CN109847774A - 一种用于去除对硝基苯酚材料的制备方法和应用 - Google Patents

一种用于去除对硝基苯酚材料的制备方法和应用 Download PDF

Info

Publication number
CN109847774A
CN109847774A CN201910200251.7A CN201910200251A CN109847774A CN 109847774 A CN109847774 A CN 109847774A CN 201910200251 A CN201910200251 A CN 201910200251A CN 109847774 A CN109847774 A CN 109847774A
Authority
CN
China
Prior art keywords
preparation
nitrophenol
egg shell
eggshell
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910200251.7A
Other languages
English (en)
Inventor
杨大鹏
施伟章
刘明焕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Normal University
Original Assignee
Quanzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanzhou Normal University filed Critical Quanzhou Normal University
Priority to CN201910200251.7A priority Critical patent/CN109847774A/zh
Publication of CN109847774A publication Critical patent/CN109847774A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于去除对硝基苯酚溶液废水的材料制备方法和应用。该材料是以废弃的鸡蛋壳作为模板,用水热法合成四氧化三铁,再以植物提取液为还原剂,将钯离子还原为钯纳米颗粒。该材料的制备包括以下步骤,载体鸡蛋壳的制备;蛋壳/四氧化三铁纳米复合材料的制备;提取植物提取液;蛋壳/四氧化三铁/钯纳米复合材料的制备。该复合材料对对硝基苯酚有较好的催化作用,在处理该化合物方面有重要的应用价值,其材料制备原料易得,绿色环保。

Description

一种用于去除对硝基苯酚材料的制备方法和应用
技术领域
本发明涉及金属纳米颗粒技术领域,尤其涉及一种制备Eggshell-Fe3O4/Pd纳米复合材料的方法及其在用于去除对硝基苯酚的应用。
背景技术
被广泛应用到染料、农药、医药等精细化工产品生产过程中的重要有机合成原料对硝基苯酚,随着精细化工产业的快速发展而越来越多含着对硝基苯酚的废水被排放到环境中,使得地表和地下水中对硝基苯酚浓度迅速增加,对硝基苯酚在表层土壤和地表水中通过光化学氧化作用容易分解;但在深层土壤和地下水中主要依靠生物作用降解,而生物作用降解速度很慢,从而导致对硝基苯酚滞留时间较长。对硝基苯酚可在水生生物体内富集,可长期停留在水体环境中,并且它不易随蒸汽挥发,对环境具有严重的污染性。它可通过呼吸吸入、食物摄取、皮肤接触等途径影响人类的健康,强烈的吸入会导致呼吸困难、体温升高、头痛、恶心等,严重时甚至会导致死亡。因此,中国和美国环保局均己将其列为优先控制污染物之一。
金属钯作为贵金属成员之一,其纳米材料具有极好的吸附和活化氢分子的能力,可用作难降解污染物加氢还原反应的催化剂。尤其针对水环境中的硝基芳香烃类、卤代化合物和偶氮化合物等芳香族难降解有机物。而且纳米金属颗粒具有高比表面积和高表面能,这使它具有高反应活性和对化合物的高负载能力。贵金属具有熔点高、强度大、电热性稳定,抗电火花蚀耗性高、抗腐蚀性优良、高温抗氧化性能强、催化活性良好等特性。因此纳米钯催化剂在多种水环境污染(如地下水、化工、制药、印染废水等)的预处理过程中具有重要价值。纳米金属颗粒由于其独特的形貌,电子结构和化学表面性质,使其具有比表面积大,小尺寸效应和量子尺寸效应等优于体相材料的特性而备受关注。
然而,金属纳米材料的形成往往需要使用一系列有毒有害高成本化学试剂,如强还原剂(硼氢化钠等)、高温、真空环境、加压等高能耗的输入;另一方面,纳米颗粒会发生聚集现象,从而降低了效果。传统制备纳米钯的方法有诸多的弊端,利用植物质中某些物质的还原作用和保护作用,可以有效还原金属钯盐溶液,保护得到的钯纳米粒子,防止团聚。而且在绿色合成纳米钯的使用过程中也不会对环境造成污染,一种生产成本低、绿色环保的技术,具有重要的研究和应用价值。
另一方面,大多数鸡蛋壳都会被作为垃圾废弃物弃置在垃圾场,这些蛋壳中残留的蛋清及蛋壳膜会很快腐败变质,不仅污染环境,也造成了蛋壳及蛋壳膜资源的浪费。本发明中利用鸡蛋壳废弃物作为生物模板,通过植物提取液作为还原剂,绿色合成了Eggshell-Fe3O4/Pd纳米复合材料。
发明内容
本发明的目的在于提出一种Eggshell-Fe3O4/Pd纳米复合材料及其制备方法和应用。本发明以废弃的鸡蛋壳作为模板,用水热法合成四氧化三铁,再以植物提取液为还原剂,将钯离子还原为钯纳米颗粒。其中包括载体鸡蛋壳(用英文单词Eggshell表示)的制备;蛋壳/四氧化三铁纳米复合材料的制备(Eggshell-Fe3O4);提取植物提取液;蛋壳/四氧化三铁/钯纳米复合材料的制备(Eggshell-Fe3O4/Pd)。该复合材料对对硝基苯酚有较好的催化作用,在处理该化合物方面有重要的应用价值,其材料制备原料易得,绿色环保。
为了达到上述目的,本发明采取以下技术方案:
一种Eggshell-Fe3O4/Pd纳米复合材料的制备方法,包括以下步骤:
步骤S1载体鸡蛋壳的制备:收集废弃鸡蛋壳,反复洗涤鸡蛋壳,再用水浸泡鸡蛋壳1-3小时,自然晾干,将晾干的鸡蛋壳用粉碎机打碎,过筛,取一定量过筛的鸡蛋壳粉末于坩埚中,于马弗炉中煅烧,所得粉末储存备用;
步骤S2Eggshell-Fe3O4纳米复合材料的制备:
步骤S21于反应釜中加入去离子水,再分别加入六水合三氯化铁、柠檬酸、乙二胺和氢氧化钠,搅拌直至溶解;
步骤S22取一定量步骤(1)所得鸡蛋壳粉末于反应釜中,搅拌;
步骤S23盖好反应釜,高温反应,反应结束等其冷却之后,通过磁铁分离并洗涤五遍,酒精洗涤一次;
步骤S24真空干燥箱干燥12h,得到的Eggshell-Fe3O4纳米复合材料储藏备用;
步骤S3提取植物提取液:将新鲜的植物叶烘干至黄色,取一定量的植物叶浸泡在一定量的去离子水中,放在摇床恒温24小时,离心,抽滤,将制得的植物提取液4℃储存;
步骤S4Eggshell-Fe3O4/Pd纳米复合材料的制备:
步骤S41取步骤S3中所制得的植物提取液加入到容器中,向其中加入一定量Eggshell-Fe3O4纳米复合材料,在25-80℃条件下搅拌均匀,反应0.5-3小时;
步骤S42不断搅拌过程中,滴加10~50mL一定浓度的硝酸钯溶液,反应0.5-3小时;
步骤S43待反应结束时,取出离心,干燥,储存备用。
其中步骤S1所述的鸡蛋壳过筛目数为100~1000目;所述在马弗炉中煅烧温度为100℃~600℃,煅烧时间为1~6h。
其中步骤S21中所述的去离子水的用量为1~30mL,六水合氯化铁用量为0.1~1g,柠檬酸用量为0.1~1g,乙二胺用量为1~10mL,氢氧化钠用量为0.1~1g。
其中步骤S22中所述的鸡蛋壳粉末用量为0.1~1g;步骤S23中所述的高温反应温度为100~200℃,反应时间为10~20h。
其中步骤S3所述植物叶为侧柏叶,桉树叶,葡萄树叶,石榴树叶,芦荟中的任意一种。
其中步骤S3所述提取植物提取液过程中具体为取1-5g的植物叶浸泡在100mL的去离子水中。
其中步骤S41所述的Eggshell-Fe3O4纳米复合材料的用量为0.1~3g;步骤S42所述的硝酸钯浓度为0.001~0.01mol/L,用量为10~50mL。
所述的鸡蛋壳载体也包括主要成分为CaCO3的其它壳类,例如鸭蛋壳、贝壳、牡蛎壳、螺壳、扇贝壳等。
所述制备方法获得的Eggshell-Fe3O4/Pd纳米复合材料在废水处理中的用于,特别是用于去除对硝基苯酚的应用。
本发明的显著优点在于:
(1)本发明采用废弃鸡蛋壳作为原料,废物利用,其作为模板使得负载在鸡蛋壳上的纳米材料不易团聚;鸡蛋壳表面有许多的气孔增加比表面积吸附处理物;鸡蛋壳粉作为载体,降低了材料的生产成本。
(2)本发明使用植物提取物作为还原剂,一方面成本低廉且绿色环保,另一方面利用提取物有机大分子对负载的金属纳米颗粒起到一定分散作用。
(3)本发明制作不需要昂贵的设备。制备的Eggshell-Fe3O4/Pd纳米复合材料催化能力强,催化对硝基苯酚速度快高、样品用量少,体系由黄色变为无色透明溶液。
附图说明
图1为实施例1制备的Eggshell-Fe3O4/Pd纳米复合材料的扫描电镜图。
图2为实施例1制备的Eggshell-Fe3O4/Pd纳米复合材料的X光微区分析。
图3为制备的不同阶段材料效果对比。
图4为制备的Eggshell-Fe3O4/Pd纳米复合材料用量对材料的效果。
具体实施方式
下面结合具体实施例和附图对本发明做进一步的详细说明。
实施例1:
所述的Eggshell-Fe3O4/Pd纳米复合材料的制备方法,包含以下步骤:
(1)、载体鸡蛋壳的制备:收集废弃鸡蛋壳,反复洗涤鸡蛋壳,再用水浸泡鸡蛋壳小时,自然晾干。将晾干的鸡蛋壳用粉碎机打碎,过筛,取一定量过筛的鸡蛋壳粉末于坩埚中,于马弗炉中600℃煅烧3小时。所得粉末储存备用。
(2)、Eggshell-Fe3O4纳米复合材料的制备:
A、于反应釜中加入30mL去离子水,再分别加入0.5g六水合三氯化铁、0.5g柠檬酸、10mL乙二胺和0.1g氢氧化钠,搅拌直至溶解;
B、取1.0g步骤(1)所得鸡蛋壳粉末于反应釜中,搅拌0.5h;
C、盖好反应釜,高温200℃反应18h,反应结束等其冷却之后,通过磁铁分离并洗涤五遍,酒精洗涤一次;
D、真空干燥箱60℃条件下干燥12h,得到的Eggshell-Fe3O4纳米复合材料储藏备用。
(3)提取植物提取液:将新鲜的侧柏叶烘干至黄色,取5g侧柏叶浸泡在100mL的去离子水中,放在摇床恒温24小时,离心,抽滤,将制得的植物提取液4℃储存。
(4)Eggshell-Fe3O4/Pd纳米复合材料的制备:
A、取步骤(3)中所制得的植物提取液加入到容器中,向其中加入1.0g的Eggshell-Fe3O4纳米复合材料,在80℃条件下搅拌均匀,反应2个小时;
B、不断搅拌过程中,滴加25mL 0.005M硝酸钯溶液;
C、待反应结束时,取出离心,干燥,储存备用。
制备的Eggshell-Fe3O4/Pd纳米复合材料得扫描电镜图如图1所示,材料很好的负载在鸡蛋壳上面,并且可以看出颗粒都在100nm以下。对制备好Eggshell-Fe3O4/Pd的纳米复合材料进行EDS分析,如图2所示,有Fe和Pd元素存在。
催化对硝基苯酚的催化活性对比研究,使用以下方法:
a、25mL水+2mL对硝基苯酚(1mmol/L)+4ml NaBH4(0.33mol/L);
b、25mL水+2mL对硝基苯酚(1mmol/L)+4ml NaBH4(0.33mol/L)+1mg Eggshell-Fe3O4的纳米复合材料;
c、25mL水+2mL对硝基苯酚(1mmol/L)+4ml NaBH4(0.33mol/L)+1mg Eggshell-Fe3O4/Pd的纳米复合材料;
分别测定200~600nm波长下吸光度,绘制吸光度-波长图,得到图3。
比较其他反应系统,如图3所示,1min的时间,Eggshell-Fe3O4/Pd的纳米复合材料
催化展示了一个快速的反应速度,它的催化效率远高于Eggshell-Fe3O4的纳米复合材料。
实施例4:
a、25mL水+2mL对硝基苯酚(1mmol/L)+4ml NaBH4(0.33mol/L);
b、取A中所制溶液3mL+1μL Eggshell-Fe3O4/Pd纳米复合材料(10mg/ml);
c、取A中所制溶液3mL+5μL Eggshell-Fe3O4/Pd纳米复合材料(10mg/ml);
d、取A中所制溶液3mL+10μL Eggshell-Fe3O4/Pd纳米复合材料(10mg/ml);
e、取A中所制溶液3mL+15μL Eggshell-Fe3O4/Pd纳米复合材料(10mg/ml);
f、取A中所制溶液3mL+20μL Eggshell-Fe3O4/Pd纳米复合材料(10mg/ml);
分别测定200~600nm波长下吸光度,绘制吸光度-波长图,得到图4。
如图4所示,1min后反应体系在400nm处的吸收峰随着样品量增加而降低,当样品量达到10μL时,已达到良好的催化效果。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种用于去除对硝基苯酚材料的制备方法,其特征在于:所述用于去除对硝基苯酚材料是Eggshell-Fe3O4/Pd纳米复合材料,具体由鸡蛋壳作为载体,在其表面负载上Fe3O4纳米材料,通过植物提取液原位还原Pd纳米颗粒,制备得到所述纳米复合材料。
2.根据权利要求1所述的一种用于去除对硝基苯酚材料的制备方法,其特征在于:包含以下步骤:
步骤S1载体鸡蛋壳的制备:收集废弃鸡蛋壳,反复洗涤鸡蛋壳,再用水浸泡鸡蛋壳1-3小时自然晾干,将晾干的鸡蛋壳用粉碎机打碎,过筛,取一定量过筛的鸡蛋壳粉末于坩埚中,于马弗炉中煅烧,所得粉末储存备用;
步骤S2 Eggshell-Fe3O4纳米复合材料的制备:
步骤S21于反应釜中加入去离子水,再分别加入六水合三氯化铁、柠檬酸、乙二胺和氢氧化钠,搅拌直至溶解;
步骤S22取一定量步骤S1所得鸡蛋壳粉末于反应釜中,搅拌;
步骤S23盖好反应釜,高温反应,反应结束等其冷却之后,通过磁铁分离并洗涤五遍,酒精洗涤一次;
步骤S24真空干燥箱干燥12 h,得到的Eggshell-Fe3O4纳米复合材料储藏备用;
步骤S3提取植物提取液:将新鲜的植物叶烘干至黄色,取一定量的植物叶浸泡在一定量的去离子水中,放在摇床恒温24小时,离心,抽滤,将制得的植物提取液4 ℃ 储存;
步骤S4 Eggshell-Fe3O4/Pd纳米复合材料的制备:
步骤S41取步骤S3中所制得的植物提取液加入到容器中,向其中加入一定量Eggshell-Fe3O4纳米复合材料,在25-80℃条件下搅拌均匀,反应0.5-3小时;
步骤S42不断搅拌过程中,滴加10~50 mL 一定浓度的硝酸钯溶液,反应0.5-3小时;
步骤S43待反应结束时,取出离心,干燥,储存备用。
3.根据权利要求2所述的一种用于去除对硝基苯酚材料的制备方法,其特征在于:步骤S1所述的鸡蛋壳过筛目数为100~1000目;所述在马弗炉中煅烧温度为100 ℃~600 ℃,煅烧时间为1~6 h。
4.根据权利要求2所述的一种用于去除对硝基苯酚材料的制备方法,其特征在于:步骤S21中所述的去离子水的用量为1~30 mL,六水合氯化铁用量为0.1~1 g,柠檬酸用量为0.1~1 g,乙二胺用量为1~10 mL,氢氧化钠用量为0.1~1 g。
5.根据权利要求2所述的一种用于去除对硝基苯酚材料的制备方法,其特征在于:步骤S22中所述的鸡蛋壳粉末用量为0.1~1 g;步骤S23中所述的高温反应温度为100~200 ℃,反应时间为10~20 h。
6.根据权利要求2所述的一种用于去除对硝基苯酚材料的制备方法,其特征在于:步骤S3所述植物叶为侧柏叶,桉树叶,葡萄树叶,石榴树叶,芦荟中的任意一种。
7.根据权利要求2所述的一种用于去除对硝基苯酚材料的制备方法,其特征在于:步骤S3所述提取植物提取液过程中具体为取1-5 g的植物叶浸泡在100 mL的去离子水中。
8.根据权利要求2所述的一种用于去除对硝基苯酚材料的制备方法,其特征在于:步骤S41所述的Eggshell-Fe3O4纳米复合材料的用量为0.1~3 g;步骤S42所述的硝酸钯浓度为0.001~0.01 mol/L,用量为10~50 mL。
9.一种如权利要求1~8任一项所述方法制备获得的用于去除对硝基苯酚材料。
10.一种如权利要求1~8任一项所述方法制备获得的用于去除对硝基苯酚材料在用于废水处理上的应用。
CN201910200251.7A 2019-03-16 2019-03-16 一种用于去除对硝基苯酚材料的制备方法和应用 Pending CN109847774A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910200251.7A CN109847774A (zh) 2019-03-16 2019-03-16 一种用于去除对硝基苯酚材料的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910200251.7A CN109847774A (zh) 2019-03-16 2019-03-16 一种用于去除对硝基苯酚材料的制备方法和应用

Publications (1)

Publication Number Publication Date
CN109847774A true CN109847774A (zh) 2019-06-07

Family

ID=66900955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910200251.7A Pending CN109847774A (zh) 2019-03-16 2019-03-16 一种用于去除对硝基苯酚材料的制备方法和应用

Country Status (1)

Country Link
CN (1) CN109847774A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112658278A (zh) * 2020-12-18 2021-04-16 潍坊科技学院 钯铁双金属纳米材料的绿色制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913675A (zh) * 2010-08-04 2010-12-15 南京信息工程大学 一种改性废弃蛋壳去除水中磷的方法
CN104223100A (zh) * 2014-09-05 2014-12-24 安徽科技学院 一种以蛋壳、贝壳和氧化镁制备复合有机酸钙镁盐的方法
CN105498783A (zh) * 2016-01-28 2016-04-20 郑州航空工业管理学院 Fe3O4/CeO2纳米复合材料、制备方法及其应用
CN106311274A (zh) * 2016-07-29 2017-01-11 武汉工程大学 一种对硝基苯酚催化加氢用磁性纳米催化剂及其制备方法和应用
CN107570213A (zh) * 2017-10-12 2018-01-12 湖北工业大学 一种四氧化三铁纸基多相催化材料的制备方法
CN108499542A (zh) * 2018-05-03 2018-09-07 石狮纳通新材料科技有限公司 一种高效处理环境废水的基于鸡蛋壳的复合材料及其制备方法
CN108636370A (zh) * 2018-05-24 2018-10-12 石狮纳通新材料科技有限公司 一种基于牡蛎壳的纳米磁性粉体材料制备方法及应用
CN109317141A (zh) * 2018-11-14 2019-02-12 泉州师范学院 一种用于苯催化氧化的Pt基催化剂的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913675A (zh) * 2010-08-04 2010-12-15 南京信息工程大学 一种改性废弃蛋壳去除水中磷的方法
CN104223100A (zh) * 2014-09-05 2014-12-24 安徽科技学院 一种以蛋壳、贝壳和氧化镁制备复合有机酸钙镁盐的方法
CN105498783A (zh) * 2016-01-28 2016-04-20 郑州航空工业管理学院 Fe3O4/CeO2纳米复合材料、制备方法及其应用
CN106311274A (zh) * 2016-07-29 2017-01-11 武汉工程大学 一种对硝基苯酚催化加氢用磁性纳米催化剂及其制备方法和应用
CN107570213A (zh) * 2017-10-12 2018-01-12 湖北工业大学 一种四氧化三铁纸基多相催化材料的制备方法
CN108499542A (zh) * 2018-05-03 2018-09-07 石狮纳通新材料科技有限公司 一种高效处理环境废水的基于鸡蛋壳的复合材料及其制备方法
CN108636370A (zh) * 2018-05-24 2018-10-12 石狮纳通新材料科技有限公司 一种基于牡蛎壳的纳米磁性粉体材料制备方法及应用
CN109317141A (zh) * 2018-11-14 2019-02-12 泉州师范学院 一种用于苯催化氧化的Pt基催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAHMOUD NASROLLAHZADEH,等: "Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
MARYAM BORDBAR,等: "Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time", 《ENVIRON SCI POLLUT RES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112658278A (zh) * 2020-12-18 2021-04-16 潍坊科技学院 钯铁双金属纳米材料的绿色制备方法及其应用

Similar Documents

Publication Publication Date Title
Bolade et al. Green synthesis of iron-based nanomaterials for environmental remediation: A review
Fouda et al. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye
Khan et al. Polymer supported metallic nanoparticles as a solid catalyst for the removal of organic pollutants
Rani et al. Sunlight mediated improved photocatalytic degradation of carcinogenic benz [a] anthracene and benzo [a] pyrene by zinc oxide encapsulated hexacyanoferrate nanocomposite
Ebrahimzadeh et al. Eco-friendly green synthesis and characterization of novel Fe 3 O 4/SiO 2/Cu 2 O–Ag nanocomposites using Crataegus pentagyna fruit extract for photocatalytic degradation of organic contaminants
Alshehri et al. Facile one-pot biogenic synthesis of Cu-Co-Ni trimetallic nanoparticles for enhanced photocatalytic dye degradation
CN108479811A (zh) 一种降解抗生素废水的z型声催化剂及其制备方法和应用
Zelekew et al. Green synthesis of Co-doped ZnO via the accumulation of cobalt ion onto Eichhornia crassipes plant tissue and the photocatalytic degradation efficiency under visible light
Haseena et al. Investigation on photocatalytic and antibacterial ability of green treated copper oxide nanoparticles using Artabotrys Hexapetalus and Bambusa Vulgaris plant extract
Orooji et al. Lignosulfonate valorization into a Cu-containing magnetically recyclable photocatalyst for treating wastewater pollutants in aqueous media
Ekinci et al. Green synthesis of copper oxide and manganese oxide nanoparticles from watermelon seed shell extract for enhanced photocatalytic reduction of methylene blue
Mirsadeghi et al. Superior degradation of organic pollutants and H2O2 generation ability on environmentally-sound constructed Fe3O4-Cu nanocomposite
Meena et al. Millettia pinnata plant pod extract-mediated synthesis of Bi2O3 for degradation of water pollutants
Kaushal et al. Metal organic framework-derived Zr/Cu bimetallic photocatalyst for the degradation of tetracycline and organic dyes
Skiba et al. Synthesis OF AG/TIO2 nanocomposite via plasma liquid interactions and degradation methylene blue
Yashni et al. A review on green synthesis of ZnO nanoparticles using Coriandrum sativum leaf extract for degrading dyes in textile wastewater: a prospect towards green chemistry
Ramesh et al. Photocatalytic dye degradation activities of green synthesis of cuprous oxide nanoparticles from Sargassum wightii extract
Hariram et al. Phytochemical process for the functionalization of materials with metal nanoparticles: Current trends and future perspectives
Saeed et al. Mixed metal ferrite (Mn0. 6Zn0. 4Fe2O4) intercalated g-C3N4 nanocomposite: efficient sunlight driven photocatalyst for methylene blue degradation
CN109847774A (zh) 一种用于去除对硝基苯酚材料的制备方法和应用
Montazer et al. Synthesis of cuttlebone/carbon quantum dots/nickel oxide nanocomposite for visible light photodegradation of malachite green used for environmental remediation
Wendari et al. CuFe2O4/activated carbon nanocomposite for efficient photocatalytic degradation of dye: Green synthesis approaches using the waste of oil palm empty bunches and bio-capping agent
Johnson et al. Green mediated sol-gel synthesis of copper oxide nanoparticle: An efficient candidate for waste water treatment and antibacterial agent
Maru et al. Effect of Musa acuminata peel extract on synthesis of ZnO/CuO nanocomposites for photocatalytic degradation of methylene blue
Saleem et al. Fabrication of lanthanum-ferrite perovskite oxide (LaFeO3) using Terminalia arjuna leaf extract for the efficient photocatalytic degradation of malachite green

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190607

RJ01 Rejection of invention patent application after publication