CN109880894A - 基于RNAseq的肿瘤免疫微环境预测模型的构建方法 - Google Patents

基于RNAseq的肿瘤免疫微环境预测模型的构建方法 Download PDF

Info

Publication number
CN109880894A
CN109880894A CN201910170125.1A CN201910170125A CN109880894A CN 109880894 A CN109880894 A CN 109880894A CN 201910170125 A CN201910170125 A CN 201910170125A CN 109880894 A CN109880894 A CN 109880894A
Authority
CN
China
Prior art keywords
cells
cell type
microenvironment
prediction model
rnaseq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910170125.1A
Other languages
English (en)
Inventor
莫凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Xihesen Medical Laboratory Co Ltd
Original Assignee
Hangzhou Xihesen Medical Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Xihesen Medical Laboratory Co Ltd filed Critical Hangzhou Xihesen Medical Laboratory Co Ltd
Priority to CN201910170125.1A priority Critical patent/CN109880894A/zh
Publication of CN109880894A publication Critical patent/CN109880894A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种基于RNAseq的肿瘤免疫微环境预测模型的构建方法,包括以下步骤:步骤一:确定24种肿瘤微环境相关的细胞类型;步骤二:根据上述步骤得到的细胞类型,优选出301个marker基因;步骤三:使用kallisto软件计算基因表达量TPM,计算其各个细胞类型对应marker基因的平均表达量,然后取log值作为该细胞类型的相对丰度。本发明计算其各个细胞类型对应marker基因的平均表达量,即计算的是一组marker基因的平均值,相对于计算单个marker基因,其结果相对更稳定,受相对误差的影响较小。

Description

基于RNAseq的肿瘤免疫微环境预测模型的构建方法
技术领域
本发明涉及基于RNAseq的肿瘤免疫微环境预测模型的构建方法。
背景技术
免疫治疗通过激活人体本身的免疫系统,依靠自身的免疫机能杀灭癌细胞。目前已在多种肿瘤如黑色素瘤,非小细胞肺癌、肾癌和前列腺癌等实体瘤的治疗中展示出了强大的抗肿瘤活性。虽然免疫疗法的成功令人振奋,无数患者在它的干预下取得了显著疗效。但仍有一部分患者对免疫疗法没有反应。而随着技术的进步,人们逐渐了解到肿瘤微环境的免疫环境的复杂性和多样性以及它对免疫治疗的重要影响。通过进一步分析和了解肿瘤免疫微环境将有助于免疫治疗反应性的改善。
目前肿瘤微环境主要靠流式细胞实验,但流式细胞仪较贵且患者不一定有样本来进行流式细胞分析。
当前用于预测免疫微环境的方法如Cibersort、MCPcounter、TIMER等都有或多或少的缺点。其中Cibersort是基于MicroArray数据开发的,对于RNAseq数据的效果并不够理想,而MCPcounter和TIMER本身计算的只是几种免疫细胞的相对丰度。而且当前几种方法预测结果的准确性并不算高,且其本身细胞类型划分对免疫治疗疗效预测不够具有针对性。
发明内容
本发明的目的是提供一种基于RNAseq的肿瘤免疫微环境预测模型的构建方法。
实现本发明目的的技术方案是:基于RNAseq的肿瘤免疫微环境预测模型的构建方法,包括以下步骤:
步骤一:确定24种肿瘤微环境相关的细胞类型;
步骤二:根据上述步骤得到的细胞类型,优选出301个marker基因;
步骤三:使用kallisto软件计算基因表达量TPM,计算其各个细胞类型对应marker基因的平均表达量,然后取log值作为该细胞类型的相对丰度。
所述步骤一具体为:检索现有文献,整合得到32种肿瘤微环境相关细胞,根据其功能和重要性,将每个微环境细胞分配到一个单一的细胞类型,确定24种免疫微环境相关细胞。
所述24种肿瘤微环境相关的细胞类型包括:
B cells
B cells memory;
Plasma cells;
T cells CD8;
T cells CD4
T cells CD4memory resting;
T cells CD4memory activated;
T cells follicular helper;
T cells regulatory(Tregs);
T cells gamma delta;
NK cells resting;
NK cells activated;
Monocytes;
Macrophages M0;
Macrophages M1;
Macrophages M2;
Dendritic cells resting;
Dendritic cells activated;
Mast cells resting;
Mast cells activated;
Eosinophils;
Neutrophils;
Endothelial cells;
Fibroblasts;
所述步骤二具体包括以下步骤:
S1,全面查找文献搜集24种肿瘤微环境细胞对应的所有相关潜在marker基因共583个;
S2,使用TCGA的RNA-seq数据对这些候选marker基因进行聚类分析;
S3,根据聚类结果剔除普遍低表达的,剔除在多个细胞类型之间无差异的相关基因,筛选得到301个marker基因。
所述301个marker基因分别为:ABCB4,BCL7A,BEND5,BRAF,IL4R,LINC00921,MEP1A,MICAL3,NIPSNAP3B,PSG2,SELL,TCL1A,UGT1A8,ZNF286A,AIM2,ALOX5,CLCA3P,FAM65B,IFNA10,IL7,NPIPB15,SP140,TNFRSF13B,TRAF4,ZBTB32,ABCB9,AMPD1,ANGPT4,ATXN8OS,C11orf80,CCR10,HIST1H2AE,HIST1H2BG,IGHE,KCNA3,KCNG2,LOC100130100,MAN1A1,MANEA,MAST1,MROH7,MZB1,PAX7,PDK1,RASGRP3,REN,SPAG4,ST6GALNAC4,TGM5,UGT2B17,ZBP1,ZNF165,CRTAM,DSC1,KLRC3,KLRC4,KLRF1,MAP9,NCR3,PIK3IP1,TRAV12-2,ANKRD55,CXorf57,EPHA1,FLJ13197,GAL3ST4,GALR1,MAP4K2,SERGEF,VILL,WNT7A,ZNF204P,ZNF324,EPB41,ETS1,FBXL8,PBXIP1,RPL10L,TRAV13-2,TRAV21,ZFP36L2,CDC25A,IL17A,IL26,IL4,IL9,ORC1,RRP9,SKA1,CA8,CHI3L2,FZD3,ICA1,IL21,PASK,PDCD1,SLC7A10,TRIB2,TSHR,ZBTB10,BARX2,CD5,CD70,CEMP1,CLEC2D,EFNA5,FOXP3,FRMD8,HIC1,HMGB3P30,KIRREL,LAIR2,LILRA4,LOC126987,NPAS1,NTN3,PCDHA5,PLCH2,PTPRG,RYR1,SEC31B,SEPT5,SPOCK2,SSX1,TYR,BFSP1,BRSK2,CCR5,CD300A,CDH12,COLQ,CXCR6,GYPE,KLRG1,KRT18P50,LHCGR,MAGEA11,TARDBPP1,ZNF442,AZU1,CDHR1,DEFA4,ELANE,PLEKHF1,TEP1,TTC38,ZNF135,APOBEC3G,CCND2,CDK6,FASLG,KIR2DL4,KIR2DS4,OSM,ASGR1,ASGR2,BST1,CCR2,CD1D,FCN1,HCK,HNMT,HPSE,NLRP3,UPK3A,BHLHE41,CCL7,COL8A2,CSF1,CXCL5,DCSTAMP,GPC4,MARCO,MMP9,PPBP,APOL3,ARRB1,CD40,CXCL9,CYP27B1,KIAA0754,SLAMF1,TRPM4,CCL14,CCL23,CRYBB1,FRMD4A,GSTT1,HRH1,NPL,RENBP,WNT5B,C1orf54,CD1A,DHRS11,EGR2,FLVCR2,HLA-DQA1,PPFIBP1,ARHGAP22,BIRC3,CD80,CD86,CHST7,ETV3,IL12B,MAP3K13,MSC,NR4A3,SLCO5A1,TNFRSF11A,BMP2K,CRISP3,FAM124B,FAM174B,LTC4S,PAQR5,SEPT8,HOXA1,IL1A,IL1B,IL5,LINC00597,MARCH3,TEC,BCL2A1,C5AR2,DACH1,DAPK2,DEPDC5,EMR1,EPN2,GIPR,GPR183,GPR65,IL5RA,LRMP,P2RY10,P2RY2,PDE6C,PKD2L2,RRP12,SAMSN1,SMPD3,SMPDL3B,TRPM6,ZNF222,BTNL8,CASP5,CCR3,CEACAM3,CXCR1,CXCR2,FAM212B,FCGR3B,FPR2,HAL,HSPA6,MMP25,PGLYRP1,STEAP4,TNFRSF10C,TREM1,VNN3,ACVRL1,APLN,BCL6B,BMP6,BMX,CDH5,CLEC14A,CXorf36,EDN1,ELTD1,EMCN,ESAM,ESM1,HECW2,HHIP,KDR,MMRN1,MYCT1,PALMD,PEAR1,PGF,PLXNA2,PTPRB,ROBO4,SDPR,SHANK3,SHE,TEK,TIE1,VEPH1,VWF,CA4,CYP4F3,KCNJ15,MEGF9,SLC25A37,TLE3。
所述步骤三中细胞类型的相对丰度的计算公式为:
Abundancecell=log2ave(TPMcell)/log2ave(TPMall)。
采用了上述技术方案,本发明具有以下的有益效果:(1)本发明计算其各个细胞类型对应marker基因的平均表达量,即计算的是一组marker基因的平均值,相对于计算单个marker基因,其结果相对更稳定,受相对误差的影响较小。
(2)本发明对细胞类型的划分更合理,使得本方法构建的肿瘤免疫微环境预测模型对肿瘤免疫治疗更加具有针对性。
(3)本发明使用TCGA的RNA-seq数据对候选的marker基因进行聚类分析,其结果更准确。
具体实施方式
(实施例1)
本实施例的基于RNAseq的肿瘤免疫微环境预测模型的构建方法,包括以下步骤:
步骤一:检索现有文献,整合得到32种肿瘤微环境相关细胞,根据其功能和重要性,将每个微环境细胞分配到一个单一的细胞类型,确定24种免疫微环境相关细胞。
步骤二:全面查找文献搜集24种肿瘤微环境细胞对应的所有相关潜在marker基因共583个;使用TCGA的RNA-seq数据对这些候选marker基因进行聚类分析;根据聚类结果剔除普遍低表达的,剔除在多个细胞类型之间无差异的相关基因,筛选得到301个marker基因。
步骤三:使用kallisto软件计算基因表达量TPM,计算其各个细胞类型对应marker基因的平均表达量,然后取log值作为该细胞类型的相对丰度,具体公式为:
Abundancecell=log2ave(TPMcell)/log2ave(TPMall)。
24种免疫微环境相关细胞如下表所示:
肿瘤微环境细胞类型和相对应的marker基因如下表所示:
本方法对细胞类型的划分更合理,使得本方法构建的肿瘤免疫微环境预测模型对肿瘤免疫治疗更加具有针对性。本方法使用TCGA的RNA-seq数据对候选的marker基因进行聚类分析,其结果更准确。本方法计算其各个细胞类型对应marker基因的平均表达量,即计算的是一组marker基因的平均值,相对于计算单个marker基因,其结果相对更稳定,受相对误差的影响较小。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.基于RNAseq的肿瘤免疫微环境预测模型的构建方法,其特征在于:包括以下步骤:
步骤一:确定24种肿瘤微环境相关的细胞类型;
步骤二:根据上述步骤得到的细胞类型,优选出301个marker基因;
步骤三:使用kallisto软件计算基因表达量TPM,计算其各个细胞类型对应marker基因的平均表达量,然后取log值作为该细胞类型的相对丰度,形成肿瘤免疫微环境预测模型。
2.根据权利要求1所述的基于RNAseq的肿瘤免疫微环境预测模型的构建方法,其特征在于:所述步骤一具体为:检索现有文献,整合得到32种肿瘤微环境相关细胞,根据其功能和重要性,将每个微环境细胞分配到一个单一的细胞类型,确定24种免疫微环境相关细胞。
3.根据权利要求2所述的基于RNAseq的肿瘤免疫微环境预测模型的构建方法,其特征在于:所述24种肿瘤微环境相关的细胞类型包括:
B cells
B cells memory;
Plasma cells;
T cells CD8;
T cells CD4
T cells CD4 memory resting;
T cells CD4 memory activated;
T cells follicular helper;
T cells regulatory(Tregs);
T cells gamma delta;
NK cells resting;
NK cells activated;
Monocytes;
Macrophages M0;
Macrophages M1;
Macrophages M2;
Dendritic cells resting;
Dendritic cells activated;
Mast cells resting;
Mast cells activated;
Eosinophils;
Neutrophils;
Endothelial cells;
Fibroblasts。
4.根据权利要求1所述的基于RNAseq的肿瘤免疫微环境预测模型的构建方法,其特征在于:所述步骤二具体包括以下步骤:
S1,全面查找文献搜集24种肿瘤微环境细胞对应的所有相关潜在marker基因共583个;
S2,使用TCGA的RNA-seq数据对这些候选marker基因进行聚类分析;
S3,根据聚类结果剔除普遍低表达的,剔除在多个细胞类型之间无差异的相关基因,筛选得到301个marker基因。
5.根据权利要求4所述的基于RNAseq的肿瘤免疫微环境预测模型的构建方法,其特征在于:所述301个marker基因分别为:
ABCB4,BCL7A,BEND5,BRAF,IL4R,LINC00921,MEP1A,MICAL3,NIPSNAP3B,PSG2,SELL,TCL1A,UGT1A8,ZNF286A,AIM2,ALOX5,CLCA3P,FAM65B,IFNA10,IL7,NPIPB15,SP140,TNFRSF13B,TRAF4,ZBTB32,ABCB9,AMPD1,ANGPT4,ATXN8OS,C11orf80,CCR10,HIST1H2AE,HIST1H2BG,IGHE,KCNA3,KCNG2,LOC100130100,MAN1A1,MANEA,MAST1,MROH7,MZB1,PAX7,PDK1,RASGRP3,REN,SPAG4,ST6GALNAC4,TGM5,UGT2B17,ZBP1,ZNF165,CRTAM,DSC1,KLRC3,KLRC4,KLRF1,MAP9,NCR3,PIK3IP1,TRAV12-2,ANKRD55,CXorf57,EPHA1,FLJ13197,GAL3ST4,GALR1,MAP4K2,SERGEF,VILL,WNT7A,ZNF204P,ZNF324,EPB41,ETS1,FBXL8,PBXIP1,RPL10L,TRAV13-2,TRAV21,ZFP36L2,CDC25A,IL17A,IL26,IL4,IL9,ORC1,RRP9,SKA1,CA8,CHI3L2,FZD3,ICA1,IL21,PASK,PDCD1,SLC7A10,TRIB2,TSHR,ZBTB10,BARX2,CD5,CD70,CEMP1,CLEC2D,EFNA5,FOXP3,FRMD8,HIC1,HMGB3P30,KIRREL,LAIR2,LILRA4,LOC126987,NPAS1,NTN3,PCDHA5,PLCH2,PTPRG,RYR1,SEC31B,SEPT5,SPOCK2,SSX1,TYR,BFSP1,BRSK2,CCR5,CD300A,CDH12,COLQ,CXCR6,GYPE,KLRG1,KRT18P50,LHCGR,MAGEA11,TARDBPP1,ZNF442,AZU1,CDHR1,DEFA4,ELANE,PLEKHF1,TEP1,TTC38,ZNF135,APOBEC3G,CCND2,CDK6,FASLG,KIR2DL4,KIR2DS4,OSM,ASGR1,ASGR2,BST1,CCR2,CD1D,FCN1,HCK,HNMT,HPSE,NLRP3,UPK3A,BHLHE41,CCL7,COL8A2,CSF1,CXCL5,DCSTAMP,GPC4,MARCO,MMP9,PPBP,APOL3,ARRB1,CD40,CXCL9,CYP27B1,KIAA0754,SLAMF1,TRPM4,CCL14,CCL23,CRYBB1,FRMD4A,GSTT1,HRH1,NPL,RENBP,WNT5B,C1orf54,CD1A,DHRS11,EGR2,FLVCR2,HLA-DQA1,PPFIBP1,ARHGAP22,BIRC3,CD80,CD86,CHST7,ETV3,IL12B,MAP3K13,MSC,NR4A3,SLCO5A1,TNFRSF11A,BMP2K,CRISP3,FAM124B,FAM174B,LTC4S,PAQR5,SEPT8,HOXA1,IL1A,IL1B,IL5,LINC00597,MARCH3,TEC,BCL2A1,C5AR2,DACH1,DAPK2,DEPDC5,EMR1,EPN2,GIPR,GPR183,GPR65,IL5RA,LRMP,P2RY10,P2RY2,PDE6C,PKD2L2,RRP12,SAMSN1,SMPD3,SMPDL3B,TRPM6,ZNF222,BTNL8,CASP5,CCR3,CEACAM3,CXCR1,CXCR2,FAM212B,FCGR3B,FPR2,HAL,HSPA6,MMP25,PGLYRP1,STEAP4,TNFRSF10C,TREM1,VNN3,ACVRL1,APLN,BCL6B,BMP6,BMX,CDH5,CLEC14A,CXorf36,EDN1,ELTD1,EMCN,ESAM,ESM1,HECW2,HHIP,KDR,MMRN1,MYCT1,PALMD,PEAR1,PGF,PLXNA2,PTPRB,ROBO4,SDPR,SHANK3,SHE,TEK,TIE1,VEPH1,VWF,CA4,CYP4F3,KCNJ15,MEGF9,SLC25A37,TLE3。
6.根据权利要求1所述的基于RNAseq的肿瘤免疫微环境预测模型的构建方法,其特征在于:所述步骤三中细胞类型的相对丰度的计算公式为:
Abundancecell=log2 ave(TPMcell)/log2 ave(TPMall)。
CN201910170125.1A 2019-03-05 2019-03-05 基于RNAseq的肿瘤免疫微环境预测模型的构建方法 Pending CN109880894A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910170125.1A CN109880894A (zh) 2019-03-05 2019-03-05 基于RNAseq的肿瘤免疫微环境预测模型的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910170125.1A CN109880894A (zh) 2019-03-05 2019-03-05 基于RNAseq的肿瘤免疫微环境预测模型的构建方法

Publications (1)

Publication Number Publication Date
CN109880894A true CN109880894A (zh) 2019-06-14

Family

ID=66930987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910170125.1A Pending CN109880894A (zh) 2019-03-05 2019-03-05 基于RNAseq的肿瘤免疫微环境预测模型的构建方法

Country Status (1)

Country Link
CN (1) CN109880894A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524597A (zh) * 2020-04-17 2020-08-11 秦皇岛市第一医院 一种食管鳞癌预后评估模型装置及其建模方法
CN111551545A (zh) * 2020-05-25 2020-08-18 郑州大学第一附属医院 一种用于食管癌高危人群早期筛查的液体活检elisa试剂盒

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852974A (zh) * 2003-06-09 2006-10-25 密歇根大学董事会 用于治疗和诊断癌症的组合物和方法
CN103002905A (zh) * 2010-06-03 2013-03-27 阿布拉西斯生物科学有限责任公司 Sparc微环境标签在癌症治疗中的应用
WO2017132291A1 (en) * 2016-01-25 2017-08-03 The Broad Institute, Inc. Genetic, developmental and micro-environmental programs in idh-mutant gliomas, compositions of matter and methods of use thereof
CN107208138A (zh) * 2014-12-30 2017-09-26 豪夫迈·罗氏有限公司 用于癌症预后和治疗的方法和组合物
WO2017178612A1 (en) * 2016-04-13 2017-10-19 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method of stratification of patients suffering from cancer
CN107704727A (zh) * 2017-11-03 2018-02-16 杭州风起智能科技有限公司 基于肿瘤新抗原特征值的新抗原活性预测和排序方法
US20180100201A1 (en) * 2015-06-29 2018-04-12 The Broad Institute Inc. Tumor and microenvironment gene expression, compositions of matter and methods of use thereof
CN109073659A (zh) * 2016-02-16 2018-12-21 新加坡科技研究局 表观基因组分析揭示了原发性胃腺癌的体细胞启动子局面
CN109243532A (zh) * 2017-07-21 2019-01-18 上海桑格信息技术有限公司 基于计算云平台的真核无参转录组交互分析系统及其方法
WO2019036043A2 (en) * 2017-08-16 2019-02-21 Medgenome Inc. METHOD FOR GENERATING A COCKTAIL OF PERSONALIZED ANTICANCER VACCINES FROM TUMOR DERIVED GENETIC MODIFICATIONS FOR THE TREATMENT OF CANCER

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852974A (zh) * 2003-06-09 2006-10-25 密歇根大学董事会 用于治疗和诊断癌症的组合物和方法
CN103002905A (zh) * 2010-06-03 2013-03-27 阿布拉西斯生物科学有限责任公司 Sparc微环境标签在癌症治疗中的应用
CN107208138A (zh) * 2014-12-30 2017-09-26 豪夫迈·罗氏有限公司 用于癌症预后和治疗的方法和组合物
US20180100201A1 (en) * 2015-06-29 2018-04-12 The Broad Institute Inc. Tumor and microenvironment gene expression, compositions of matter and methods of use thereof
WO2017132291A1 (en) * 2016-01-25 2017-08-03 The Broad Institute, Inc. Genetic, developmental and micro-environmental programs in idh-mutant gliomas, compositions of matter and methods of use thereof
CN109073659A (zh) * 2016-02-16 2018-12-21 新加坡科技研究局 表观基因组分析揭示了原发性胃腺癌的体细胞启动子局面
WO2017178612A1 (en) * 2016-04-13 2017-10-19 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method of stratification of patients suffering from cancer
CN109243532A (zh) * 2017-07-21 2019-01-18 上海桑格信息技术有限公司 基于计算云平台的真核无参转录组交互分析系统及其方法
WO2019036043A2 (en) * 2017-08-16 2019-02-21 Medgenome Inc. METHOD FOR GENERATING A COCKTAIL OF PERSONALIZED ANTICANCER VACCINES FROM TUMOR DERIVED GENETIC MODIFICATIONS FOR THE TREATMENT OF CANCER
CN107704727A (zh) * 2017-11-03 2018-02-16 杭州风起智能科技有限公司 基于肿瘤新抗原特征值的新抗原活性预测和排序方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FRANCESCA FINOTELLO1 ET AL.: "Quantifying tumor-infiltrating immune cells from transcriptomics data", 《CANCER IMMUNOL IMMUNOTHER》 *
ITAY TIROSH等: "Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq", 《SCIENCE》 *
赵华等: "肿瘤免疫微环境评价在疗效预测中的研究进展", 《中国肿瘤临床》 *
陈弟等: "基于预后相关基因构建的分析模型可识别高风险胶质母细胞瘤(英文)", 《中南大学学报(医学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524597A (zh) * 2020-04-17 2020-08-11 秦皇岛市第一医院 一种食管鳞癌预后评估模型装置及其建模方法
CN111551545A (zh) * 2020-05-25 2020-08-18 郑州大学第一附属医院 一种用于食管癌高危人群早期筛查的液体活检elisa试剂盒

Similar Documents

Publication Publication Date Title
US11802314B2 (en) Methods and systems for determining proportions of distinct cell subsets
Szabo et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease
Leader et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification
Valpione et al. Immune awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy
Wang et al. The prognostic landscape of tumor-infiltrating immune cells in cervical cancer
Bindea et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer
KR20180123020A (ko) 카피수 변이를 판정하기 위한 dna 단편 크기의 사용
EP2941274A2 (en) Characterizing a glatiramer acetate related drug product
CN109762907B (zh) 缺氧相关基因在预测i/ii期结直肠癌的试剂盒中的应用
Long et al. A mutation-based gene set predicts survival benefit after immunotherapy across multiple cancers and reveals the immune response landscape
Chung et al. A genome-wide association study of chemotherapy-induced alopecia in breast cancer patients
CN109880894A (zh) 基于RNAseq的肿瘤免疫微环境预测模型的构建方法
Marín-Aguilera et al. Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer
Eberlein et al. Aging promotes acquisition of naive-like CD8+ memory T cell traits and enhanced functionalities
Ling et al. The prognostic value and molecular properties of tertiary lymphoid structures in oesophageal squamous cell carcinoma
Lobas et al. Proteogenomics of malignant melanoma cell lines: the effect of stringency of exome data filtering on variant peptide identification in shotgun proteomics
Li et al. Single‐cell RNA sequencing reveals the multi‐cellular ecosystem in different radiological components of pulmonary part‐solid nodules
Yue et al. Understanding cervical cancer at single-cell resolution
Zimran et al. Genomic characterization of spleens in patients with myelofibrosis
Xu et al. A comprehensive single-cell breast tumor atlas defines cancer epithelial and immune cell heterogeneity and interactions predicting anti-PD-1 therapy response
Wang et al. SPTSSA is a prognostic marker for glioblastoma associated with tumor-infiltrating immune cells and oxidative stress
US20200335176A1 (en) Methods for context based compression of genomic data for immuno-oncology biomarkers
Kim et al. 3p arm loss and survival in head and neck cancer: an analysis of TCGA dataset
Lv et al. Prognosis of tumor microenvironment in luminal b-type breast cancer
Nenclares et al. T-cell receptor determinants of response to chemoradiation in locally-advanced HPV16-driven malignancies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190614