CN109885918A - 激光冲击表面粗糙度的预测方法 - Google Patents

激光冲击表面粗糙度的预测方法 Download PDF

Info

Publication number
CN109885918A
CN109885918A CN201910108452.4A CN201910108452A CN109885918A CN 109885918 A CN109885918 A CN 109885918A CN 201910108452 A CN201910108452 A CN 201910108452A CN 109885918 A CN109885918 A CN 109885918A
Authority
CN
China
Prior art keywords
surface roughness
laser
impact
prediction
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910108452.4A
Other languages
English (en)
Inventor
张永康
张驰
李毓洲
吴清源
李佳敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Radium Laser Technology Co Ltd
Original Assignee
Guangdong Radium Laser Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Radium Laser Technology Co Ltd filed Critical Guangdong Radium Laser Technology Co Ltd
Priority to CN201910108452.4A priority Critical patent/CN109885918A/zh
Publication of CN109885918A publication Critical patent/CN109885918A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了激光冲击表面粗糙度的预测方法,属于激光冲击领域,包括步骤:从激光器的计算机中导出冲击过程中实时测量的激光能量空间分布数据图,并对图像进行预处理;获取激光喷丸处理前、后的同一试验块表面粗糙度的测量值;依次重复上述两个步骤多次,将每次冲击前、后试验块的表面粗糙度以及每次冲击时经预处理的数据图像输入计算机,训练粗糙度预测模型;使用测试样本验证预测模型的准确性。通过以实时测量的激光能量空间分布的数据图和表面粗糙度的原始数据预测冲击后的表面粗糙度,避免因为激光束实际冲击情况与理想情况不同而导致对预测数据的不准确,避免因激光束能量异常导致的表面粗糙度变化异常,可以显著提高冲击后零件的合格率。

Description

激光冲击表面粗糙度的预测方法
技术领域
本发明涉及激光冲击技术领域,特别是涉及一种激光冲击表面粗糙度的预测方法。
背景技术
航空发动机是一种高度复杂和精密的热力机械,作为飞机的心脏,他直接影响飞机的性能、可靠性及经济性,是一个国家科技、工业和国防实力的重要体现。激光冲击强化能够很有效的提高关键结构件的使用寿命和可靠性。但激光冲击强化之后对零件表面的粗糙度会产出一定影响,并且,激光冲击强化后表面粗糙度超差,将很难二次冲击或其他修补方式达到设计要求,对于叶片精密的零件,表面粗糙度直接影响其气动性能,从而导致航空发动机的安全性、可靠性和疲劳强度大大降低。此外,由于实际零件尺寸和空间结构的限制,激光冲击区域表面粗糙度是不容易测量的,常采用标准粗糙度块对比的间接测量法。
现有技术都是通过最有可能的几个影响参数对冲击后的表面粗糙度进行预测,但影响影响激光冲击后表面粗糙度的因素太多,并且激光束在冲击强化是能量并不是按照理想情况均匀分布的,因此往往会导致预测结果不准。
发明内容
为了解决上述问题,本发明提供一种激光冲击表面粗糙度的预测方法,能够达到对冲击块表面粗糙度的准确预测。
本发明所采用的技术方案是:
一种激光冲击表面粗糙度的预测方法,包括以下步骤:
S1:从激光器的计算机中导出冲击过程中实时测量的激光能量空间分布数据图,并对图像进行预处理;
S2:获取激光喷丸处理前、后的同一试验块表面粗糙度的测量值;
S3:依次重复S1和S2多次,将每次冲击前、后试验块的表面粗糙度以及每次冲击时经预处理的数据图像输入计算机,训练粗糙度预测模型;
S4:使用测试样本验证预测模型的准确性。
作为本发明的进一步改进,步骤S3中,通过计算机识别实时测量的激光能量空间分布图的数据图像误差,并与每一次冲击前后试验块表面粗糙度与表面形貌微小凹坑的变化异常数据进行一一对应,通过已经获得的多组数据,形成对试验块表面粗糙度的预测模型。
作为本发明的进一步改进,粗糙度预测模型基于卷积神经网络。
作为本发明的进一步改进,步骤S1中的预处理为将彩色图像转化为灰色图像的灰度化处理。
作为本发明的进一步改进,步骤S4中,使用多个测试样本进行多次模拟预测,并与实际值进行对比。
本发明的有益效果是:本发明通过以实时测量的激光能量空间分布的数据图和表面粗糙度的原始数据预测冲击后的表面粗糙度,避免因为激光束实际冲击情况与理想情况不同而导致对预测数据的不准确,也能避免因激光束能量异常导致的表面粗糙度变化异常,可以显著提高冲击后零件的合格率。
附图说明
下面结合附图和实施方式对本发明进一步说明。
图1为本发明方法的流程图;
图2为激光能量空间分布和零件表面粗糙度冲击前后的关联图;
图3为激光能量空间分布数据图灰度化处理后的图像;
图4为激光冲击前试验块表面原始粗糙度示意图;
图5为激光冲击后试验块表面粗糙度示意图。
具体实施方式
如图1所示的预测方法,其包括,
步骤S1:从激光器的计算机中导出冲击过程中实时测量的激光能量空间分布数据图。这种自身具备激光器并导出激光能量空间分布数据图的激光器可以在市面上直接购买获取。
在该步骤中,还需要对上述的这种数据图像进行预处理。具体的为:将导出的激光能量空间分布数据图进行灰度化处理,将彩色图像转化为灰色图像如图4所示。其中转换的公式如下:
I=W1×R+W2×G+W3×B
式中I为灰度化后图像,R为彩色图像的红色分量,G为彩色图像的绿色分量,B为图像的蓝色分量,W1为彩色图像的红色分量的权重,W2为彩色图像的绿色分量的权重,W3为彩色图像的蓝色分量的权重。
在步骤S1之后为步骤S2:借助表面粗糙度测量仪对激光喷丸处理前的试验块进行测量,获得该实验块的表面的原始粗糙度的测量值如图4,同时对激光喷丸处理后的同一试验块进行测量,获得冲击后表面粗糙度的测量值如图5。激光喷丸处理采用激光喷丸设备,其具体为高功率脉冲激光器。
之后是步骤S3:依次重复步骤1和步骤2,将每次冲击前、后试验块的表面粗糙度以及每次冲击时的实时激光能量空间分布图输入计算机,预训练粗糙度预测模型。
粗糙度预测模型基于卷积神经网络,由输入至输出其包括输入层、卷积层,池化层、卷积层、池化层、全连接层、全连接层、分类层和输出层。卷积神经网络属于现有技术在此不详细描述。
实施例中通过大数据挖掘的方式,利用卷积神经网络对激光能量空间分布数据图进行训练识别,能够准确的区分出每次激光能量空间分布的误差,并与每次冲击块冲击前后粗糙度的变化进行关联。
在该步骤S3中,通过计算机识别实时测量的激光能量空间分布图的数据图像误差,并与每一次冲击前后试验块表面粗糙度与表面形貌微小凹坑的变化异常数据进行一一对应,如图2所示。通过已经获得的多组数据,形成对试验块表面粗糙度的预测模型。
之后还包括步骤S4:使用多个测试样本进行多次模拟预测,并与实际值进行对比,以验证预测模型的准确性。
参考图1,在确认预测模型准确性的前提下,用户将预测模型输入或者导入至通过另外的计算机,在实际预测某一冲击块的粗糙度时,在该计算机中输入对应的原始粗糙度以及激光能量空间分布数据图,即可以预测该零件冲击后的粗糙度。
实施例能够通过对激光冲击后冲击块表面粗糙度的预测,避免因激光束能量异常导致的表面粗糙度变化异常,可以显著提高冲击后零件的合格率。
以下为不同试验块在激光冲击前后粗糙度的对比表。
以上所述只是本发明优选的实施方式,其并不构成对本发明保护范围的限制。

Claims (5)

1.一种激光冲击表面粗糙度的预测方法,其特征在于,包括以下步骤:
S1:从激光器的计算机中导出冲击过程中实时测量的激光能量空间分布数据图,并对图像进行预处理;
S2:获取激光喷丸处理前、后的同一试验块表面粗糙度的测量值;
S3:依次重复S1和S2多次,将每次冲击前、后试验块的表面粗糙度以及每次冲击时经预处理的数据图像输入计算机,训练粗糙度预测模型;
S4:使用测试样本验证预测模型的准确性。
2.根据权利要求1所述的激光冲击表面粗糙度的预测方法,其特征在于:步骤S3中,通过计算机识别实时测量的激光能量空间分布图的数据图像误差,并与每一次冲击前后试验块表面粗糙度与表面形貌微小凹坑的变化异常数据进行一一对应,通过已经获得的多组数据,形成对试验块表面粗糙度的预测模型。
3.根据权利要求1所述的激光冲击表面粗糙度的预测方法,其特征在于:粗糙度预测模型基于卷积神经网络。
4.根据权利要求1述的激光冲击表面粗糙度的预测方法,其特征在于:步骤S1中的预处理为将彩色图像转化为灰色图像的灰度化处理。
5.根据权利要求1或2或3或4所述的激光冲击表面粗糙度的预测方法,其特征在于:步骤S4中,使用多个测试样本进行多次模拟预测,并与实际值进行对比。
CN201910108452.4A 2019-01-18 2019-01-18 激光冲击表面粗糙度的预测方法 Pending CN109885918A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910108452.4A CN109885918A (zh) 2019-01-18 2019-01-18 激光冲击表面粗糙度的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910108452.4A CN109885918A (zh) 2019-01-18 2019-01-18 激光冲击表面粗糙度的预测方法

Publications (1)

Publication Number Publication Date
CN109885918A true CN109885918A (zh) 2019-06-14

Family

ID=66927736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910108452.4A Pending CN109885918A (zh) 2019-01-18 2019-01-18 激光冲击表面粗糙度的预测方法

Country Status (1)

Country Link
CN (1) CN109885918A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112149795A (zh) * 2019-06-26 2020-12-29 辉达公司 用于自监督事件学习与异常检测的神经架构
CN114774935A (zh) * 2022-04-11 2022-07-22 上海建冶科技股份有限公司 一种用于激光除锈的钢构件表面粗糙度控制方法
CN116275600A (zh) * 2023-05-19 2023-06-23 济南邦德激光股份有限公司 一种激光切割机的智能化切割数据处理方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880771A (zh) * 2012-10-31 2013-01-16 贵州大学 高速切削加工中工件表面粗糙度的预测方法
CN106119467A (zh) * 2016-07-26 2016-11-16 广东工业大学 一种控制激光喷丸参数监控叶片表面粗糙度的方法和装置
CN107292051A (zh) * 2017-07-07 2017-10-24 湘潭大学 一种硬质合金刀片化学机械抛光表面粗糙度的预测方法
CN107990850A (zh) * 2017-10-16 2018-05-04 南京航空航天大学 一种基于激光散射法的表面粗糙度在线测量系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880771A (zh) * 2012-10-31 2013-01-16 贵州大学 高速切削加工中工件表面粗糙度的预测方法
CN106119467A (zh) * 2016-07-26 2016-11-16 广东工业大学 一种控制激光喷丸参数监控叶片表面粗糙度的方法和装置
CN107292051A (zh) * 2017-07-07 2017-10-24 湘潭大学 一种硬质合金刀片化学机械抛光表面粗糙度的预测方法
CN107990850A (zh) * 2017-10-16 2018-05-04 南京航空航天大学 一种基于激光散射法的表面粗糙度在线测量系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112149795A (zh) * 2019-06-26 2020-12-29 辉达公司 用于自监督事件学习与异常检测的神经架构
CN114774935A (zh) * 2022-04-11 2022-07-22 上海建冶科技股份有限公司 一种用于激光除锈的钢构件表面粗糙度控制方法
CN116275600A (zh) * 2023-05-19 2023-06-23 济南邦德激光股份有限公司 一种激光切割机的智能化切割数据处理方法、装置及设备
CN116275600B (zh) * 2023-05-19 2023-09-29 济南邦德激光股份有限公司 一种激光切割机的智能化切割数据处理方法、装置及设备

Similar Documents

Publication Publication Date Title
CN109885918A (zh) 激光冲击表面粗糙度的预测方法
CN109388878A (zh) 一种综合考虑喷丸强化效果的疲劳寿命预测方法
Jian et al. Determination of corrosion types from electrochemical noise by artificial neural networks
CN107563054B (zh) 一种基于SWT参数的Weakest-Link方法的涡轮盘概率寿命分析方法
CN106021928A (zh) 一种综合应力加速试验方法
CN106872575A (zh) 一种塑封器件分层缺陷的分级风险评价方法
CN112651562B (zh) 基于信噪比和改进灰色关联度激光熔覆工艺优化方法
CN111881560A (zh) 一种基于灰色关联分析法-熵权理想点法与加工表面完整性多指标的加工参数优化方法
CN109583037A (zh) 一种航空发动机叶片喷丸加工变形的参数控制方法
CN114547928A (zh) 一种基于主成分分析的缺陷形貌等效与寿命评估方法
CN112083413A (zh) 一种雷达波隐身武器装备维护测试方法
CN107515971B (zh) 一种基于维修性和功能结构的产品设计方法及装置
CN109799454A (zh) 基于粒子群优化的发电机主绝缘剩余击穿场强预测方法
CN116699257B (zh) 一种低电平扫描场的高强辐射场测试装置及其测试方法
CN105277531A (zh) 一种基于分档的煤质特性测量方法
CN109915295B (zh) 一种进气道式喷油器喷雾锥角的测试方法
CN107831715A (zh) 一种水泵生产中质量控制系统
CN110308044A (zh) 基于金属磁记忆检测的增材制造制件早期应力集中判别方法
CN110008120A (zh) 一种基于频谱的软件故障定位方法
CN101901185A (zh) 一种按类组织执行轨迹的面向对象程序缺陷定位方法
CN111812424B (zh) 一种装备全系统威胁电磁环境下综合能力评估方法
CN114895222A (zh) 一种识别变压器各类故障及多重故障的诊断方法
Lyu et al. Gauge capability studies for attribute data
CN113053471A (zh) 一种用于风机主轴无损在线检测布氏硬度的方法
CN106950933B (zh) 质量一致性控制方法及装置、计算机存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190614