CN109933876A - 一种基于广义气动力的非定常气动力降阶方法 - Google Patents

一种基于广义气动力的非定常气动力降阶方法 Download PDF

Info

Publication number
CN109933876A
CN109933876A CN201910158106.7A CN201910158106A CN109933876A CN 109933876 A CN109933876 A CN 109933876A CN 201910158106 A CN201910158106 A CN 201910158106A CN 109933876 A CN109933876 A CN 109933876A
Authority
CN
China
Prior art keywords
aerodynamic force
aerodynamic
point
order
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910158106.7A
Other languages
English (en)
Other versions
CN109933876B (zh
Inventor
张桂玮
杨智春
宋巧治
谷迎松
陈宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910158106.7A priority Critical patent/CN109933876B/zh
Publication of CN109933876A publication Critical patent/CN109933876A/zh
Application granted granted Critical
Publication of CN109933876B publication Critical patent/CN109933876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明提出一种基于广义气动力的非定常气动力降阶方法,首先通过坐标变换将模态坐标下的广义气动力转换为物理坐标下结构有限元模型全部节点上分布的非定常气动力,然后通过曲面样条插值将分布的非定常气动力进行降阶,等效集中到有限个加载点处从而获得频域气动力降阶模型,最后使用最小状态法将频域降阶气动力模型拟合到时域。本发明在尽量减少降阶气动力模型阶数的基础上,提高了降阶气动力模型的精度,从而降低了地面颤振模拟试验中激振力控制系统设计的难度,其次借助CFD跨声速非定常气动力计算方法,该降阶方法可用于跨音速颤振分析中。

Description

一种基于广义气动力的非定常气动力降阶方法
技术领域
本发明设计属于飞行器气动弹性试验技术领域,具体为一种基于广义气动力的非定常气动力降阶方法。
背景技术
颤振是结构在气动力、弹性力和惯性力耦合作用下,发生的一种振幅不衰减的自激振动。目前,研究飞行器结构颤振问题的主要途径为理论计算和颤振试验。
理论计算虽然节省时间和经费,但是建立分析对象的数学模型时,在结构、气动力等方面需要引入一些假设,这些假设可能与真实情况有较大的偏差。
颤振试验分为风洞颤振试验和飞行颤振试验:风洞颤振试验直接考虑气动力的作用,但要对试验模型进行缩比设计,难以完全模拟实物,费用高且有一定风险;飞行颤振试验可以完全考虑试验对象的真实工作环境,但受试验条件的限制,难以获得准确的颤振边界,且费用昂贵、风险大。
地面颤振模拟试验则是一种新兴的颤振试验研究方法,它采用真实的飞行器结构作为试验对象,通过激振器产生的激振力来模拟结构在给定速度下受到的非定常气动力,在地面(风洞外)可以获得真实结构的气动弹性特性。在用激振器进行气动力模拟加载时,由于实际加载到结构上的气动力是通过数量有限的激振器加载的,所以在建立用于地面颤振模拟试验的气动力计算模块时,需要进行两个重要的步骤:
1)将气动面上分布的气动力进行降阶处理,从而利用有限点上的激励力来等效模拟分布的气动力;
2)将计算得到的频域气动力拟合到时域。
从公开的文献中可以看出,地面颤振模拟试验中气动力降阶方法的最新研究进展是:
Zeng等在文献(ZENG J,KINGSBURY D,RITZ E,et al.GVT-based ground fluttertest without wind tunnel[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS AdaptiveStructures Conference 13t.2011:1942.)中通过面样条插值对气动力进行降阶,在试验气动力近似上,提出了以气动力降阶前后,结构的颤振速度和颤振频率的误差最小为目标的激振点和拾振点位置优化方法,得到的气动力降阶模型的精度很好,但是使用气动力降阶后模型的颤振特性与降阶前一致作为激振点和拾振点的选取目标,与地面颤振模拟试验的初衷,即探索模型的颤振边界,有所矛盾,而且先将气动力模型拟合到时域再降阶,拟合过程会耗费大量时间。
胡巍等在文献(胡巍,杨智春,谷迎松.带操纵面机翼气动弹性地面试验仿真系统中的气动力降阶方法[J].西北工业大学学报,2013,31(5):810-815.)中对带操纵面的机翼气动力降阶问题,提出将气动力模型先进行频域降阶、再时域拟合的方法,分别确定主翼面、操纵面上激振点和拾振点的位置,从而获得气动力降阶模型。先对频域气动力影响系数矩阵A(ω)进行降阶,可以降低矩阵的维数,在此基础上再进行时域拟合,可减少拟合过程耗费的时间,提高计算效率。
吴志刚等在文献(许云涛,吴志刚,杨超.地面颤振模拟试验中的非定常气动力模拟[J].航空学报,2012,33(11):1947-1957.)和文献(WU Z,MA C,Yang C.New approach tothe ground flutter simulation test[J].Journal of Aircraft,2016,53(5):1578-1580.)中提出在气动力降阶时,以优化颤振关键振型为目标函数对进行激振点拾振点位置优化,但是使用数量较少的激振点和拾振点组合得到的频域降阶气动力模型对应的广义气动力矩阵与降阶前原始广义气动力矩阵可能相差较大,会导致降阶前后结构的颤振边界区别较大。
已有气动力降阶方法都是基于频域气动力计算理论如偶极子格网法(DLM),ZONA6,ZONA7等,在亚音速和超音速范围内具有很高的精度和计算效率,但是对于跨音速颤振问题,由于没有相应的跨音速频域气动力计算方法,上述气动力降阶方法将不再适用。随着计算流体力学技术的快速发展,CFD/CSD耦合求解方法成为跨音速颤振求解的一种有效手段,可以考虑跨音速范围内流动的非线性特别是跨音速激波的影响,因此具有较高的准确度。但这种方法计算量大,耗时很长,限制了它在地面颤振模拟试验中的使用。文献(贺顺,杨智春,谷迎松.机翼跨音速颤振特性的频域分析.中国科学:物理学力学天文学,2014,44:285–292。)提出了一种机翼跨音速颤振频域计算方法,首先使机翼按照其某阶模态做微幅简谐运动,采用CFD方法计算出机翼的时域跨音速气动力,再通过模态变换获得时域模态气动力系数,进而计算出给定马赫数下的跨音速广义气动力矩阵,从而可应用频域颤振分析方法求解出机翼的颤振速度及颤振频率;ZAERO软件中的ZTAIC方法即等价片条法,输入翼型剖面的定常压力分布,然后使用等价片条理论计算跨声速小扰动方程,得到非定常气动力系数,再用该系数修正含激波效应的非定常压力,反复迭代后也得到考虑跨声速激波效应的广义气动力影响系数矩阵。
发明内容
在地面颤振模拟试验中,通过激振器输出的激振力来模拟分布式的气动力。理论上讲,为了更精确地描述气动面上分布式的气动力,我们都希望使用更多的激振器,但如果激振器数目过多,激振力控制系统的设计难度将大大增加,因此在实际颤振试验中,希望在满足试验精度的前提下,尽量减少气动力的阶数(这样,对应的激振器的数目就会相应减少)。
本发明的目的就是对结构的非定常气动力模型进行降阶,提出一种基于广义气动力的气动力降阶方法,内容包括:坐标变换,插值气动力降阶和气动力时域拟合。首先通过坐标变换将模态坐标下的广义气动力变成物理坐标下有限元模型节点上分布的非定常气动力,然后通过曲面样条插值将分布的非定常气动力进行降阶,等效到有限个加载点处从而获得频域气动力降阶模型,最后使用最小状态法将频域气动力降阶模型拟合到时域。
本发明主要用于地面颤振模拟试验及其仿真中,实现气动力实时计算,具体是通过坐标变换将模态坐标下的广义气动力变成物理坐标下有限元模型节点上分布的非定常气动力,并通过曲面样条插值将分布的非定常气动力进行降阶,等效到有限个加载点处,然后使用最小状态法将降阶气动力模型转换到时域。本发明的优点在于:1)借助CFD跨声速非定常气动力方法,使该降阶方法适用于跨音速颤振分析;2)在尽量减少降阶气动力模型阶数的基础上,提高降阶气动力模型的精度,从而降低激振力控制系统设计的难度。
本发明的技术方案为:
所述一种基于广义气动力的非定常气动力降阶方法,其特征在于:包括以下步骤:
步骤1:针对需要进行地面颤振模拟试验的机翼,建立机翼的有限元模型,进行模态分析,得到机翼有限元模型的质量矩阵M以及机翼的模态振型矩阵Φ,并在计算流体力学软件中计算该机翼在给定马赫数下的广义气动力矩阵;
步骤2:坐标变换:
在得到广义气动力矩阵后,根据以下公式
Qaa=MΦQhh·ΦTM
得到物理坐标下的气动力影响系数矩阵Qaa;其中Qhh为步骤1得到的机翼在给定马赫数下的广义气动力矩阵;
步骤3:面样条插值气动力降阶:
根据机翼有限元模型上设定的激振点和拾振点数目,对机翼有限元模型上的激振点及拾振点的位置进行优化,使通过激振点和拾振点表示的气动节点插值振型与气动节点原始振型之间实现最优逼近;
得到机翼有限元模型上的激振点及拾振点位置后,采用插值方法实现从拾振点的位移得到全部结构节点位移的插值变换以及从全部结构节点的气动力到激振点作用力的插值变换;其中从拾振点的位移得到全部结构节点位移的插值变换关系为
x=[Gs]{xs}NS×1
其中x为全部结构节点位移,xs为拾振点的位移,NS为拾振点数目,Gs为位移插值矩阵;从全部结构节点的气动力到激振点作用力的插值变换关系为:
{fs}NA×1=[Gf]{f}
f为全部结构节点上的气动力,fs为激振点上的作用力,NA为激振点数目,Gf为力插值矩阵;进而得到降阶后的气动力影响系数矩阵为
[Qs]NA×NS=[Gf][Qaa][Gs]
步骤4:将气动力拟合到时域:
采用最小状态法将降阶后的气动力影响系数矩阵Qs转换到时域,得到降阶的时域气动力:
其中转换到时域的气动力影响系数矩阵为:
式中,s是拉普拉斯变量,b是机翼的半弦长,V是来流速度,I为单位阵,A0,A1, A2,D,R和E是通过最小状态法求得的系数矩阵;
根据转换到时域的气动力影响系数矩阵,得到降阶的时域气动力为
其中q为动压。
进一步的优选方案,所述一种基于广义气动力的非定常气动力降阶方法,其特征在于:步骤3中采用平面薄板样条插值方法实现从拾振点的位移得到全部结构节点位移的插值变换以及从全部结构节点的气动力到激振点作用力的插值变换。
有益效果
本发明提出的基于广义气动力的气动力降阶方法,优点在于在计算广义气动力时,结构有限元模型与气动力模型之间的耦合过程使用了有限元模型的全部节点运动信息,以此广义气动力矩阵为输入,通过坐标变换和样条插值方法实现了气动力降阶过程,避免了已有方法先在物理坐标下对气动力影响系数矩阵降阶导致的降阶气动力模型的广义气动力与降阶前区别较大而引起的系统颤振边界差别较大的问题,而且使得在尽量减少降阶气动力模型阶数的基础上,提高降阶了气动力降阶模型的精度,从而降低了地面颤振模拟试验中激振力控制系统设计的难度。对于地面颤振模拟试验中跨声速气动力降阶问题,通过CFD跨声速气动力计算方法或者ZAERO的ZTAIC方法计算得到广义气动力矩阵后,使用本发明提出的气动力降阶方法可以得到用于地面颤振模拟试验的跨音速气动力降阶模型。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1舵面模型示意图;
图2舵面模型有限元网格;
图3 4激振点/4拾振点布置图;
图4降阶前后广义气动力矩阵对比图。
具体实施方式
下面详细描述本发明的实施例,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本发明涉及一种基于广义气动力的气动力降阶方法,内容包括:坐标变换,插值气动力降阶和气动力时域拟合。首先通过坐标变换将模态坐标下的广义气动力变成物理坐标下有限元模型节点上分布的非定常气动力,然后通过曲面样条插值将分布的非定常气动力进行降阶,等效到有限个加载点处从而获得频域气动力降阶模型,最后使用最小状态法将频域气动力降阶模型拟合到时域。
步骤1:针对需要进行地面颤振模拟试验的机翼,建立机翼的有限元模型,进行模态分析,得到机翼有限元模型的质量矩阵M以及机翼的模态振型矩阵Φ,并在计算流体力学软件中使用文献(贺顺,杨智春,谷迎松.机翼跨音速颤振特性的频域分析. 中国科学:物理学力学天文学,2014,44:285–292。)计算该机翼在给定马赫数下的广义气动力矩阵。
步骤2:在得到广义气动力矩阵后,推导物理坐标下的气动力影响系数矩阵:
F=q·Qhh·q (1)
其中Qhh为广义气动力矩阵,q为动压,q为模态坐标,上式以结构的模态位移为输入,模态气动力向量为输出。
当结构的模态振型矩阵Φ按质量矩阵M归一化后
ΦTMΦ=I (2)
物理位移和模态位移有如下关系
x=Φq (3)
在(3)式两端左乘ΦTM,可得物理位移和模态位移的关系
q=ΦTMx (4)
将物理力变换为模态力
F=ΦTf (5)
进行模态截断后,振型Φ不是方阵,ΦT不能直接求逆,由于ΦT为行满秩,求得的广义逆为ΦT的右逆,显然我们需要的是ΦT的左逆。
将(5)式写成矩阵形式
因为振型矩阵按质量矩阵M归一化,由(2)式,可得
如果令将其带入(6)式
所以由模态力得到物理力的变换过程如下
将(4)式和(9)式带入(1)式,可得
f=q·MΦQhh·ΦTMx=q·Qaax (10)
式中:Qaa=MΦQhh·ΦTM为物理坐标下有限元模型全部节点(a-set集)的气动力影响系数矩阵。
即在得到广义气动力矩阵后,可以根据公式
Qaa=MΦ·Qhh·ΦTM
得到物理坐标下的气动力影响系数矩阵Qaa;其中Qhh为步骤1得到的机翼在给定马赫数下的广义气动力矩阵。
步骤3:面样条插值气动力降阶:
在确定激振点和拾振点的数目后,选择不同的激振点/拾振点位置时,得到的系统气弹稳定性边界差别很大,且同降阶前的系统气弹稳定性边界相比也有较大的差别,所以需要对激振点/传感点的位置进行优化。
文献(许云涛,吴志刚,杨超.地面颤振模拟试验中的非定常气动力模拟[J].航空学报,2012,33(11):1947-1957.)中提出,降阶气动力与真实气动力的等效逼近,可以转化为使用激振点/拾振点表示的气动节点插值振型与气动节点原始振型之间的最优逼近,定义激振点/拾振点位置优化的目标函数为
式中ηj为j阶模态对颤振的贡献量,为气动节点原始振型Φa的元素,为使用激振点/拾振点插值得到的气动节点新振型Φ'a的元素,NM为模态截断阶数。obj越小,表明气动力模拟精度越高。
通过对机翼有限元模型上的激振点及拾振点的位置进行优化,使通过激振点和拾振点表示的气动节点插值振型与气动节点原始振型之间实现最优逼近。
得到机翼有限元模型上的激振点及拾振点位置后,通过样条插值方法,将气动力影响系数矩阵Qaa插值到少数的激振点和拾振点后处完成气动力降阶:
这里采用平面薄板样条插值方法(Thin-plate smoothing spline)来实现上述插值,实现实现从拾振点的位移得到全部结构节点位移的插值变换以及从全部结构节点的气动力到激振点作用力的插值变换。
其中从拾振点的位移得到全部结构节点位移的插值变换关系为
x=[Gs]{xs}NS×1 (12)
其中x为全部结构节点位移,xs为拾振点的位移,NS为拾振点数目,Gs为位移插值矩阵;从全部结构节点的气动力到激振点作用力的插值变换关系为:
{fs}NA×1=[Gf]{f} (13)
f为全部结构节点上的气动力,fs为激振点上的作用力,NA为激振点数目,Gf为力插值矩阵;进而得到降阶后的气动力影响系数矩阵为
[Qs]NA×NS=[Gf][Qaa][Gs] (14)
步骤4:将气动力拟合到时域:
采用最小状态法将降阶后的气动力影响系数矩阵Qs转换到时域,得到降阶的时域气动力:
其中转换到时域的气动力影响系数矩阵为:
式中,s是拉普拉斯变量,b是机翼的半弦长,V是来流速度,I为单位阵,A0,A1, A2,D,R和E是通过最小状态法求得的系数矩阵;
根据转换到时域的气动力影响系数矩阵,得到降阶的时域气动力为
其中q为动压。
下面对图1所示的舵面模型进行气动力降阶处理,气弹分析基于Nastran的SOL145进行,舵面模型采用根部固支的约束方式,材料为铝,E=70Gpa,ν=0.3,ρ=2750kg/m3,对舵面划分结构网格如图2所示。
设定气弹分析的条件为:空气密度ρ=1.226kg/m3,马赫数Ma=1.2314,减缩频率k=1e-7、0.05、0.1、0.15、0.3、0.6、1.0和2.0。半弦长b=0.316m。气动力采用ZONA51,计算各减缩频率下的广义气动力矩阵后,计算物理坐标下对应的气动力影响系数矩阵。
使用面样条插值方法,对第一步得到的气动力影响系数矩阵进行降阶,在舵面上各布置4激振点/4拾振点(激振点和拾振点采用对位布置),通过遗传算法优化激振点/ 拾振点位置,得到的激振点/拾振点位置如图3所示。
分别将降阶前后气动力矩阵各元素对减缩频率k值绘制散点图,可以定性验证降阶气动力模型的精度。降阶前后,广义气动力矩阵对比图如图4所示,图中各子图的标题表示对应的元素在广义气动力矩阵中的位置,横坐标代表实部,纵坐标代表虚部。其中o代表选择全部结构节点插值得到的广义气动力影响系数矩阵,即降阶前的Qhh, x代表使用专利中提出的降阶气动力方法得到的广义气动力影响系数矩阵,☆为使用文献(许云涛,吴志刚,杨超.地面颤振模拟试验中的非定常气动力模拟[J].航空学报, 2012,33(11):1947-1957.)气动力降阶方法得到的广义气动力影响系数矩阵。可以看出,对于前两阶广义气动力,本专利中提出的方法得到的降阶气动力模型的广义气动力矩阵更接近原始广义气动力矩阵,这是因为,与方法文献(许云涛,吴志刚,杨超.地面颤振模拟试验中的非定常气动力模拟[J].航空学报,2012,33(11):1947-1957.)中方法相比,新方法在气动力降阶前计算广义气动力矩阵时使用全部结构节点与气动节点耦合插值得到广义气动力矩阵,即使用原始广义气动力矩阵Qhh进行气动力降阶,而使用文献(许云涛,吴志刚,杨超.地面颤振模拟试验中的非定常气动力模拟[J].航空学报, 2012,33(11):1947-1957.)中方法得到的Qhh为使用少数的插值节点(4个激振点/拾振点)与气动节点耦合得到的。
最后将降阶气动力模型拟合到时域,计算模型的颤振特性。降阶前后的颤振速度比较如表1所示:
表1舵面的颤振特性
由表1的结果知,采用本专利中提出的方法,气动力降阶前后舵面的颤振速度误差更小,说明了在保证试验精度的前提下,有效减少激振点数目,满足地面颤振模拟试验的要求。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (2)

1.一种基于广义气动力的非定常气动力降阶方法,其特征在于:包括以下步骤:
步骤1:针对需要进行地面颤振模拟试验的机翼,建立机翼的有限元模型,进行模态分析,得到机翼有限元模型的质量矩阵M以及机翼的模态振型矩阵Φ,并在计算流体力学软件中计算该机翼在给定马赫数下的广义气动力矩阵;
步骤2:坐标变换:
在得到广义气动力矩阵后,根据以下公式
Qaa=MΦ·Qhh·ΦTM
得到物理坐标下的气动力影响系数矩阵Qaa;其中Qhh为步骤1得到的机翼在给定马赫数下的广义气动力矩阵;
步骤3:面样条插值气动力降阶:
根据机翼有限元模型上设定的激振点和拾振点数目,对机翼有限元模型上的激振点及拾振点的位置进行优化,使通过激振点和拾振点表示的气动节点插值振型与气动节点原始振型之间实现最优逼近;
得到机翼有限元模型上的激振点及拾振点位置后,采用插值方法实现从拾振点的位移得到全部结构节点位移的插值变换以及从全部结构节点的气动力到激振点作用力的插值变换;其中从拾振点的位移得到全部结构节点位移的插值变换关系为
x=[Gs]{xs}NS×1
其中x为全部结构节点位移,xs为拾振点的位移,NS为拾振点数目,Gs为位移插值矩阵;从全部结构节点的气动力到激振点作用力的插值变换关系为:
{fs}NA×1=[Gf]{f}
f为全部结构节点上的气动力,fs为激振点上的作用力,NA为激振点数目,Gf为力插值矩阵;进而得到降阶后的气动力影响系数矩阵为
[Qs]NA×NS=[Gf][Qaa][Gs]
步骤4:将气动力拟合到时域:
采用最小状态法将降阶后的气动力影响系数矩阵Qs转换到时域,得到降阶的时域气动力:
其中转换到时域的气动力影响系数矩阵为:
式中,s是拉普拉斯变量,b是机翼的半弦长,V是来流速度,I为单位阵,A0,A1,A2,D,R和E是通过最小状态法求得的系数矩阵;
根据转换到时域的气动力影响系数矩阵,得到降阶的时域气动力为
其中q为动压。
2.根据权利要求1所述一种基于广义气动力的非定常气动力降阶方法,其特征在于:步骤3中采用平面薄板样条插值方法实现从拾振点的位移得到全部结构节点位移的插值变换以及从全部结构节点的气动力到激振点作用力的插值变换。
CN201910158106.7A 2019-03-03 2019-03-03 一种基于广义气动力的非定常气动力降阶方法 Active CN109933876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910158106.7A CN109933876B (zh) 2019-03-03 2019-03-03 一种基于广义气动力的非定常气动力降阶方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910158106.7A CN109933876B (zh) 2019-03-03 2019-03-03 一种基于广义气动力的非定常气动力降阶方法

Publications (2)

Publication Number Publication Date
CN109933876A true CN109933876A (zh) 2019-06-25
CN109933876B CN109933876B (zh) 2022-09-09

Family

ID=66986154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910158106.7A Active CN109933876B (zh) 2019-03-03 2019-03-03 一种基于广义气动力的非定常气动力降阶方法

Country Status (1)

Country Link
CN (1) CN109933876B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110807222A (zh) * 2019-11-06 2020-02-18 苏交科集团股份有限公司 一种主梁断面静气动力系数的快速识别方法
CN110949689A (zh) * 2019-12-06 2020-04-03 江西洪都航空工业集团有限责任公司 一种飞机全动平尾旋转模态测量方法
CN111324991A (zh) * 2019-12-10 2020-06-23 中国飞机强度研究所 一种地面颤振试验中气动力模型的重构方法
CN111797558A (zh) * 2020-07-07 2020-10-20 中国飞机强度研究所 一种颤振边界测试方法
CN111881629A (zh) * 2020-06-19 2020-11-03 西北工业大学 一种气动热-结构热传导耦合非线性降阶模型方法
CN112182737A (zh) * 2020-08-10 2021-01-05 北京航空航天大学 一种基于模态法的并行化高精度颤振计算方法
CN113218615A (zh) * 2021-06-03 2021-08-06 哈尔滨工业大学 一种分布式气动力与有限激振点激振载荷的等效方法
CN114117950A (zh) * 2021-10-28 2022-03-01 中国运载火箭技术研究院 一种基于做功原理的天地往返飞行器颤振判断方法
CN115422654A (zh) * 2022-08-21 2022-12-02 西北工业大学 基于cfd/csd技术的跨/超声速飞行器高效高精度颤振时域分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090099796A1 (en) * 2007-06-15 2009-04-16 Ming-Ta Yang Aeroelastic model using the principal shapes of modes (amps)
WO2010128187A1 (es) * 2009-03-31 2010-11-11 Airbus Operations, S.L. Método y sistema para un cálculo rápido de las fuerzas aerodinámicas en una aeronave en condiciones transónicas
CN102364477A (zh) * 2011-09-22 2012-02-29 西北工业大学 一种无附加气动阻尼的飞行器颤振特性分析方法
CN104443427A (zh) * 2014-10-15 2015-03-25 西北工业大学 飞行器颤振预测系统及方法
CN105843073A (zh) * 2016-03-23 2016-08-10 北京航空航天大学 一种基于气动力不确定降阶的机翼结构气动弹性稳定性分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090099796A1 (en) * 2007-06-15 2009-04-16 Ming-Ta Yang Aeroelastic model using the principal shapes of modes (amps)
WO2010128187A1 (es) * 2009-03-31 2010-11-11 Airbus Operations, S.L. Método y sistema para un cálculo rápido de las fuerzas aerodinámicas en una aeronave en condiciones transónicas
CN102364477A (zh) * 2011-09-22 2012-02-29 西北工业大学 一种无附加气动阻尼的飞行器颤振特性分析方法
CN104443427A (zh) * 2014-10-15 2015-03-25 西北工业大学 飞行器颤振预测系统及方法
CN105843073A (zh) * 2016-03-23 2016-08-10 北京航空航天大学 一种基于气动力不确定降阶的机翼结构气动弹性稳定性分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GARETH J. BENNETT等: "Noise Characterization of a Full-Scale Nose Landing Gear", 《JOURNAL OF AIRCRAFT》 *
张伟伟等: "基于气动力降阶模型的跨音速气动弹性稳定性分析", 《计算力学学报》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110807222A (zh) * 2019-11-06 2020-02-18 苏交科集团股份有限公司 一种主梁断面静气动力系数的快速识别方法
CN110949689B (zh) * 2019-12-06 2022-07-22 江西洪都航空工业集团有限责任公司 一种飞机全动平尾旋转模态测量方法
CN110949689A (zh) * 2019-12-06 2020-04-03 江西洪都航空工业集团有限责任公司 一种飞机全动平尾旋转模态测量方法
CN111324991A (zh) * 2019-12-10 2020-06-23 中国飞机强度研究所 一种地面颤振试验中气动力模型的重构方法
CN111324991B (zh) * 2019-12-10 2024-01-12 中国飞机强度研究所 一种地面颤振试验中气动力模型的重构方法
CN111881629A (zh) * 2020-06-19 2020-11-03 西北工业大学 一种气动热-结构热传导耦合非线性降阶模型方法
CN111881629B (zh) * 2020-06-19 2022-11-08 西北工业大学 一种气动热-结构热传导耦合非线性降阶模型方法
CN111797558A (zh) * 2020-07-07 2020-10-20 中国飞机强度研究所 一种颤振边界测试方法
CN112182737B (zh) * 2020-08-10 2022-05-03 北京航空航天大学 一种基于模态法的并行化高精度颤振计算方法
CN112182737A (zh) * 2020-08-10 2021-01-05 北京航空航天大学 一种基于模态法的并行化高精度颤振计算方法
CN113218615A (zh) * 2021-06-03 2021-08-06 哈尔滨工业大学 一种分布式气动力与有限激振点激振载荷的等效方法
CN114117950A (zh) * 2021-10-28 2022-03-01 中国运载火箭技术研究院 一种基于做功原理的天地往返飞行器颤振判断方法
CN114117950B (zh) * 2021-10-28 2022-09-06 中国运载火箭技术研究院 一种基于做功原理的天地往返飞行器颤振判断方法
CN115422654A (zh) * 2022-08-21 2022-12-02 西北工业大学 基于cfd/csd技术的跨/超声速飞行器高效高精度颤振时域分析方法

Also Published As

Publication number Publication date
CN109933876B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN109933876A (zh) 一种基于广义气动力的非定常气动力降阶方法
CN110610065B (zh) 基于混合动网格技术的飞行器多体分离cfd仿真方法及系统
Smith et al. CFD-based analysis of nonlinear aeroelastic behavior of high-aspect ratio wings
CN107895069A (zh) 一种基于复合材料结构的流固耦合数值预测方法
Abbas et al. Numerical calculation of effect of elastic deformation on aerodynamic characteristics of a rocket
CN113868771B (zh) 一种考虑结构和气动非线性的飞行动力学建模方法
Maraniello et al. State-space realizations and internal balancing in potential-flow aerodynamics with arbitrary kinematics
Tian et al. Dynamic analysis of an aeroelastic airfoil with freeplay nonlinearity by precise integration method based on Padé approximation
CN112414668B (zh) 一种风洞试验数据静气弹修正方法、装置、设备及介质
CN112001109A (zh) 再生核粒子算法实现结构冲击动力学仿真方法
Mavriplis et al. Recent advances in high-fidelity multidisciplinary adjoint-based optimization with the NSU3D flow solver framework
Scholten et al. An uncoupled method for fluid-structure interaction analysis with application to aerostructural design
Yang et al. Static aeroelastic modeling and rapid analysis of wings in transonic flow
Shubov Solvability of reduced Possio integral equation in theoretical aeroelasticity
Vedam et al. Evaluation of Gradient and Curvature-Based Adaptive Mesh Refinement for Viscous Transonic Flows
Duan et al. An efficient method for nonlinear flutter of the flexible wing with a high aspect ratio
Xiao et al. Wing Flutter Simulations Using an Aeroelastic Solver Based on the Predictor—Corrector Scheme
Ritter et al. Collaborative Pazy Wing Analyses for the Third Aeroelastic Prediction Workshop
Melville et al. Aeroelastic tailoring for gust-energy extraction
Schulze et al. High fidelity aeroservoelastic model reduction methods
Chae et al. Efficient Coupled Time Integration Methods for Transonic Aeroelastic Analysis
CN116956782B (zh) 非线性颤振分析方法
Wendland Hybrid methods for fluid-structure-interaction problems in aeroelasticity
Melville et al. An efficient model for aeroelastic tailoring of aircraft wings under gust loads
Monteiro et al. Coupled framework for limit-cycle oscillations modeling based on leading-edge vortex shedding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant