CN109934130A - 基于深度学习的卫星故障在轨实时故障诊断方法及系统 - Google Patents

基于深度学习的卫星故障在轨实时故障诊断方法及系统 Download PDF

Info

Publication number
CN109934130A
CN109934130A CN201910148032.9A CN201910148032A CN109934130A CN 109934130 A CN109934130 A CN 109934130A CN 201910148032 A CN201910148032 A CN 201910148032A CN 109934130 A CN109934130 A CN 109934130A
Authority
CN
China
Prior art keywords
deep learning
data
learning model
training
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910148032.9A
Other languages
English (en)
Inventor
韩笑冬
邓兵
宫江雷
杨凯飞
徐楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN201910148032.9A priority Critical patent/CN109934130A/zh
Publication of CN109934130A publication Critical patent/CN109934130A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

本发明公开了基于深度学习的卫星故障在轨实时故障诊断系统和方法,具体方法为:(1)、获取卫星单机和分系统历史观测数据;所述历史观测数据为遥测数据;(2)、采用卫星单机和分系统历史观测数据构建训练集,对深度学习模型进行训练,得到该单机和分系统的卫星故障深度学习模型;(3)、采用卫星故障深度学习模型对实时采集的在轨观测数据进行预测,得到下一个帧的预测结果;(4)、获取下一帧的实际测量数据,将其与预测结果比较,得到预测误差;(5)、判断预测误差是否连续N次超出预设的范围,是,则根据比较结果进行故障诊断;否则,重复步骤(3)~(5)。本发明提升了卫星在轨故障自主诊断能力。

Description

基于深度学习的卫星故障在轨实时故障诊断方法及系统
技术领域
本发明涉及基于深度学习的卫星故障在轨实时故障诊断方法及系统,适用于高轨卫星在轨故障的实时故障诊断。
背景技术
随着航天技术的发展以及各国对卫星需求不断增长,全球发射的人造卫星数目也急剧增长,而卫星的可靠性严重影响了卫星的服务质量。为了保证卫星的安全性和可靠性,卫星具备自主故障诊断功能极为必要。当前卫星在轨故障诊断所面临问题:
1、卫星数量激增,传统的在轨运维模式受限。长期以来,在卫星在轨阶段,异常情况的反应都是依靠地面站在可以与其通信的时间内发出控制指令来处理。为了保证在轨卫星及时准确完成任务运行,地面站还要组建包括各分系统运行人员在内的庞大地面工作组。
2、卫星故障关联关系更复杂。随着卫星复杂程度增加,反映系统运行机理和状态的数据具有强烈的不确定性和非线性特征,无法依靠传统方法建立精确的物理模型进行管理监控,故障诊断难度增大,需要构建表征能力更强的故障诊断模型。
3、星载计算环境具有严苛的性能、可靠性需求。当前卫星计算能力有限,内存空间不足,制约了复杂的故障诊断算法的应用。同时,星载计算环境的实时性、高可靠性要求,对星载故障诊断准确率具有较高的要求。
4、卫星故障数据属于小样本识别问题。现在卫星故障识别方法主要是利用先验知识和专家知识对故障进行特征提取和训练分类。由于特定故障的数据获取困难、代价巨大,现有的故障识别方法大多建立在对少量有类标数据学习的基础上,是小样本识别问题,这些因素在一定程度上制约了现有方法的准确性和泛化性。
发明内容
本发明的技术解决问题是:克服现有故障识别技术的不足,提供了一种基于深度学习的卫星故障在轨实时故障诊断方法及系统,提升卫星在轨故障自主诊断能力。
本发明的技术解决方案是:一种基于深度学习的卫星故障在轨实时故障诊断方法,该方法包括下列步骤:
(1)、获取卫星单机和分系统历史观测数据;所述历史观测数据为遥测数据;
(2)、采用卫星单机和分系统历史观测数据构建训练集,对深度学习模型进行训练,得到该单机和分系统的卫星故障深度学习模型;
(3)、采用卫星故障深度学习模型对实时采集的在轨观测数据进行预测,得到下一个帧的预测结果;
(4)、获取下一帧的实际测量数据,将其与预测结果比较,得到预测误差;
(5)、判断预测误差是否连续N次超出预设的范围,是,则根据比较结果进行故障诊断;否则,重复步骤(3)~(5)。
所述步骤(3)的具体训练方法为:
(3.1)、建立基于时间序列的深度学习模型,所述基于时间序列的深度学习模型包括第一LSTM层、第一Dropout层、第二LSTM层、第三LSTM层、第二Dropout层和全连接层;
(3.2)、初始化基于时间序列的深度学习模型内各层输入维度、神经元个数、第一Dropout层和第二Dropout层的数据抛弃率;所述输入维度为M×N,其中,M为基于时间序列的深度学习模型滑动窗口大小,N为单机或者分系统的观测数据的种类;滑动窗口大小取为卫星单机和分系统特征的变化周期;神经元个数取为滑动窗口大小的整数倍;
(3.3)、采用基于时间序列的深度学习算法,循环将训练集数据输入到深度学习模型,深度学习模型按照预设的学习率对训练数据进行学习训练,得到各层的权重、偏执和深度学习模型的输出数据,将深度学习模型的输出数据与实际数据进行比较,并统计两者的最小均方误差值,直到执行完预设的循环次数;
(3.4)、当最小均方误差值超过预设的模型误差阈值时,调整学习率,重新执行步骤(3.3)~(3.4),直到最小均方误差值小于预设的模型误差阈值,从而确定基于时间序列的深度学习模型。
该在轨实时故障诊断方法还包括如下步骤:
(3.5)、将验证集数据输入到步骤(3.4)确定的基于时间序列的深度学习模型,将深度学习模型的输出数据与实际数据进行比较,并统计两者的均方误差值;
(3.6)、当步骤(3.5)得到的均方误差值大于预设的模型误差阈值,则认为步骤(3.4)确定的基于时间序列的深度学习模型过拟合,调整学习率,重新执行步骤(3.3)~(3.5),否则,将步骤(3.4)确定的基于时间序列的深度学习模型确定为最终的深度学习模型。
所述学习率采用动态方法进行调整,初始设置学习率为常值,当多次循环均方误差值始终保持在一定的范围内不变时,逐渐降低学习率。
所述步骤(3.3)中,深度学习模型采用mini-batch方法对训练数据进行训练。
所述卫星单机和分系统观测数据为经过预处理之后的历史遥测数据;预处理的方法为:预处理包括归一化和预编码两种方法,归一化采用最大最小值归一化方法,使参数的值都集中分布在0-1之间,对于枚举型的参数,统一采用one-hot编码方式归一化。
所述训练集内的数据均为无故障数据。
本发明的另一个技术解决方案是:一种基于深度学习的卫星故障在轨实时故障诊断系统,该系统包括配置管理模块、数据管理模块、算法执行引擎、数据集和已训练模型库。
数据集,得到每个单机或者分系统的历史遥测数据,并对其进行数据抽取和剔野处理,将处理后的历史遥测数据再经过归一化或者预编码,存储至相应的训练数据集或者测试数据集;
配置管理模块,接收外部输入的训练或者测试指令;当指令为训练指令时,设置深度学习模型配置参数,将指定的训练数据集路径发送给数据管理模块;当指令为预测指令时,将指定的测试数据集路径发送给数据管理模块;当指令为测试指令时,发送预测模型选择指令至算法执行引擎;
数据管理模块,根据接收到的训练数据集路径或者测试数据集路径,从数据集库中采用地址追加的方法自动读取训练数据或者测试数据,将训练数据或者测试数据发送给算法执行引擎;
算法执行引擎,当训练时,根据初始化的基于时间序列的深度学习模型参数,调用通用机器学习平台的训练函数,构建卫星故障深度学习模型,循环获取训练数据,并执行通用机器学习平台的训练函数,直到完成训练过程,确定卫星故障深度学习模型,将确定后的卫星故障深度学习模型保存到已训练模型库中;当预测时,根据预测模型选择指令,从已训练模型库挑选已训练模型库,获取训练集数据,并运用已训练模型库进行预测,得到待检测数据,供用户判决。
所述深度学习模型为基于时间序列的深度学习模型包括第一LSTM层、第一Dropout层、第二LSTM层、第三LSTM层、第二Dropout层和全连接层。
所述深度学习模型具体训练方法为:
(s1)、初始化基于时间序列的深度学习模型内各层输入维度、神经元个数、第一Dropout层和第二Dropout层的数据抛弃率;所述输入维度为M×N,其中,M为基于时间序列的深度学习模型滑动窗口大小,N为单机或者分系统的观测数据的种类;滑动窗口大小取为卫星单机和分系统特征的变化周期;神经元个数取为滑动窗口大小的整数倍;
(s2)、采用基于时间序列的深度学习算法,循环将训练集数据输入到深度学习模型,深度学习模型按照预设的学习率对训练数据进行学习训练,得到各层的权重、偏执和深度学习模型的输出数据,将深度学习模型的输出数据与实际数据进行比较,并统计两者的最小均方误差值,直到执行完预设的循环次数;
(s3)、当最小均方误差值超过预设的模型误差阈值时,调整学习率,重新执行步骤(s2)~(s3),直到最小均方误差值小于预设的模型误差阈值,从而确定基于时间序列的深度学习模型。
所述数据集还包括验证集数据。
所述深度学习模型具体训练方法还包括如下步骤:
(s4)、将验证集数据输入到步骤(s3)确定的基于时间序列的深度学习模型,将深度学习模型的输出数据与实际数据进行比较,并统计两者的均方误差值;
(s5)、当步骤(s4)得到的均方误差值小于大于预设的模型误差阈值,则认为步骤(s3)确定的基于时间序列的深度学习模型过拟合,调整学习率,重新执行步骤(s2)~(s5),否则,将步骤(s3)确定的基于时间序列的深度学习模型确定为最终的深度学习模型。
所述数据抽取方法包括基于具体时间段的数据抽取和基于参数不等式条件判断的数据抽取方法。
确定后的卫星故障深度学习模型采用H5格式进行存储。
本发明与现有技术相比的有益效果是:
1、本发明采用LSTM(long short term memory)算法,对卫星部件、分系统的关键指标的变化规律进行预测,通过预测的结果与实际发生结果的差异来对故障情况进行识别。通过加强对非故障工况数据的学习,来反向推演故障数据。解决了卫星故障预测故障数据少,分类标签不全的问题。
2、本发明采用了LSTM算法,对卫星单机或分系统采集信号及指令的历史数据序列进行学习,基于采集信号数据的变化规律的内在关联,实现了基于多参数历史数据对较复杂参数变化规律的拟合。
3、本发明搭建了基于卫星测试历史数据及在轨历史数据的算法研发平台,通过数据解析、剃野等方式抽取卫星数据,形成训练及测试数据集,实现了卫星测试历史数据库、在轨历史遥测数据与成熟算法平台的集合。
附图说明
图1为本发明的卫星机器学习算法研发平台架构图。
具体实施方式
下面结合附图对本发明的具体实施方式进行进一步的详细描述。
1、卫星故障在轨实时故障诊断系统搭建
本发明提供了一种基于深度学习的卫星故障在轨实时故障诊断系统,该系统采用比较流行的Tensorflow机器学习平台为基础,对上提供Python语言进行算法模型开发。
如图1所示,本发明基于深度学习的卫星故障在轨实时故障诊断系统,其特征在于包括配置管理模块、数据管理模块、算法执行引擎、数据集和已训练模型库。
数据集,得到每个单机或者分系统的历史遥测数据,并对其进行数据抽取和剔野处理,将处理后的历史遥测数据再经过归一化或者预编码,存储至相应的训练数据集或者测试数据集;数据来源包括卫星测试数据库和卫星在轨数据库,两个数据库都采用Oracle数据库进行管理,数据抽取功能通过解析遥测数据库结构,获取历史遥测数据。本模块提供了两种数据抽取方法:基于具体时间段的数据抽取;基于参数不等式条件判断的数据抽取。本模块提供了两种具体的剃野规则:剔除状态、配置切换指令周围遥测数据,即在影响遥测的相关单机进行切换时,该切换时刻周围遥测会进行剔除;剔除非稳定跳变的野值,即每个遥测数据都通过三帧验证的方式进行校验的。预处理:基于卫星参数的多样性,软件参数的预处理包括归一化和预编码两部分。软件归一化采用最大最小值归一化方法,使参数的值都集中分布在0-1之间。对于枚举型的参数,统一采用one-hot编码方式,消除数据大小差异而带来的训练效果差异。
配置管理模块,接收外部输入的训练或者测试指令;当指令为训练指令时,设置深度学习模型配置参数,将指定的训练数据集路径发送给数据管理模块;当指令为预测指令时,将指定的测试数据集路径发送给数据管理模块;当指令为测试指令时,发送预测模型选择指令至算法执行引擎;
数据管理模块,根据接收到的训练数据集路径或者测试数据集路径,从数据集库中采用地址追加的方法自动读取训练数据或者测试数据,将训练数据或者测试数据发送给算法执行引擎;
算法执行引擎,当训练时,根据初始化的基于时间序列的深度学习模型参数,调用通用机器学习平台的训练函数,构建卫星故障深度学习模型,循环获取训练数据,并执行通用机器学习平台的训练函数,直到完成训练过程,确定卫星故障深度学习模型,将确定后的卫星故障深度学习模型保存到已训练模型库中;当预测时,根据预测模型选择指令,从已训练模型库挑选已训练模型库,获取训练集数据,并运用已训练模型库进行预测,得到待检测数据,供用户判决。已训练模型库主要实现对训练后的模型进行统一的版本管理,训练后的模型采用H5格式进行存储。该算法执行引擎基于Tensorflow框架的软件算法原型开发。Tensorflow框架把各个深度学习的网络层次封装成为独立的模块,通过配置文件配置各个模块的输入输出后,实现网络搭建。例如,一个学习网络由LSTM层、Dropout层、Softmax层组成,需要在配置文件上明确该三个层次,并明确输入输出的维度,明确损失函数和优化函数等深度学习所需参数即可。
2、故障诊断算法原型
本卫星故障诊断算法主要基于卫星平台的主要单机和分系统的数据进行分析,输入数据是单机或分系统的硬件采集数据,例如,电压、电流、温度、开关状态等。输出数据为上层应用的关键输入指标,例如,敏感器对上层软件的输出、电池相关控制指标等。本发明算法原型的形成过程主要包括训练和预测两个过程。训练过程主要采用训练集数据对深度学习模型各层的权重和偏执进行训练,当预测的卫星遥测参数与实际获得遥测参数的均方误差小于预定误差值后,可以当前深度学习的训练过程已经完成。预测过程即通过训练后的算法对当前数据进行预测,实际应用过程中通过判断实际观测数据和预测数据的均方误差值后,判断是否发生故障。算法原型的实施主要包括如下要点:
由于是基于历史数据预测值与实际观测值的误差来判断故障,数据集并没有故障标签需求,数据集主要基于非故障工况的卫星测试及在轨数据。数据集在训练过程中被分为训练集、验证集和测试集,三个数据相分离。在训练过程中,通过训练集来对算法进行训练;通过验证集实现交叉验证,检测训练过程是否过拟合;通过测试集验证算法训练的实际效果。
(3)、卫星故障在轨实时故障诊断方法
基于上述卫星故障在轨实时故障诊断系统和故障诊断算法原型,本发明提供了一种基于深度学习的卫星故障在轨实时故障诊断方法,该方法包括下列步骤:
(1)、获取卫星单机和分系统历史观测数据;所述历史观测数据为遥测数据;所述卫星单机和分系统观测数据为经过预处理之后的历史遥测数据;预处理的方法为:预处理包括归一化和预编码两种方法,归一化采用最大最小值归一化方法,使参数的值都集中分布在0-1之间,对于枚举型的参数,统一采用one-hot编码方式归一化。
(2)、采用卫星单机和分系统历史观测数据构建训练集,对深度学习模型进行训练,得到该单机和分系统的卫星故障深度学习模型;所述训练集内的数据均为无故障数据。
(3)、采用卫星故障深度学习模型对实时采集的在轨观测数据进行预测,得到下一个帧的预测结果;
以所述深度学习模型为基于时间序列的深度学习模型包括第一LSTM层、第一Dropout层、第二LSTM层、第三LSTM层、第二Dropout层和全连接层为例,具体训练方法为:
(3.1)、建立基于时间序列的深度学习模型,所述基于时间序列的深度学习模型包括第一LSTM层、第一Dropout层、第二LSTM层、第三LSTM层、第二Dropout层和全连接层;
(3.2)、初始化基于时间序列的深度学习模型内各层输入维度、神经元个数、第一Dropout层和第二Dropout层的数据抛弃率;所述输入维度为M×N,其中,M为基于时间序列的深度学习模型滑动窗口大小,N为单机或者分系统的观测数据的种类;滑动窗口大小取为卫星单机和分系统特征的变化周期;神经元个数取为滑动窗口大小的整数倍;
(3.3)、采用基于时间序列的深度学习算法,循环将训练集数据输入到深度学习模型,深度学习模型按照预设的学习率对训练数据进行学习训练,得到各层的权重、偏执和深度学习模型的输出数据,将深度学习模型的输出数据与实际数据进行比较,并统计两者的最小均方误差值,直到执行完预设的循环次数;深度学习模型采用mini-batch方法对训练数据进行训练。
(3.4)、当最小均方误差值超过预设的模型误差阈值时,调整学习率,重新执行步骤(3.3)~(3.4),直到最小均方误差值小于预设的模型误差阈值,从而确定基于时间序列的深度学习模型。
(3.5)、将验证集数据输入到步骤(3.4)确定的基于时间序列的深度学习模型,将深度学习模型的输出数据与实际数据进行比较,并统计两者的均方误差值;
(3.6)、当步骤(3.5)得到的均方误差值大于预设的模型误差阈值,则认为步骤(3.4)确定的基于时间序列的深度学习模型过拟合,调整学习率,重新执行步骤(3.3)~(3.5),否则,将步骤(3.4)确定的基于时间序列的深度学习模型确定为最终的深度学习模型。所述学习率采用动态方法进行调整,初始设置学习率为常值,当多次循环均方误差值始终保持在一定的范围内不变时,逐渐降低学习率。
(4)、获取下一帧的实际测量数据,将其与预测结果比较,得到预测误差;
(5)、判断预测误差是否连续N次超出预设的范围,是,则根据比较结果进行故障诊断;否则,重复步骤(3)~(5)。
基于时间序列的深度学习算法,输入数据为某一时刻之前n帧的相关数据,在本发明某一实施例中,滑动窗口大小为50帧数据,50帧数据中,通过前49帧数据的值作为输入,第50帧数据为输出。每次训练过程都是通过前49帧数据来学习第50帧数据。
在本发明某一实施例中,LSTM层统一采用adam的优化算法进行梯度下降学习(调整权值方法),神经源个数初始值为50个。Dropout层采用0.2(0~1)作为初始数据抛弃率的初始值。算法误差函数采用均方误差计算方法。学习过程中,采用mini-batch方法对模型进行训练,batch采用几十到几百量级,epoch个数根据具体数据集而定。
4、故障诊断模型的应用
本发明所提供的深度学习模型以动量轮的电压、电流、动量轮角速度等动量轮相关采集数据为输入,对动量轮电压数据进行拟合,通过对动量轮电压的预测,检测动量轮电压不稳故障。
本发明通过学习控制分系统姿态数据及星敏器采集参数,对星敏输出的长值故障进行诊断。通过图片发现,星敏在运行过程中出现了短暂的长值故障,长值故障数据能跳过星载软件的有效性判断,造成卫星控制系统故障。通过本发明算法能够有效地对长值故障数据进行判断。
通过不断的训练学习后,形成较稳定的故障诊断模型。基于该模型,研制在轨故障诊断任务,并对其进行在轨维护操作。通过在轨的故障诊断任务,实时检测卫星故障,提升卫星自主健康管理的能力,完善在轨故障诊断机制,减少卫星地面卫星在轨运维的成本与压力。
本发明未详细说明部分属本领域技术人员公知常识。

Claims (14)

1.一种基于深度学习的卫星故障在轨实时故障诊断方法,其特征在于包括下列步骤:
(1)、获取卫星单机和分系统历史观测数据;所述历史观测数据为遥测数据;
(2)、采用卫星单机和分系统历史观测数据构建训练集,对深度学习模型进行训练,得到该单机和分系统的卫星故障深度学习模型;
(3)、采用卫星故障深度学习模型对实时采集的在轨观测数据进行预测,得到下一个帧的预测结果;
(4)、获取下一帧的实际测量数据,将其与预测结果比较,得到预测误差;
(5)、判断预测误差是否连续N次超出预设的范围,是,则根据比较结果进行故障诊断;否则,重复步骤(3)~(5)。
2.根据权利要求1所述的一种基于深度学习的卫星故障在轨实时故障诊断方法,其特征在于所述步骤(3)的具体训练方法为:
(3.1)、建立基于时间序列的深度学习模型,所述基于时间序列的深度学习模型包括第一LSTM层、第一Dropout层、第二LSTM层、第三LSTM层、第二Dropout层和全连接层;
(3.2)、初始化基于时间序列的深度学习模型内各层输入维度、神经元个数、第一Dropout层和第二Dropout层的数据抛弃率;所述输入维度为M×N,其中,M为基于时间序列的深度学习模型滑动窗口大小,N为单机或者分系统的观测数据的种类;滑动窗口大小取为卫星单机和分系统特征的变化周期;神经元个数取为滑动窗口大小的整数倍;
(3.3)、采用基于时间序列的深度学习算法,循环将训练集数据输入到深度学习模型,深度学习模型按照预设的学习率对训练数据进行学习训练,得到各层的权重、偏执和深度学习模型的输出数据,将深度学习模型的输出数据与实际数据进行比较,并统计两者的最小均方误差值,直到执行完预设的循环次数;
(3.4)、当最小均方误差值超过预设的模型误差阈值时,调整学习率,重新执行步骤(3.3)~(3.4),直到最小均方误差值小于预设的模型误差阈值,从而确定基于时间序列的深度学习模型。
3.根据权利要求2所述的一种基于深度学习的卫星故障在轨实时故障诊断方法,其特征在于还包括如下步骤:
(3.5)、将验证集数据输入到步骤(3.4)确定的基于时间序列的深度学习模型,将深度学习模型的输出数据与实际数据进行比较,并统计两者的均方误差值;
(3.6)、当步骤(3.5)得到的均方误差值大于预设的模型误差阈值,则认为步骤(3.4)确定的基于时间序列的深度学习模型过拟合,调整学习率,重新执行步骤(3.3)~(3.5),否则,将步骤(3.4)确定的基于时间序列的深度学习模型确定为最终的深度学习模型。
4.根据权利要求2所述的一种基于深度学习的卫星故障在轨实时故障诊断方法,其特征在于所述学习率采用动态方法进行调整,初始设置学习率为常值,当多次循环均方误差值始终保持在一定的范围内不变时,逐渐降低学习率。
5.根据权利要求2所述的一种基于深度学习的卫星故障在轨实时故障诊断方法,其特征在于所述步骤(3.3)中,深度学习模型采用mini-batch方法对训练数据进行训练。
6.根据权利要求1所述的一种基于深度学习的卫星故障在轨实时故障诊断方法,其特征在于所述卫星单机和分系统观测数据为经过预处理之后的历史遥测数据;预处理的方法为:预处理包括归一化和预编码两种方法,归一化采用最大最小值归一化方法,使参数的值都集中分布在0-1之间,对于枚举型的参数,统一采用one-hot编码方式归一化。
7.根据权利要求2所述的一种基于深度学习的卫星故障在轨实时故障诊断方法,其特征在于所述训练集内的数据均为无故障数据。
8.根据权利要求1所述的一种基于深度学习的卫星故障在轨实时故障诊断系统,其特征在于包括配置管理模块、数据管理模块、算法执行引擎、数据集和已训练模型库;
数据集,得到每个单机或者分系统的历史遥测数据,并对其进行数据抽取和剔野处理,将处理后的历史遥测数据再经过归一化或者预编码,存储至相应的训练数据集或者测试数据集;
配置管理模块,接收外部输入的训练或者测试指令;当指令为训练指令时,设置深度学习模型配置参数,将指定的训练数据集路径发送给数据管理模块;当指令为预测指令时,将指定的测试数据集路径发送给数据管理模块;当指令为测试指令时,发送预测模型选择指令至算法执行引擎;
数据管理模块,根据接收到的训练数据集路径或者测试数据集路径,从数据集库中采用地址追加的方法自动读取训练数据或者测试数据,将训练数据或者测试数据发送给算法执行引擎;
算法执行引擎,当训练时,根据初始化的基于时间序列的深度学习模型参数,调用通用机器学习平台的训练函数,构建卫星故障深度学习模型,循环获取训练数据,并执行通用机器学习平台的训练函数,直到完成训练过程,确定卫星故障深度学习模型,将确定后的卫星故障深度学习模型保存到已训练模型库中;当预测时,根据预测模型选择指令,从已训练模型库挑选已训练模型库,获取训练集数据,并运用已训练模型库进行预测,得到待检测数据,供用户判决。
9.根据权利要求8所述的一种基于深度学习的卫星故障在轨实时故障诊断系统,其特征在于所述深度学习模型为基于时间序列的深度学习模型包括第一LSTM层、第一Dropout层、第二LSTM层、第三LSTM层、第二Dropout层和全连接层。
10.根据权利要求9所述的一种基于深度学习的卫星故障在轨实时故障诊断系统,其特征在于所述深度学习模型具体训练方法为:
(s1)、初始化基于时间序列的深度学习模型内各层输入维度、神经元个数、第一Dropout层和第二Dropout层的数据抛弃率;所述输入维度为M×N,其中,M为基于时间序列的深度学习模型滑动窗口大小,N为单机或者分系统的观测数据的种类;滑动窗口大小取为卫星单机和分系统特征的变化周期;神经元个数取为滑动窗口大小的整数倍;
(s2)、采用基于时间序列的深度学习算法,循环将训练集数据输入到深度学习模型,深度学习模型按照预设的学习率对训练数据进行学习训练,得到各层的权重、偏执和深度学习模型的输出数据,将深度学习模型的输出数据与实际数据进行比较,并统计两者的最小均方误差值,直到执行完预设的循环次数;
(s3)、当最小均方误差值超过预设的模型误差阈值时,调整学习率,重新执行步骤(s2)~(s3),直到最小均方误差值小于预设的模型误差阈值,从而确定基于时间序列的深度学习模型。
11.根据权利要求10所述的一种基于深度学习的卫星故障在轨实时故障诊断系统,其特征在于所述数据集还包括验证集数据。
12.根据权利要求11所述的一种基于深度学习的卫星故障在轨实时故障诊断系统,其特征在于所述深度学习模型具体训练方法还包括如下步骤:
(s4)、将验证集数据输入到步骤(s3)确定的基于时间序列的深度学习模型,将深度学习模型的输出数据与实际数据进行比较,并统计两者的均方误差值;
(s5)、当步骤(s4)得到的均方误差值小于大于预设的模型误差阈值,则认为步骤(s3)确定的基于时间序列的深度学习模型过拟合,调整学习率,重新执行步骤(s2)~(s5),否则,将步骤(s3)确定的基于时间序列的深度学习模型确定为最终的深度学习模型。
13.根据权利要求8所述的一种基于深度学习的卫星故障在轨实时故障诊断系统,其特征在于所述数据抽取方法包括基于具体时间段的数据抽取和基于参数不等式条件判断的数据抽取方法。
14.根据权利要求8所述的一种基于深度学习的卫星故障在轨实时故障诊断系统,其特征在于确定后的卫星故障深度学习模型采用H5格式进行存储。
CN201910148032.9A 2019-02-28 2019-02-28 基于深度学习的卫星故障在轨实时故障诊断方法及系统 Pending CN109934130A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910148032.9A CN109934130A (zh) 2019-02-28 2019-02-28 基于深度学习的卫星故障在轨实时故障诊断方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910148032.9A CN109934130A (zh) 2019-02-28 2019-02-28 基于深度学习的卫星故障在轨实时故障诊断方法及系统

Publications (1)

Publication Number Publication Date
CN109934130A true CN109934130A (zh) 2019-06-25

Family

ID=66986047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910148032.9A Pending CN109934130A (zh) 2019-02-28 2019-02-28 基于深度学习的卫星故障在轨实时故障诊断方法及系统

Country Status (1)

Country Link
CN (1) CN109934130A (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110362437A (zh) * 2019-07-16 2019-10-22 张家港钛思科技有限公司 基于深度学习的嵌入式设备缺陷追踪的自动化方法
CN110391840A (zh) * 2019-09-17 2019-10-29 中国人民解放军国防科技大学 太阳同步轨道卫星遥测参数异常判断方法和系统
CN110505005A (zh) * 2019-08-26 2019-11-26 中国科学院软件研究所 星上数据采集处理系统、卫星监测系统和智能监测系统
CN111007536A (zh) * 2019-12-11 2020-04-14 西安中科天塔科技股份有限公司 一种自动化卫星遥控方法、装置及系统
CN111177916A (zh) * 2019-12-25 2020-05-19 中国航天标准化研究所 一种基于机器深度学习的卫星机电类产品寿命预测方法
CN111177939A (zh) * 2020-01-03 2020-05-19 中国铁路郑州局集团有限公司科学技术研究所 一种基于深度学习的列车空气制动系统制动缸压力预测方法
CN111612029A (zh) * 2020-03-30 2020-09-01 西南电子技术研究所(中国电子科技集团公司第十研究所) 机载电子产品故障预测方法
CN111832171A (zh) * 2020-07-13 2020-10-27 沈阳铁路信号有限责任公司 一种基于数学模型的铁路信号继电器性能状态预测方法
CN111860447A (zh) * 2020-08-01 2020-10-30 西安交通大学 一种准确识别随机相移卫星遥测时序数据模式的方法
CN111860446A (zh) * 2020-08-01 2020-10-30 西安交通大学 一种卫星遥测时序数据未知模式的检测系统与方法
CN111874268A (zh) * 2020-07-22 2020-11-03 中国科学院微小卫星创新研究院 卫星集中式自主健康管理系统
CN111913469A (zh) * 2020-07-20 2020-11-10 北京控制工程研究所 一种航天器控制系统在轨稳定运行能力构建方法
CN112612617A (zh) * 2020-12-30 2021-04-06 东方红卫星移动通信有限公司 卫星遥测数据处理方法、系统及星座状态监控平台
CN112632983A (zh) * 2020-11-10 2021-04-09 北京邮电大学 一种卫星故障的检测方法及装置
CN112631240A (zh) * 2020-12-07 2021-04-09 中国人民解放军63920部队 航天器故障主动检测方法及装置
CN112803893A (zh) * 2021-01-21 2021-05-14 中国科学院微小卫星创新研究院 卫星电源系统健康状态监测系统
CN112949683A (zh) * 2021-01-27 2021-06-11 东方红卫星移动通信有限公司 一种低轨星座智能故障诊断及预警方法及系统
CN112966785A (zh) * 2021-04-14 2021-06-15 赵辉 一种智能化星座状态识别方法和系统
CN113255764A (zh) * 2021-05-21 2021-08-13 池测(上海)数据科技有限公司 利用机器学习检测电化学储能系统故障的方法、系统和装置
CN113961612A (zh) * 2021-07-21 2022-01-21 重庆悦君和信科技有限公司 一种基于深度学习的卫星健康数据综合分析系统及方法
CN114142911A (zh) * 2021-11-25 2022-03-04 中国电子科技集团公司第五十四研究所 一种基于多层传导深度策略算法的复杂星座构型设计方法
CN115289606A (zh) * 2022-07-13 2022-11-04 杭州安脉盛智能技术有限公司 除湿机在线故障诊断方法、系统、服务器及存储介质
CN116068990A (zh) * 2022-12-16 2023-05-05 天津大学 一种星群智能故障诊断交互式虚拟仿真平台验证方法
CN111582385B (zh) * 2020-05-11 2023-10-31 杭州易现先进科技有限公司 Slam质量的量化方法、系统、计算机设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060010352A1 (en) * 2004-07-06 2006-01-12 Intel Corporation System and method to detect errors and predict potential failures
CN202183018U (zh) * 2011-07-28 2012-04-04 航天东方红卫星有限公司 一种基于dsp的神经网络小卫星智能故障诊断装置
CN104268381A (zh) * 2014-09-16 2015-01-07 哈尔滨工业大学 一种基于AdaBoost算法的卫星故障诊断方法
CN105205288A (zh) * 2015-10-28 2015-12-30 中国人民解放军国防科学技术大学 基于模式演化的卫星长期在轨运行状态的预测方法
CN105825271A (zh) * 2016-03-21 2016-08-03 南京邮电大学 基于证据推理的卫星故障诊断与预测方法
CN107909206A (zh) * 2017-11-15 2018-04-13 电子科技大学 一种基于深层结构循环神经网络的pm2.5预测方法
CN108009674A (zh) * 2017-11-27 2018-05-08 上海师范大学 基于cnn和lstm融合神经网络的空气pm2.5浓度预测方法
CN109034368A (zh) * 2018-06-22 2018-12-18 北京航空航天大学 一种基于dnn的复杂设备多重故障诊断方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060010352A1 (en) * 2004-07-06 2006-01-12 Intel Corporation System and method to detect errors and predict potential failures
CN202183018U (zh) * 2011-07-28 2012-04-04 航天东方红卫星有限公司 一种基于dsp的神经网络小卫星智能故障诊断装置
CN104268381A (zh) * 2014-09-16 2015-01-07 哈尔滨工业大学 一种基于AdaBoost算法的卫星故障诊断方法
CN105205288A (zh) * 2015-10-28 2015-12-30 中国人民解放军国防科学技术大学 基于模式演化的卫星长期在轨运行状态的预测方法
CN105825271A (zh) * 2016-03-21 2016-08-03 南京邮电大学 基于证据推理的卫星故障诊断与预测方法
CN107909206A (zh) * 2017-11-15 2018-04-13 电子科技大学 一种基于深层结构循环神经网络的pm2.5预测方法
CN108009674A (zh) * 2017-11-27 2018-05-08 上海师范大学 基于cnn和lstm融合神经网络的空气pm2.5浓度预测方法
CN109034368A (zh) * 2018-06-22 2018-12-18 北京航空航天大学 一种基于dnn的复杂设备多重故障诊断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
许寅: ""基于机器学习方法的航天器在轨状态变异趋势预测算法研究"", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110362437A (zh) * 2019-07-16 2019-10-22 张家港钛思科技有限公司 基于深度学习的嵌入式设备缺陷追踪的自动化方法
CN110505005A (zh) * 2019-08-26 2019-11-26 中国科学院软件研究所 星上数据采集处理系统、卫星监测系统和智能监测系统
CN110391840A (zh) * 2019-09-17 2019-10-29 中国人民解放军国防科技大学 太阳同步轨道卫星遥测参数异常判断方法和系统
CN111007536A (zh) * 2019-12-11 2020-04-14 西安中科天塔科技股份有限公司 一种自动化卫星遥控方法、装置及系统
CN111177916A (zh) * 2019-12-25 2020-05-19 中国航天标准化研究所 一种基于机器深度学习的卫星机电类产品寿命预测方法
CN111177939A (zh) * 2020-01-03 2020-05-19 中国铁路郑州局集团有限公司科学技术研究所 一种基于深度学习的列车空气制动系统制动缸压力预测方法
CN111177939B (zh) * 2020-01-03 2023-04-18 中国铁路郑州局集团有限公司科学技术研究所 一种基于深度学习的列车空气制动系统制动缸压力预测方法
CN111612029A (zh) * 2020-03-30 2020-09-01 西南电子技术研究所(中国电子科技集团公司第十研究所) 机载电子产品故障预测方法
CN111612029B (zh) * 2020-03-30 2023-08-04 西南电子技术研究所(中国电子科技集团公司第十研究所) 机载电子产品故障预测方法
CN111582385B (zh) * 2020-05-11 2023-10-31 杭州易现先进科技有限公司 Slam质量的量化方法、系统、计算机设备和存储介质
CN111832171A (zh) * 2020-07-13 2020-10-27 沈阳铁路信号有限责任公司 一种基于数学模型的铁路信号继电器性能状态预测方法
CN111913469A (zh) * 2020-07-20 2020-11-10 北京控制工程研究所 一种航天器控制系统在轨稳定运行能力构建方法
CN111874268A (zh) * 2020-07-22 2020-11-03 中国科学院微小卫星创新研究院 卫星集中式自主健康管理系统
CN111874268B (zh) * 2020-07-22 2022-02-15 中国科学院微小卫星创新研究院 卫星集中式自主健康管理系统
CN111860446A (zh) * 2020-08-01 2020-10-30 西安交通大学 一种卫星遥测时序数据未知模式的检测系统与方法
CN111860447A (zh) * 2020-08-01 2020-10-30 西安交通大学 一种准确识别随机相移卫星遥测时序数据模式的方法
CN112632983A (zh) * 2020-11-10 2021-04-09 北京邮电大学 一种卫星故障的检测方法及装置
CN112631240A (zh) * 2020-12-07 2021-04-09 中国人民解放军63920部队 航天器故障主动检测方法及装置
CN112612617B (zh) * 2020-12-30 2023-06-20 东方红卫星移动通信有限公司 卫星遥测数据处理方法、系统及星座状态监控平台
CN112612617A (zh) * 2020-12-30 2021-04-06 东方红卫星移动通信有限公司 卫星遥测数据处理方法、系统及星座状态监控平台
CN112803893A (zh) * 2021-01-21 2021-05-14 中国科学院微小卫星创新研究院 卫星电源系统健康状态监测系统
CN112949683A (zh) * 2021-01-27 2021-06-11 东方红卫星移动通信有限公司 一种低轨星座智能故障诊断及预警方法及系统
CN112966785A (zh) * 2021-04-14 2021-06-15 赵辉 一种智能化星座状态识别方法和系统
CN113255764A (zh) * 2021-05-21 2021-08-13 池测(上海)数据科技有限公司 利用机器学习检测电化学储能系统故障的方法、系统和装置
CN113961612A (zh) * 2021-07-21 2022-01-21 重庆悦君和信科技有限公司 一种基于深度学习的卫星健康数据综合分析系统及方法
CN114142911A (zh) * 2021-11-25 2022-03-04 中国电子科技集团公司第五十四研究所 一种基于多层传导深度策略算法的复杂星座构型设计方法
CN115289606A (zh) * 2022-07-13 2022-11-04 杭州安脉盛智能技术有限公司 除湿机在线故障诊断方法、系统、服务器及存储介质
CN116068990A (zh) * 2022-12-16 2023-05-05 天津大学 一种星群智能故障诊断交互式虚拟仿真平台验证方法
CN116068990B (zh) * 2022-12-16 2023-11-10 天津大学 一种星群智能故障诊断交互式虚拟仿真平台验证方法

Similar Documents

Publication Publication Date Title
CN109934130A (zh) 基于深度学习的卫星故障在轨实时故障诊断方法及系统
CN109141847B (zh) 一种基于mscnn深度学习的飞机系统故障诊断方法
CN111460728B (zh) 一种工业设备剩余寿命预测方法、装置、存储介质及设备
CN116625438B (zh) 燃气管网安全在线监测系统及其方法
CN111274737A (zh) 一种机械设备剩余使用寿命预测方法及系统
CN112763967B (zh) 一种基于BiGRU的智能电表计量模块故障预测与诊断方法
CN116467674B (zh) 一种配电网智能故障处理融合更新系统及其方法
CN110321940A (zh) 飞行器遥测数据特征提取与分级分类方法及装置
CN109298633A (zh) 基于自适应分块非负矩阵分解的化工生产过程故障监测方法
CN115455746B (zh) 一种核动力装置运行监测数据异常检测与校正一体化方法
CN108959498A (zh) 一种用于健康监测的大数据处理平台及其设计方法
CN112504682A (zh) 基于粒子群优化算法的底盘发动机故障诊断方法及系统
CN117390407B (zh) 变电站设备的故障识别方法、系统、介质和设备
CN114897103A (zh) 一种基于近邻成分损失优化多尺度卷积神经网络的工业过程故障诊断方法
CN117312972A (zh) 一种刮板输送机减速器健康状态识别方法
CN116415485A (zh) 一种基于动态分布自适应的多源域迁移学习的剩余使用寿命预测方法
CN106569982A (zh) 带奇异点检测补偿的gpr在线软测量方法及系统
CN115048873B (zh) 一种用于飞机发动机的剩余使用寿命预测系统
CN116738332A (zh) 一种结合注意力机制的飞行器多尺度信号分类识别与故障检测方法
US20230022100A1 (en) Prognostic and health management system for system management and method thereof
CN113126489B (zh) 一种基于cnn-gru-binn的重型燃气轮机控制系统智能bit设计方法
CN114626482A (zh) 基于深度学习的有源数字阵列雷达实时故障诊断方法
Cui et al. Prediction of Aeroengine Remaining Useful Life Based on SE-BiLSTM
Zheng et al. Research on predicting remaining useful life of equipment based on health index
Wang et al. Complex equipment diagnostic reasoning based on neural network algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190625