等效持续时间计算方法为:
Te=βTw+(1-β)Ts
其中,Te为等效持续时间;Tw为在总时间段中温度在易感染区间的时间总和;Ts为在总时间段中湿度在易感染区间的时间总和;β为温度/湿度权重系数;
1.2建立系数向量w=(w(1),w(2),w(3),w(4),b);
其中,w(1)为温度系数;w(2)为湿度系数;w(3)为葡萄品种系数,w(4)为等效持续时间系数;b为偏置;
1.3设函数hw(x):
Figure FDA0002682501210000011
1.4求取损失函数,损失函数为:
Figure FDA0002682501210000012
其中,m为数据集样本数;y为类别标签,表示“有感染”和“无感染”两种状态,并且y=1时,代表“感染”,y=0时,表示“无感染”;i为第i个;WT为W的转置;
1.5利用梯度下降法对损失函数J(w)进行迭代,求解使J(w)最小化的w最佳值;迭代函数为:
Figure FDA0002682501210000021
其中,α表示步长;
第二步:
设临界感染概率为PL,T0为在上述临界感染状态;
2.1根据前述迭代所求得的w,以及当前葡萄的参数,求得wTX;
则当满足条件
Figure FDA0002682501210000022
时,启动高温及除湿设备;
其中,γ为启动临界系数;
2.2高温及除湿设备的工作时间由下式确定:
Figure FDA0002682501210000023
2.如权利要求1所述的一种葡萄霜霉病防控方法,其特征在于,第一步中,设定w初值为:2,2,1,1,2;α=0.01。
3.如权利要求1或2所述的一种葡萄霜霉病防控方法,其特征在于,第二步中,γ范围为1.5-2.5。
4.根据权利要求1或2或3所述的任意一项葡萄霜霉病防控方法采用的葡萄霜霉病防控系统,其特征在于,包括Zigbee节点、Zigbee网关(1)、Intemet(2)和云服务器(3);n个传感器完成对温度、湿度环境指标的监测功能,并上传到所述的Zigbee网关(1);所述Zigbee网关(1)通过Intemet(2)与云服务器(3)相连,可将检测到的数据上传到云服务器(3)处理,以及将云服务器(3)对数据的处理结果传送给Zigbee网关(1)。
CN201910337631.5A 2019-04-25 2019-04-25 一种葡萄霜霉病防控方法 Active CN109937770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910337631.5A CN109937770B (zh) 2019-04-25 2019-04-25 一种葡萄霜霉病防控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910337631.5A CN109937770B (zh) 2019-04-25 2019-04-25 一种葡萄霜霉病防控方法

Publications (2)

Publication Number Publication Date
CN109937770A CN109937770A (zh) 2019-06-28
CN109937770B true CN109937770B (zh) 2021-01-08

Family

ID=67014691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910337631.5A Active CN109937770B (zh) 2019-04-25 2019-04-25 一种葡萄霜霉病防控方法

Country Status (1)

Country Link
CN (1) CN109937770B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052147A (zh) * 2007-05-24 2007-10-10 中国科学院合肥物质科学研究院 大田作物病虫害智能预警系统
CN102652492A (zh) * 2012-05-11 2012-09-05 句容谷歌庄园现代农业科技发展有限公司 一种无公害露地栽培葡萄的方法
CN104335877A (zh) * 2013-08-10 2015-02-11 杨斌 一种葡萄灰霉病的防治方法
CN104996222A (zh) * 2015-06-30 2015-10-28 云南天质网络科技有限公司 一种葡萄褐斑病的综合防治方法
CN104996223A (zh) * 2015-06-30 2015-10-28 云南天质网络科技有限公司 一种葡萄白腐病的综合防治方法
CN105165487A (zh) * 2015-06-30 2015-12-23 云南天质网络科技有限公司 一种葡萄霜霉病的防治方法
CN105191742A (zh) * 2015-10-24 2015-12-30 宾川县兴宏达农副产品专业合作社 一种葡萄丰产栽培方法
CN105613176A (zh) * 2015-10-19 2016-06-01 西北农林科技大学 一种葡萄霜霉病防控方法和防控系统
CN106069573A (zh) * 2016-08-11 2016-11-09 邱文娟 一种葡萄霜霉病防治方法
CN106258660A (zh) * 2016-08-16 2017-01-04 颍上县德强葡萄种植专业合作社 一种葡萄霜霉病防治方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052147A (zh) * 2007-05-24 2007-10-10 中国科学院合肥物质科学研究院 大田作物病虫害智能预警系统
CN102652492A (zh) * 2012-05-11 2012-09-05 句容谷歌庄园现代农业科技发展有限公司 一种无公害露地栽培葡萄的方法
CN104335877A (zh) * 2013-08-10 2015-02-11 杨斌 一种葡萄灰霉病的防治方法
CN104996222A (zh) * 2015-06-30 2015-10-28 云南天质网络科技有限公司 一种葡萄褐斑病的综合防治方法
CN104996223A (zh) * 2015-06-30 2015-10-28 云南天质网络科技有限公司 一种葡萄白腐病的综合防治方法
CN105165487A (zh) * 2015-06-30 2015-12-23 云南天质网络科技有限公司 一种葡萄霜霉病的防治方法
CN105613176A (zh) * 2015-10-19 2016-06-01 西北农林科技大学 一种葡萄霜霉病防控方法和防控系统
CN105191742A (zh) * 2015-10-24 2015-12-30 宾川县兴宏达农副产品专业合作社 一种葡萄丰产栽培方法
CN106069573A (zh) * 2016-08-11 2016-11-09 邱文娟 一种葡萄霜霉病防治方法
CN106258660A (zh) * 2016-08-16 2017-01-04 颍上县德强葡萄种植专业合作社 一种葡萄霜霉病防治方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于SVM的葡萄霜霉病病害发生预测研究;宋旺;《中小企业管理与科技(下旬刊)》;20180525(第05期);全文 *
基于计算机视觉的葡萄叶部病害识别研究;王利伟等;《江苏农业科学》;20171219(第23期);全文 *

Also Published As

Publication number Publication date
CN109937770A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
Xu Effects of environmental conditions on the development of Fusarium ear blight
CN102808015B (zh) 一种植物离体茎杆接种鉴定菌核病抗性的方法
Bakker Greenhouse climate control: constraints and limitations
Mortensen et al. Effects of air humidity and K: Ca ratio on growth, morphology, flowering and keeping quality of pot roses
CN105165313A (zh) 烟蚜茧蜂短周期繁育方法
CN109937770B (zh) 一种葡萄霜霉病防控方法
Tronsmo et al. Life Cycle of the Dry Eye Rot Pathogen Botrytis cinerea Pers. on Apple.
CN108323476A (zh) 一种人工饲养双尾新小绥螨的方法
CN104488402B (zh) 提高小麦抗涝渍胁迫的方法
Breen et al. Artificial spur extinction alters light interception by'Royal Gala'apple trees
Naor et al. Temperature affects plant development, flowering and tuber dormancy in calla lily (Zantedeschia)
Bates Mechanical crop control in New York'Concord'vineyards target desirable crop load levels
Soni et al. Seasonal dynamics of wheat aphid complex and predator Coccinella septempunctata in relation to abiotic and biotic factors
Sugiyama et al. Growth schedule of Xanthium canadense: Does it optimize the timing of reproduction?
Abbasy et al. Wild Birds injurious to some field crops at Ismailia Governorate under field conditions
Evenhuis et al. Effect of polythene tunnels and cultivars on grey mould caused by Botrytis cinerea in organically grown strawberries
CN104823649A (zh) 提高乌饭树种发芽率的方法
Lakso et al. Responses to drought of balance-pruned and minimally-pruned'Concord'grapevines
Singal et al. Relative efficacy of different herbicides on Echinochloa accessions
Dijst et al. Flowerbulbs diseases incited by Rhizoctonia species
Jain et al. Alternaria blight severity as influenced by meteorological parameters in mustard cultivars
NEELAM et al. Effects of saline irrigation on physiological responses and yield attributes in chickpea genotypes
Goyal et al. Effect of micrometeorological parameters on aphid and white rust epidemiology under different row direction in oilseed Brassica
Cermeño-Sacristán et al. Assessment of the water needs for asparagus in Mediterranean area
Yang et al. The characteristics variation of the flowers of Capparis spinosa L. during the extended flowering process and the influence of the rate of seed-setting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant