CN1098548A - 一种掺钬的高临界电流密度高磁通针扎力的高温超导体 - Google Patents

一种掺钬的高临界电流密度高磁通针扎力的高温超导体 Download PDF

Info

Publication number
CN1098548A
CN1098548A CN93112818A CN93112818A CN1098548A CN 1098548 A CN1098548 A CN 1098548A CN 93112818 A CN93112818 A CN 93112818A CN 93112818 A CN93112818 A CN 93112818A CN 1098548 A CN1098548 A CN 1098548A
Authority
CN
China
Prior art keywords
critical current
superconductor
holmium
mixing
current densities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN93112818A
Other languages
English (en)
Other versions
CN1035737C (zh
Inventor
赵忠贤
李阳
周廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CN93112818A priority Critical patent/CN1035737C/zh
Publication of CN1098548A publication Critical patent/CN1098548A/zh
Application granted granted Critical
Publication of CN1035737C publication Critical patent/CN1035737C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种掺钬的高临界电流密度高磁通 针扎力的高温超导体,其特征在于组成为 Y(1-x)HoxBa2Cu3O7-δ,本发明利用稀土元素部分取代 Y使得铜氧化物超导体Y-123局域晶格失配形成的 应力场对磁通线的有效作用,在不引入其它非超导缺 陷而且不改变Y-123结构框架和超导性的前提下, 大幅度提高临界电流密度,达100%以上,并且具有 较高的超导转变温度,Tc~90K,此技术简单,有规模 生产和使用的前景。

Description

本发明涉及一种掺杂的超导体,它特别适用于掺钬的高临界电流密度高磁通针扎力的高温超导体。
超导体中临界电流密度依赖于磁通钉扎中心对磁通线的钉扎力的大小。60年代以来,在传统超导体的研究中,已经得到当钉中心的尺寸接近于超导体的相于长度时,钉扎强度达到最大值。对于传统超导体,相于长度在1000A数量级上,这个长度与晶粒尺寸相当。因此,一些研究表明在传统的A-15超导体中对磁通线的钉扎主要来自晶界。在60-70年代,有人研究了传统超导体中晶体缺陷(如位错和夹杂等)引发的应力场对磁通线的钉扎作用,但都是在传统超导体相于长度(1000A)尺度上的研究结果。而在高Tc超导体中,相干长度非常短只在10A数量级上,钉扎中心的尺寸只相当于一个晶胞大小。这样比起传统超导体,高Tc氧化物超导体的钉扎更加局域化。在传统超导体中一些能成为有效的钉扎中心的大尺寸缺陷(象晶界,大块夹杂等),在氧化物超导体中可能不再是有效的钉扎中心。因此有人提出了弥散的211相、辐照缺陷、孪晶界、氧缺位和螺形位错等等有可能成为氧化物超导体中的钉扎中心。但是,在氧化物超导体中有控制地引入上述晶格缺陷在实验室和在工业应用中都存在不同困难。首先,上述缺陷的引入破坏超导体的晶格结构和超导的单相性;另外,这些缺陷有可能退化为弱联接对超导有不利影响;特别是在实际应用中和工业生产中,很难做到规模生产。
未检索到有关的专利文献。现将已报导的有关涉及传统超导体应力的磁通钉扎问题和氧化物超导体中非超导缺陷(如211相、辐照缺陷、孪晶界、氧缺位和螺形位错等)的磁通钉扎问题的研究论文简列如下:
(1)A.M.Campbell  and  J.E.Evetts,Adv.Phys.21,199(1972).
(2)G.J.Van  Gurp,Philips  Res.Rep.22,10(1967).
(3)R.M.Scanlan,W.A.Fietz,E.F.Koch,
J.Appl.Phys.46,2244(1975).
(4)W.W.Webb,Phys.Rev.Lett.11,191(1963).
(5)L.E.Toth  and  I.P.Pratt,Appl.Phys.Lett.4,75(1964).
(6)G.W.Crabtree,W.K.Kwok,and  A.Umezawa,in:Quantum  Field  Theory  as  an  Interdisciplinary  Basis,edited  by  F.C.Khanna,H.Umezawa,G.Kunstatter,and  H.C.lee(World  Scientific,1988).
(7)M.Murakami,S.Gotoh,H.Fujimoto,K.Yamaguchi,N.Koshizuka,and  S.Tanaka,Supercon.Sci.Technol.4,543(1991).
(8)H.W.Weber  and  G.W.Crabtree,in:Studies  of  High  Temperature  Superconductors,edited  by  A.V.Narlikar(Nova  Science,New  York,1991).
(9)W.K.Kwok,U.Welp,G.W.Crabtree,K.G.Vandervoort,R.
Hulscher,and  J.Z.Liu,Phys.Rev.Lett.64,966(1990).
(10)E.M.Chudnovsky,Phys.Rev.Lett.65,3060(1990).
(11)B.Batlogg,Physica  C185-189,xviii(1991).
本发明的目的在于克服上述的缺点和不足,针对高Tc氧化物超导体具有有别于传统超导体的相于长度很短的特征,发明了在Y-123超导体中用不同的稀土元素部分替代Y的方法,在不引入其它非超导缺陷而且不改变Y-123结构框架和超导电性的前提下,较大幅度地提高临界电流密度。
本发明的目的是这样实现的:在Y-123超导体中用不同的稀土元素将35-50%的Y元素替代得到Y(1-x)RExBa2Cu3O7-δ(x=0.35-0.5)超导体,其临界电流密度比YBa2Cu3O7-δ有大幅度地提高。此技术的特点是充分利用了不同稀土元素的123超导相结构相似但晶格尺寸不同的特点,在不改变Y-123结构框架和超导电性的前提下,用掺杂其它稀土元素部分替代Y的方法,利用超导体YBa2Cu3O7-δ和超导体REBa2Cu3O7-δ晶格失配产生的应力场有效地对磁通线起钉扎作用,大幅度地提高临界电流密度而无需引入其它非超导缺陷。
本发明的掺钬的高临界电流密度高磁通针扎力的高温超导体的组成式如下:
Y(1-x)HoxBa2Cu3O7-;
其中X=0.35~0.5
在YBa2Cu3O7-中用稀土Ho部分替代Y得到超导体Y(1-x)HoxBa2Cu3O7-δ(x=0.35-0.5)。实验结果表明,此超导体的结构仍保持Y-123结构框架和较高的超导转变温度(~90K)。HoBa2Cu3O7-δ的晶格参数与YBa2Cu3O7-δ差别适中,细小的HoBa2Cu3O7-δ晶粒更加弥散地分布,而很少富集。此时晶格失配引发的应力场对磁通线有较强的钉扎作用,这一点我们已在理论上给予证实。
本发明的特点在于:
1.首先在理论上用首创的有效缺陷模型解决了由于掺杂其它稀土元素造成样品局域晶格失配所形成的应力场分布的问题,并在此基础上,得到了此时的应力场对磁通线的钉扎力(与传统超导体中缺陷应力场钉扎力同数量级),证实了应力场可以成为有效的磁通钉扎中心。
2.利用稀土元素部分替代Y使得铜氧化物超导体Y-123中局晶格失配形成的应力场对磁通线的有效钉扎作用,在不引入其它非超导缺陷而且不改变Y-123结构框架和超导性的前题下,大幅度提高了临界电流密度。
3.具有较高的超导转变温度,Tc~90K。
4.此技术简单,有规模生产和使用的前景。
下面结合实施例1至3和附图1对本发明做详细说明
附图1:Y(1-x)HoxBa2Cu3O7-δ体系中,Ho掺杂浓度x与临界电流密度的关系。
实施例1
在YBa2Cu3O7-δ中用稀土Ho部份替代Y得到超导体Y(1-x)HoXBa2Cu3O7-δ其中X=0.35。选用稀土Ho是利用了Ho和Y在原子尺寸上的差异以及YBa2Cu3O7-δ和HoBa2Cu3O7-δ晶格参数差别适中,Ho掺呆造成的晶格失配引发的应力场对磁通线有较强的针扎作用,从而大幅度提高临界电流,掺杂导致的应力针扎中心对单位长度磁通线的针扎力可达8.55×10-2dyn/cm。采用通常的制备工艺和烧制温度的条件下,Ho掺杂替代Y后,临界电流密度Jc(x)有明显提高,比没有掺杂的YBa2Cu3O7-能提高临界电流密度85%,此时超导样品的结构仍保持Y-123结构框架和较高的超导温度,Tc~90K,无须引入其他非超导相作为针扎中心。
实施例2
所需各元素配比和制备工艺如实施例1,其中X=0.4,掺杂导致的应力针扎中心对单位长度磁通线的针扎力可达8.55×10-2dyn/cm,比没掺杂的YBa2Cu3O7-δ能提高临界电流密度100%以上,Tc~90K。
实施例3
所需各元素配比和制备工艺如实施例1,其中x=0.5,掺杂导致的应力针扎中心对单位长度磁通线的针扎力可达8.55×10-2dyn/cm,比没掺杂的YBa2Cu4O7-δ能提高临界电流密度80%,Tc~90K。

Claims (1)

1、一种掺钬的高临界电流密度高磁通针扎力的高温超导体,其特征在于组成为:
Y(1-x)HoxBa2Cu3O7-δ
其中X=0.35-0.5。
CN93112818A 1993-12-24 1993-12-24 一种掺钬的高临界电流密度高磁通针扎力的高温超导体 Expired - Fee Related CN1035737C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN93112818A CN1035737C (zh) 1993-12-24 1993-12-24 一种掺钬的高临界电流密度高磁通针扎力的高温超导体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN93112818A CN1035737C (zh) 1993-12-24 1993-12-24 一种掺钬的高临界电流密度高磁通针扎力的高温超导体

Publications (2)

Publication Number Publication Date
CN1098548A true CN1098548A (zh) 1995-02-08
CN1035737C CN1035737C (zh) 1997-08-27

Family

ID=4990287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93112818A Expired - Fee Related CN1035737C (zh) 1993-12-24 1993-12-24 一种掺钬的高临界电流密度高磁通针扎力的高温超导体

Country Status (1)

Country Link
CN (1) CN1035737C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157246A (zh) * 2010-12-12 2011-08-17 西北有色金属研究院 一种涂层导体多层结构超导膜及其制备方法
CN106663502A (zh) * 2014-11-05 2017-05-10 株式会社藤仓 氧化物超导体、超导线材以及它们的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495426B2 (ja) * 2003-08-29 2010-07-07 独立行政法人科学技術振興機構 超伝導膜およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157246A (zh) * 2010-12-12 2011-08-17 西北有色金属研究院 一种涂层导体多层结构超导膜及其制备方法
CN102157246B (zh) * 2010-12-12 2012-08-15 西北有色金属研究院 一种涂层导体多层结构超导膜及其制备方法
CN106663502A (zh) * 2014-11-05 2017-05-10 株式会社藤仓 氧化物超导体、超导线材以及它们的制造方法
CN106663502B (zh) * 2014-11-05 2018-09-04 株式会社藤仓 氧化物超导体、超导线材以及它们的制造方法

Also Published As

Publication number Publication date
CN1035737C (zh) 1997-08-27

Similar Documents

Publication Publication Date Title
Scanlan et al. Superconducting materials for large scale applications
Rahman et al. A review on cuprate based superconducting materials including characteristics and applications
Nakajima et al. Superconductivity of high-Tc TlBa2Ca1− xRExCu2O7 (RE= Nd, Gd or Y) system
Shi et al. Transport critical current density and microstructure in extruded YBa2Cu3O7− x wires processed by zone melting
Beasley High-temperature superconductive thin films
CN1035737C (zh) 一种掺钬的高临界电流密度高磁通针扎力的高温超导体
Takano et al. A cross-whiskers junction as a novel fabrication process for intrinsic Josephson junctions
Babcock High-temperature superconductors from the grain boundary perspective
Liu et al. The effect of heat treatment temperature on superconductivity of Bi-2212/YBCO heteroepitaxial structure fabricated by chemical solution deposition approach
Jin Processing techniques for bulk high-T c
Balachandran et al. Advances in fabrication of Ag-clad Bi-2223 superconductors
Lee et al. Filament-to-filament joining of multi-filamentary Ag/Bi-2223 superconducting tapes
Chrisey Progress in the first ten years of HTS film growth
Zhang et al. A Review on Strain Study of Cuprate Superconductors.
Liu et al. Preparation of Bi 2 Sr 2 CaCu 2 O 8+ δ-YBa 2 Cu 3 O 7− δ Bilayer Films by Acetate Based Photosensitive Sol-Gel Method
Larbalestier High temperature oxide superconductors-their potential for high field magnetic use
Vacquier et al. HIGH-Tc SUPERCONDUCTOR OXIDE/OXIDE COMPOSITE MATERIALS: A REVIEW AND SOME RESULTS IN THE SYSTEM «Bi-BASED HTS CUPRATES/INSULATING OXIDES»
Nagao et al. Growth of Y1Ba2Cu3Ox Single-Crystal Whisker Using Sb-doped Precursor
Tachikawa et al. Effects of Ag addition on the diffusion reaction in high-T/sub c/oxides
Shulin SUPERCONDUCTIVITY WITH INTERGROWTH, MODULATION TRANSFORMATION IN BSCCO, YBCO AND MxC60 SUPERCONDUCTORS
Easterling et al. The microstructure and properties of high T c superconducting oxides
Allen et al. Thin film composites of Au and YBa/sub 2/Cu/sub 3/O/sub 7-/spl delta
WO2000033391A1 (en) Superconductor with enhanced current density and method for making such a superconductor
Keskin Grain boundary properties of (Bi, Pb)-2223
Sato et al. Microstructual and Characteristics Comparison Between Tl-System and Bi-System Oxide Superconducting Tapes

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee