CN109842373B - 基于时空分布特性的光伏阵列故障诊断方法及装置 - Google Patents

基于时空分布特性的光伏阵列故障诊断方法及装置 Download PDF

Info

Publication number
CN109842373B
CN109842373B CN201910300340.9A CN201910300340A CN109842373B CN 109842373 B CN109842373 B CN 109842373B CN 201910300340 A CN201910300340 A CN 201910300340A CN 109842373 B CN109842373 B CN 109842373B
Authority
CN
China
Prior art keywords
time
component
fault diagnosis
data
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910300340.9A
Other languages
English (en)
Other versions
CN109842373A (zh
Inventor
赵健
周宁
刘昊
孙芊
王鹏
徐铭铭
谢芮芮
朱红路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
North China Electric Power University
Electric Power Research Institute of State Grid Henan Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
North China Electric Power University
Electric Power Research Institute of State Grid Henan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, North China Electric Power University, Electric Power Research Institute of State Grid Henan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201910300340.9A priority Critical patent/CN109842373B/zh
Publication of CN109842373A publication Critical patent/CN109842373A/zh
Application granted granted Critical
Publication of CN109842373B publication Critical patent/CN109842373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本申请涉及一种基于时空分布特性的光伏阵列故障诊断方法及装置,本申请从光伏电站的历史运行数据及历史环境数据出发,以光伏阵列出力的时间和空间分布函数计算得出光伏出力的时间分量和空间分量,并以此为训练数据集,以训练数据集对概率神经网络进行训练,得出光伏阵列故障诊断模型,建立的光伏支路出力的时间函数和空间函数,可以有效描述不同故障条件下组串电流的分布规律;基于概率神经网络建立了光伏电站直流侧阵列故障诊断方法,诊断精度高。最终使用支路电流数据输入光伏阵列故障诊断模型即可实现多种类型故障的诊断,能够充分有效利用实际工程现有数据。

Description

基于时空分布特性的光伏阵列故障诊断方法及装置
技术领域
本申请属于光伏电站直流侧故障诊断领域,尤其是涉及一种基于时空分布特性的光伏阵列故障诊断方法及装置。
背景技术
近年来光伏电池成本大幅降低,光伏产业发展迅速,光伏电站装机容量不断增长。至2018年底,中国光伏市场的累计光伏装机容量达到了174.63GW,2018年新增了约44.1GW的光伏装机容量。大型光伏电站直流侧组件数量庞大、结构复杂,同时运行环境恶劣等因素造成了电站故障频发。如果不能及时的排除故障,受故障影响电站的运行效率将会大幅降低,甚至会严重影响光伏电站的安全运行。因此实时监控光伏阵列的运行状态并且及时发现故障、定位故障对光伏电站安全运行十分重要。
目前,光伏电站故障诊断的研究主要有基于传感器,基于参考模型和基于智能算法几类,但是上述三类方法没有充分利用光伏阵列之间的偏差信息及出力时间序列中包含的信息,不能表现出故障的过程变化和空间偏差,同时还存在安装复杂、成本高、建模困难、故障样本提取困难等问题,在实际的工程应用中受到了约束。
另外,大型光伏电站或区域分布式光伏电站中阵列数量庞大,阵列出力之间具有强相关性。阵列性能差异和故障演化信息又被光伏出力的强波动特性所淹没,带来了光伏阵列故障诊断的困难。
发明内容
本发明要解决的技术问题是:为解决现有技术中光伏阵列故障诊断的困难,从而提供一种基于时空分布特性的光伏阵列故障诊断方法及装置。
本发明解决其技术问题所采用的技术方案是:
一种基于时空分布特性的光伏阵列故障诊断方法,包括如下步骤:
S1.收集光伏电站历史运行数据及历史环境数据;
S2.建立光伏阵列出力的时间和空间分布函数;
S3.通过光伏出力的时间和空间分布函数对历史运行数据及历史环境数据信息进行计算得出光伏出力的时间分量和空间分量,得到训练数据集,以训练数据集对概率神经网络进行训练,得出光伏阵列故障诊断模型;
S4.利用时间和空间分布函数对具有光伏阵列的电站实时运行数据进行时间和空间分量计算,并将计算得到的时间和空间分量数据输入到光伏阵列故障诊断模型中对光伏阵列进行故障诊断。
优选地,本发明的故障诊断方法,所述历史运行数据包括光伏电站历史组串电流数据,历史环境数据包括光伏电站所对应的历史辐照度数据。
优选地,本发明的故障诊断方法,所述步骤S3包括:
S21.建立时间分量理论参考电流值Ipre,T,S
Ipre,T,S=a·RT+b;
其中,Ipre,T,S为T时刻S组串的理论参考电流值,a、b为对于历史数据进行拟合得到的系数;RT为T时刻的辐照度;
S22.根据同一阵列的各组串实时运行电流数据建立空间分量标准参考电流
Figure BDA0002028039080000021
Figure BDA0002028039080000022
其中,
Figure BDA0002028039080000023
为T时刻汇流箱的标准参考电流值,IT,S为T时刻S组串的实测电流值,n为汇流箱中的组串数;
S23.建立光伏阵列电流的包括时间分量函数和空间分量函数的时间和空间分布函数;
时间分量函数为:
DT(xT,xS)=IT,S-Ipre,T,S
DT(xT,xS)为T时刻S组串的时间分量;IT,S为T时刻S组串的实测电流值;Ipre,T,S为T时刻S组串的理论参考电流值,
空间分量函数为:
Figure BDA0002028039080000024
其中,DS(xT,xS)为T时刻S组串的空间分量;
Figure BDA0002028039080000025
为T时刻汇流箱的标准参考电流值。
优选地,本发明的故障诊断方法,所述步骤S4包括:
S31.利用得到的时间分量函数与空间分量函数计算出光伏阵列历史电流时间分量与空间分量;
S32.将得到的数据进行分类,得出正常运行条件训练数据集与不同故障条件下训练数据集;
S33.将光伏阵列的时间分量与空间分量数据作为训练数据利用概率神经网络建立光伏阵列故障诊断模型;
S34.以诊断精度最高的模型作为最终的神经网络故障诊断模型。
优选地,本发明的故障诊断方法,所述步骤S5包括:
S41.利用时间分量函数与空间分量函数计算出光伏阵列运行电流的时间分量与空间分量,将时间分量与空间分量作为输入数据,输入到故障诊断模型;
S42.通过故障诊断模型的判断得出故障诊断结果,判断光伏阵列的运行状态。
本发明还提供一种基于时空分布特性的光伏阵列故障诊断装置,包括:
数据采集模块:用于收集光伏电站历史运行数据及历史环境数据;
分布函数计算模块:用于建立光伏阵列出力的时间和空间分布函数;
故障诊断模型计算模块:用于通过光伏出力的时间和空间分布函数对历史运行数据及历史环境数据信息进行计算得出光伏出力的时间分量和空间分量,得到训练数据集,以训练数据集对概率神经网络进行训练,得出光伏阵列故障诊断模型;
故障诊断模块:用于利用时间和空间分布函数对具有光伏阵列的电站实时运行数据进行时间和空间分量计算,并将计算得到的时间和空间分量数据输入到光伏阵列故障诊断模型中对光伏阵列进行故障诊断。
优选地,本发明的基于时空分布特性的光伏阵列故障诊断装置,所述数据采集模块中所述历史运行数据包括光伏电站历史组串电流数据,历史环境数据包括光伏电站所对应的历史辐照度数据。
优选地,本发明的基于时空分布特性的光伏阵列故障诊断装置,所述故障诊断模型计算模块包括:
时间分量理论参考电流值计算子模块:用于建立时间分量理论参考电流值Ipre,T,S
Ipre,T,S=a·RT+b;
其中,Ipre,T,S为T时刻S组串的理论参考电流值,a、b为对于历史数据进行拟合得到的系数;RT为T时刻的辐照度;
空间分量标准参考电流计算子模块:用于根据同一阵列的各组串实时运行电流数据建立空间分量标准参考电流
Figure BDA0002028039080000041
Figure BDA0002028039080000042
其中,
Figure BDA0002028039080000043
为T时刻汇流箱的标准参考电流值,IT,S为T时刻S组串的实测电流值,n为汇流箱中的组串数;
分量函数计算子模块:用于建立光伏阵列电流的包括时间分量函数和空间分量函数的时间和空间分布函数;
时间分量函数为:
DT(xT,xS)=IT,S-Ipre,T,S
DT(xT,xS)为T时刻S组串的时间分量;IT,S为T时刻S组串的实测电流值;Ipre,T,S为T时刻S组串的理论参考电流值,
空间分量函数为:
Figure BDA0002028039080000044
其中,DS(xT,xS)为T时刻S组串的空间分量;
Figure BDA0002028039080000045
为T时刻汇流箱的标准参考电流值。
优选地,本发明的基于时空分布特性的光伏阵列故障诊断装置,所述故障诊断模型计算模块包括:
时间分量与空间分量计算子模块:用于利用得到的时间分量函数与空间分量函数计算出光伏阵列历史电流时间分量与空间分量;
训练数据集获取子模块:用于将得到的数据进行分类,得出正常运行条件训练数据集与不同故障条件下训练数据集;
光伏阵列故障诊断模型训练子模块:用于将光伏阵列的时间分量与空间分量数据作为训练数据利用概率神经网络建立光伏阵列故障诊断模型;
神经网络故障诊断模型校正子模块:以诊断精度最高的模型作为最终的神经网络故障诊断模型。
优选地,本发明的基于时空分布特性的光伏阵列故障诊断装置,所述故障诊断模块包括:
数据输入子模块:用于利用时间分量函数与空间分量函数计算出光伏阵列运行电流的时间分量与空间分量,将时间分量与空间分量作为输入数据,输入到故障诊断模型;
结果输出子模块:用于通过故障诊断模型的判断得出故障诊断结果,判断光伏阵列的运行状态。
本发明的有益效果是:
本发明的基于时空分布特性的光伏阵列故障诊断方法,从光伏电站的历史运行数据及历史环境数据出发,以光伏阵列出力的时间和空间分布函数计算得出光伏出力的时间分量和空间分量,并以此为训练数据集,以训练数据集对概率神经网络进行训练,得出光伏阵列故障诊断模型,建立的光伏支路出力的时间函数和空间函数,可以有效描述不同故障条件下组串电流的分布规律;基于概率神经网络建立了光伏电站直流侧阵列故障诊断方法,诊断精度高。最终使用支路电流数据输入光伏阵列故障诊断模型即可实现多种类型故障的诊断,能够充分有效利用实际工程现有数据。
附图说明
下面结合附图和实施例对本申请的技术方案进一步说明。
图1为实施例1的基于时空分布特性的光伏阵列故障诊断方法的流程图。
图2a为不同支路在同一天的电流分布图。
图2b为不同支路在同一天的电流与标准参考电流之差的分布图。
图2c为一条支路在不同日期的电流分布图。
图2d为一条支路在不同日期的电流与标准参考电流之差的分布图。
图3a为组串电流的时间分量的分布图。
图3b为组串电流的空间分量的分布图。
图4a为实验组串与其相邻的正常组串的对比情况图。
图4b正常组串电流与故障组串电流的时间分量的分布情况。
图4c正常组串电流与故障组串电流的空间分量的分布情况。
图4d展示了不同故障的时空联合分布情况图。
图5为概率神经网络的结构图。
图6为概率神经网络模型的PNN训练结果图。
图7为使用基于时空分布特性的光伏阵列故障诊断方法进行故障诊断的结果图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本申请的技术方案。
实施例
下面和附图和具体实施例,对本发明的光伏阵列故障诊断方法作进一步说明。
一种考虑光伏出力时空分布特性的光伏阵列故障诊断方法,流程图如图1所示,具体步骤如下:
S1.收集光伏电站历史运行数据及历史环境数据。
历史运行数据包括光伏电站的各组串历史电流数据,历史环境数据包括光伏电站所对应的历史辐照度。
本实施例里选取中国山东某光伏电站2017年全年的数据作为实验,此电站由容量为40MW的光伏发电系统、太阳能气象站、光伏电站监控系统组成,数据采样时间为10分钟。
收集到的光伏电站历史数据分析光伏出力及其波动的分布特征,具体包括如下步骤:
根据步骤S1所收集的数据,通过光伏电站参考组串电流Ith(t)与实际组串电流Ir(t)计算电流偏差ΔI。
ΔI=Ith(t)-Ir(t);
电流偏差描述了在光伏组串电流在不同条件下实际组串电流与理论组串电流的差值,能够更加直观地表现出光伏出力在不同组串之间以及不同天气下的波动情况。
根据上述步骤的计算结果,统计分析光伏电站输出电流I、电流偏差ΔI在同一辐照度水平下不同支路的出力分布以及同一支路不同天气条件下的出力分布特性,得到光伏组串出力具有明显的时间和空间分布特征。
如图2a-图2d所示,1)同一时间下不同支路之间的电流具有高度相似性,但是仍然存在一定差异;2)随着支路之间的距离变大,支路之间的差异有变大的趋势;3)光伏支路输出电流主要受到太阳辐射强度的影响呈现强随机波动特性。有效描述大量光伏支路并行运行时其出力的时间和空间特性,并提取出光伏故障特征是在目前光伏电站监控条件下实现故障诊断的一种有效途径。
S2.直接利用上述步骤的光伏出力的时空分布特征建立光伏阵列出力的时间和空间分布函数,具体包括如下步骤:
S21.根据光伏组串的历史电流和辐照度数据建立时间分量标准参考电流Ipre,T,S为T时刻S组串的理论参考电流值:
Ipre,T,S=a·RT+b
其中,a、b为对于光伏组串的历史电流和辐照度数据的历史数据进行拟合得到的系数;RT为T时刻的辐照度;
S22.根据同一阵列的实时组串运行电流数据建立空间分量标准参考电流
Figure BDA0002028039080000071
Figure BDA0002028039080000072
其中,
Figure BDA0002028039080000073
为T时刻汇流箱的标准参考电流值,IT,S为T时刻S组串的实测电流值,n为汇流箱中的组串数;
S23.建立光伏阵列电流的时空分布特征函数
假设有N个数据x1,x2,…,xN每个数据由一个空间分量和一个时间分量组成。对于第k个数据xk,有xk=[xk(t)||xk(s)],其中xk(t)代表数据的时间分量,xk(s)代表数据的空间分量。假设空间分量的维数为r,时间分量的维数为q,则可以得到维数为N=r+q的第k个数据的表达式如下所示:
xk=[xk1(t),..,xkq(t)||xk1(s),...,xkr(s)]
时间分量函数为:
DT(xT,xS)=IT,S-Ipre,T,S
DT(xT,xS)为T时刻S组串的时间分量;IT,S为T时刻S组串的实测电流值;Ipre,T,S为T时刻S组串的理论参考电流值;
空间分量函数为:
Figure BDA0002028039080000081
其中,DS(xT,xS)为T时刻S组串的空间分量;
Figure BDA0002028039080000082
为T时刻汇流箱的标准参考电流值。
S3.通过光伏出力时空分量的历史信息对概率神经网络进行训练,得出光伏阵列故障诊断模型,具体包括如下步骤:
S31.利用时间分量函数与空间分量函数计算出光伏阵列运行电流的时间分量与空间分量,将时间分量与空间分量作为输入数据,输入到故障诊断模型;
图3a和图3b分别展示了7天时间内4条正常组串电流与标准参考电流的时间分量、空间分量的变化情况,其中3a图展示的是时间分量的分布情况,图3b展示了空间分量的分布情况。从图3a和图3b中可以看出,正常组串电流的时间分量随时间变化波动相对较大,组串之间的波动基本一致;组串空间分量基本保持在-0.3到0.3之间波动,不同组串之间的空间分量有一定的差异。其中标准参考电流的时间分量与空间分量相对实际正常组串电流来说基本是一条平直的直线,波动极小。
S32.将得到的数据进行分类,得出正常运行条件训练数据集与不同故障条件下训练数据集;
实际光伏电站中经常出现以下几种故障:组串中组件开路,组件异常老化以及阴影遮挡。为说明组串在不同故障条件下出力的时空分布特性,并验证和测试所提方法的正确性,于光伏电站中选取一条光伏支路进行实验验证。本文对光伏组串设置了四种状态,分别是正常、组件异常老化、阴影遮挡、组件开路。以天为单位在同一组串上进行为期20天的实验,并利用16天的数据用于算法的训练,然后利用剩下的数据进行方法验证。图4说明了不同故障条件下光伏支路出力的时空分布特性。其中图4a-图4d中图4a为实验组串与其相邻的正常组串的对比情况,第一天不设故障,第二天通过在实验组串串联电阻模拟异常老化故障,第三天在中午时段模拟阴影遮挡故障,第四天模拟了开路故障。图4d展示了不同故障的时空联合分布情况图。图4b、图4c分别展示了正常组串电流与故障组串电流的时间分量、空间分量的分布情况。由图4a-图4d可知,组串出力时空分量在不同故障条件下的分布差异明显,说明了基于光伏支路出力的时空分布特性进行故障诊断是可行的。
S33.将光伏阵列的时空分量数据作为训练数据利用概率神经网络建立光伏阵列故障诊断模型;
概率神经网络是由径向基函数网络发展而来的一种前馈型神经网络,它在径向基函数神经网络的基础上,融合了密度函数估计和贝叶斯决策理论,适合于模式分类,并且具有网络学习过程简单,学习速度快,分类准确,对错误和噪声容忍度高,容错性好,分类能力强的优势。概率神经网络一般分为4层分别是:输入层、模式层、求和层、输出层组成。1)输入层负责将特征向量传入网络并将数据传递给隐含层,其神经元个数与输入向量长度相等。2)模式层通过连接权值与输入层连接,计算输入特征向量与训练集中各个模式的匹配程度,模式层的神经元的个数与输入样本矢量的个数相等。3)求和层将属于某类的概率累计,从而得到故障模式的估计概率密度函数,这一层的神经元个数是样本的类别数目。4)输出层的作用是在各个故障模式的估计概率密度中选择一个具有最大后验概率密度的神经元作为整个系统的输出。输入层和模式层之间是通过高斯函数连接的,求得模式层中的每个神经元和输入层中每个神经元之间的匹配程度。然后通过每类的匹配程度累加求和,再取平均,得到输入样本的所属类别。
Figure BDA0002028039080000091
yg(x,σ)为平滑参数σ下对输入向量x的分类结果;lg表示g类的数量;m表示样本维度;σ表示平滑参数,一般在0到1之间;xi,j表示g类的第i个神经元的第j个数据。假设有一个识别任务,样本类别有2类,每类样本个数不定,每一个样本的特征维度为3维,那么可以画出图5的网络结构图。
S34.以诊断精度最高的模型作为最终的神经网络故障诊断模型。
利用16天的数据进行训练,训练精度达到0.9904,选取不同的样本数量可以调整模型。图6展示了PNN的训练结果。
S4.利用时间和空间分布函数对具有光伏阵列的电站实时运行数据进行时间和空间分量计算,并将计算得到的时间和空间分量数据输入到光伏阵列故障诊断模型中对光伏阵列进行故障诊断,具体包括如下步骤:
S41.利用时间与空间分量函数计算出光伏阵列运行电流的时间分量与空间分量,将时间分量与空间分量作为输入数据,输入到故障诊断模型;
S42.通过故障诊断模型的判断得出故障诊断结果,判断光伏阵列的运行状态。
图7展示了四天时间本发明中所提方法的故障诊断结果。利用4天实验数据统计分析所提出的方法的准确性。由表1可知该方法对各类故障诊断的准确率都在97%以上,因此该故障诊断方法在实际的光伏电站故障诊断中具有很高的准确率,具有实际应用价值。
表1故障诊断准确率统计
Figure BDA0002028039080000101
本实施例还提供一种基于时空分布特性的光伏阵列故障诊断装置,包括:
数据采集模块:用于收集光伏电站历史运行数据及历史环境数据,所述历史运行数据包括光伏电站历史组串电流数据,历史环境数据包括光伏电站所对应的历史辐照度数据;
分布函数计算模块:用于建立光伏阵列出力的时间和空间分布函数;
故障诊断模型计算模块:用于通过光伏出力的时间和空间分布函数对历史运行数据及历史环境数据信息进行计算得出光伏出力的时间分量和空间分量,得到训练数据集,以训练数据集对概率神经网络进行训练,得出光伏阵列故障诊断模型;
故障诊断模块:用于利用时间和空间分布函数对具有光伏阵列的电站实时运行数据进行时间和空间分量计算,并将计算得到的时间和空间分量数据输入到光伏阵列故障诊断模型中对光伏阵列进行故障诊断。
所述故障诊断模型计算模块包括:
时间分量理论参考电流值计算子模块:用于建立时间分量理论参考电流值Ipre,T,S
Ipre,T,S=a·RT+b
其中,Ipre,T,S为T时刻S组串的理论参考电流值,a、b为对于历史数据进行拟合得到的系数;RT为T时刻的辐照度;
空间分量标准参考电流计算子模块:用于根据同一阵列的各组串实时运行电流数据建立空间分量标准参考电流
Figure BDA0002028039080000111
Figure BDA0002028039080000112
其中,
Figure BDA0002028039080000113
为T时刻汇流箱的标准参考电流值,IT,S为T时刻S组串的实测电流值,n为汇流箱中的组串数;
分量函数计算子模块:用于建立光伏阵列电流的包括时间分量函数和空间分量函数的时间和空间分布函数;
时间分量函数为:
DT(xT,xS)=IT,S-Ipre,T,S
DT(xT,xS)为T时刻S组串的时间分量;IT,S为T时刻S组串的实测电流值;Ipre,T,S为T时刻S组串的理论参考电流值,
空间分量函数为:
Figure BDA0002028039080000114
其中,DS(xT,xS)为T时刻S组串的空间分量;
Figure BDA0002028039080000115
为T时刻汇流箱的参考电流值。
所述故障诊断模型计算模块包括:
时间分量与空间分量计算子模块:用于利用得到的时间分量函数与空间分量函数计算出光伏阵列历史电流时间分量与空间分量;
训练数据集获取子模块:用于将得到的数据进行分类,得出正常运行条件训练数据集与不同故障条件下训练数据集;
光伏阵列故障诊断模型训练子模块:用于将光伏阵列的时间分量与空间分量数据作为训练数据利用概率神经网络建立光伏阵列故障诊断模型;
神经网络故障诊断模型校正子模块:以诊断精度最高的模型作为最终的神经网络故障诊断模型。
所述故障诊断模块包括:
数据输入子模块:用于利用时间分量函数与空间分量函数计算出光伏阵列运行电流的时间分量与空间分量,将时间分量与空间分量作为输入数据,输入到故障诊断模型;
结果输出子模块:用于通过故障诊断模型的判断得出故障诊断结果,判断光伏阵列的运行状态。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (6)

1.一种基于时空分布特性的光伏阵列故障诊断方法,其特征在于,包括如下步骤:
S1.收集光伏电站历史运行数据及历史环境数据;
S2.建立光伏阵列出力的时间和空间分布函数;
S3.通过光伏出力的时间和空间分布函数对历史运行数据及历史环境数据信息进行计算得出光伏出力的时间分量和空间分量,得到训练数据集,以训练数据集对概率神经网络进行训练,得出光伏阵列故障诊断模型;
S4.利用时间和空间分布函数对具有光伏阵列的电站实时运行数据进行时间和空间分量计算,并将计算得到的时间和空间分量数据输入到光伏阵列故障诊断模型中对光伏阵列进行故障诊断;
所述历史运行数据包括光伏电站历史组串电流数据,历史环境数据包括光伏电站所对应的历史辐照度数据;
所述步骤S2包括:
S21.建立时间分量理论参考电流值Ipre,T,S
Ipre,T,S=a·RT+b;
其中,Ipre,T,S为T时刻S组串的理论参考电流值,a、b为对于历史数据进行拟合得到的系数;RT为T时刻的辐照度;
S22.根据同一阵列的各组串实时运行电流数据建立空间分量标准参考电流
Figure FDA0002336220280000011
Figure FDA0002336220280000012
其中,
Figure FDA0002336220280000013
为T时刻汇流箱的标准参考电流值,IT,S为T时刻S组串的实测电流值,n为汇流箱中的组串数;
S23.建立光伏阵列电流的包括时间分量函数和空间分量函数的时间和空间分布函数;
时间分量函数为:
DT(xT,xS)=IT,S-Ipre,T,S
DT(xT,xS)为T时刻S组串的时间分量;IT,S为T时刻S组串的实测电流值;Ipre,T,S为T时刻S组串的理论参考电流值,
空间分量函数为:
Figure FDA0002336220280000021
其中,DS(xT,xS)为T时刻S组串的空间分量;
Figure FDA0002336220280000022
为T时刻汇流箱的参考电流值。
2.根据权利要求1所述的故障诊断方法,其特征在于,所述步骤S3包括:
S31.利用得到的时间分量函数与空间分量函数计算出光伏阵列历史电流时间分量与空间分量;
S32.将得到的数据进行分类,得出正常运行条件训练数据集与不同故障条件下训练数据集;
S33.将光伏阵列的时间分量与空间分量数据作为训练数据利用概率神经网络建立光伏阵列故障诊断模型;
S34.以诊断精度最高的模型作为最终的神经网络故障诊断模型。
3.根据权利要求2所述的故障诊断方法,其特征在于,所述步骤S4包括:
S41.利用时间分量函数与空间分量函数计算出光伏阵列运行电流的时间分量与空间分量,将时间分量与空间分量作为输入数据,输入到故障诊断模型;
S42.通过故障诊断模型的判断得出故障诊断结果,判断光伏阵列的运行状态。
4.一种基于时空分布特性的光伏阵列故障诊断装置,其特征在于,包括:
数据采集模块:用于收集光伏电站历史运行数据及历史环境数据;
分布函数计算模块:用于建立光伏阵列出力的时间和空间分布函数;
故障诊断模型计算模块:用于通过光伏出力的时间和空间分布函数对历史运行数据及历史环境数据信息进行计算得出光伏出力的时间分量和空间分量,得到训练数据集,以训练数据集对概率神经网络进行训练,得出光伏阵列故障诊断模型;
故障诊断模块:用于利用时间和空间分布函数对具有光伏阵列的电站实时运行数据进行时间和空间分量计算,并将计算得到的时间和空间分量数据输入到光伏阵列故障诊断模型中对光伏阵列进行故障诊断;
所述数据采集模块中所述历史运行数据包括光伏电站历史组串电流数据,历史环境数据包括光伏电站所对应的历史辐照度数据;
所述故障诊断模型计算模块包括:
时间分量理论参考电流值计算子模块:用于建立时间分量理论参考电流值Ipre,T,S
Ipre,T,S=a·RT+b
其中,Ipre,T,S为T时刻S组串的理论参考电流值,a、b为对于历史数据进行拟合得到的系数;RT为T时刻的辐照度;
空间分量标准参考电流计算子模块:用于根据同一阵列的各组串实时运行电流数据建立空间分量标准参考电流
Figure FDA0002336220280000031
Figure FDA0002336220280000032
其中,
Figure FDA0002336220280000033
为T时刻汇流箱的标准参考电流值,IT,S为T时刻S组串的实测电流值,n为汇流箱中的组串数;
分量函数计算子模块:用于建立光伏阵列电流的包括时间分量函数和空间分量函数的时间和空间分布函数;
时间分量函数为:
DT(xT,xS)=IT,S-Ipre,T,S
DT(xT,xS)为T时刻S组串的时间分量;IT,S为T时刻S组串的实测电流值;Ipre,T,S为T时刻S组串的理论参考电流值,
空间分量函数为:
Figure FDA0002336220280000034
其中,DS(xT,xS)为T时刻S组串的空间分量;
Figure FDA0002336220280000035
为T时刻汇流箱的标准参考电流值。
5.根据权利要求4所述的基于时空分布特性的光伏阵列故障诊断装置,其特征在于,所述故障诊断模型计算模块包括:
时间分量与空间分量计算子模块:用于利用得到的时间分量函数与空间分量函数计算出光伏阵列历史电流时间分量与空间分量;
训练数据集获取子模块:用于将得到的数据进行分类,得出正常运行条件训练数据集与不同故障条件下训练数据集;
光伏阵列故障诊断模型训练子模块:用于将光伏阵列的时间分量与空间分量数据作为训练数据利用概率神经网络建立光伏阵列故障诊断模型;
神经网络故障诊断模型校正子模块:以诊断精度最高的模型作为最终的神经网络故障诊断模型。
6.根据权利要求5所述的基于时空分布特性的光伏阵列故障诊断装置,其特征在于,所述故障诊断模块包括:
数据输入子模块:用于利用时间分量函数与空间分量函数计算出光伏阵列运行电流的时间分量与空间分量,将时间分量与空间分量作为输入数据,输入到故障诊断模型;
结果输出子模块:用于通过故障诊断模型的判断得出故障诊断结果,判断光伏阵列的运行状态。
CN201910300340.9A 2019-04-15 2019-04-15 基于时空分布特性的光伏阵列故障诊断方法及装置 Active CN109842373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910300340.9A CN109842373B (zh) 2019-04-15 2019-04-15 基于时空分布特性的光伏阵列故障诊断方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910300340.9A CN109842373B (zh) 2019-04-15 2019-04-15 基于时空分布特性的光伏阵列故障诊断方法及装置

Publications (2)

Publication Number Publication Date
CN109842373A CN109842373A (zh) 2019-06-04
CN109842373B true CN109842373B (zh) 2020-04-28

Family

ID=66887094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910300340.9A Active CN109842373B (zh) 2019-04-15 2019-04-15 基于时空分布特性的光伏阵列故障诊断方法及装置

Country Status (1)

Country Link
CN (1) CN109842373B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336534B (zh) * 2019-07-15 2022-05-03 龙源(北京)太阳能技术有限公司 一种基于光伏阵列电气参数时间序列特征提取的故障诊断方法
CN111290371B (zh) * 2020-03-05 2021-08-10 深圳知路科技有限公司 物联网设备远程诊断的方法及装置、电子设备
CN111275295B (zh) * 2020-03-23 2023-06-30 华北电力大学 一种基于反距离权重插值的分布式光伏故障诊断方法
CN111680820B (zh) * 2020-05-08 2022-08-19 国网河南省电力公司电力科学研究院 分布式光伏电站故障诊断方法和装置
CN111669123B (zh) * 2020-05-11 2021-12-17 国家能源集团新能源技术研究院有限公司 用于对光伏组串进行故障诊断的方法和装置
CN111799843B (zh) * 2020-08-04 2021-11-30 合肥工业大学 一种概率融合式光伏电站的多维全状态数据建模方法
CN112269110A (zh) * 2020-10-19 2021-01-26 合肥阳光新能源科技有限公司 一种电弧故障判定方法
KR102515608B1 (ko) * 2020-11-24 2023-03-29 서강대학교 산학협력단 태양광 발전량 예측 방법 및 시스템
CN113702730A (zh) * 2021-08-04 2021-11-26 国家能源集团新能源技术研究院有限公司 用于光伏组件的故障诊断方法、系统及处理器
CN114070198B (zh) * 2021-12-06 2023-11-07 北京中电普华信息技术有限公司 分布式光伏发电系统的故障诊断方法、装置和电子设备
CN114800486B (zh) * 2022-03-10 2023-11-07 佛山智能装备技术研究院 一种基于统计特征的工业机器人故障诊断方法及系统
CN114841081A (zh) * 2022-06-21 2022-08-02 国网河南省电力公司郑州供电公司 一种电力设备异常事故控制方法及系统
CN115840920A (zh) * 2022-12-30 2023-03-24 北京志翔科技股份有限公司 光伏组串单日可分异常分类方法、装置、设备及存储介质
CN115688490B (zh) * 2022-12-30 2023-04-07 北京志翔科技股份有限公司 光伏组串异常定量确定方法、装置、电子设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391189B (zh) * 2014-10-13 2017-03-01 合肥工业大学 基于三级诊断的大型光伏阵列故障诊断定位方法
KR20180072244A (ko) * 2016-12-21 2018-06-29 주식회사 그랜드 태양광 발전시스템의 고장진단 제어시스템 및 그 고장진단 제어방법
CN106961249B (zh) * 2017-03-17 2019-02-19 广西大学 一种光伏阵列故障诊断和预警方法
CN107579707A (zh) * 2017-10-13 2018-01-12 江苏大学 一种基于参数辨识的光伏阵列故障诊断方法
CN108830335A (zh) * 2018-06-26 2018-11-16 广东石油化工学院 光伏电站故障预警方法及系统

Also Published As

Publication number Publication date
CN109842373A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
CN109842373B (zh) 基于时空分布特性的光伏阵列故障诊断方法及装置
CN109873610B (zh) 基于iv特性和深度残差网络的光伏阵列故障诊断方法
CN110070226B (zh) 基于卷积神经网络与元学习的光伏功率预测方法及系统
CN111680820B (zh) 分布式光伏电站故障诊断方法和装置
Liu et al. Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with IV curves
CN108983749B (zh) 基于k-svd训练稀疏字典的光伏阵列故障诊断方法
CN109672406B (zh) 一种基于稀疏表示和svm的光伏发电阵列故障诊断与分类的方法
CN111444615B (zh) 一种基于k近邻和iv曲线的光伏阵列故障诊断方法
CN110503153B (zh) 基于差分进化算法和支持向量机的光伏系统故障诊断方法
CN110879377B (zh) 基于深度信念网络的计量装置故障溯源方法
CN109992911B (zh) 基于极限学习机和iv特性的光伏组件快速建模方法
CN111695736A (zh) 一种基于多模型融合的光伏发电短期功率预测方法
CN117218425A (zh) 一种用于光伏电站的发电损失分析方法及系统
CN112183877A (zh) 一种基于迁移学习的光伏电站故障智能诊断方法
Zhu et al. New feature extraction method for photovoltaic array output time series and its application in fault diagnosis
CN112085108A (zh) 基于自动编码器及k均值聚类的光伏电站故障诊断算法
Zhao et al. A photovoltaic array fault diagnosis method considering the photovoltaic output deviation characteristics
CN117113086A (zh) 一种储能机组负荷预测方法、系统、电子设备及介质
Elgamal et al. Seamless Machine Learning Models to Detect Faulty Solar Panels
CN111061708A (zh) 一种基于lstm神经网络的电能量预测与修复方法
CN116341717A (zh) 一种基于误差补偿的风速预测方法
CN114997475A (zh) 一种基于Kmeans的融合模型光伏发电短期预测方法
CN112949936A (zh) 基于相似日小波变换和多层感知机的短期光伏功率预测方法
Jianli et al. Wind power forecasting by using artificial neural networks and Grubbs criterion
Li et al. Extraction of abnormal points from on-line operation data of intelligent meter based on LSTM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant