CN106961249B - 一种光伏阵列故障诊断和预警方法 - Google Patents
一种光伏阵列故障诊断和预警方法 Download PDFInfo
- Publication number
- CN106961249B CN106961249B CN201710159693.2A CN201710159693A CN106961249B CN 106961249 B CN106961249 B CN 106961249B CN 201710159693 A CN201710159693 A CN 201710159693A CN 106961249 B CN106961249 B CN 106961249B
- Authority
- CN
- China
- Prior art keywords
- fault
- array
- confidence level
- input
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- 238000013528 artificial neural network Methods 0.000 claims abstract description 53
- 238000003066 decision tree Methods 0.000 claims abstract description 51
- 238000003745 diagnosis Methods 0.000 claims abstract description 46
- 238000012549 training Methods 0.000 claims abstract description 41
- 230000015556 catabolic process Effects 0.000 claims abstract description 9
- 238000005457 optimization Methods 0.000 claims abstract description 7
- 238000005259 measurement Methods 0.000 claims abstract description 6
- 238000001514 detection method Methods 0.000 claims description 24
- 230000001537 neural effect Effects 0.000 claims description 15
- 238000004422 calculation algorithm Methods 0.000 claims description 13
- 230000032683 aging Effects 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 10
- 238000013139 quantization Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 9
- 238000013507 mapping Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 claims description 5
- 230000007257 malfunction Effects 0.000 claims description 5
- 238000003491 array Methods 0.000 claims description 4
- 238000013024 troubleshooting Methods 0.000 claims description 4
- 238000012897 Levenberg–Marquardt algorithm Methods 0.000 claims description 3
- 230000007774 longterm Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 230000001960 triggered effect Effects 0.000 claims description 3
- 238000002203 pretreatment Methods 0.000 claims description 2
- 210000005036 nerve Anatomy 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 3
- 238000011897 real-time detection Methods 0.000 abstract description 2
- 239000013589 supplement Substances 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 description 14
- 230000008901 benefit Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000003062 neural network model Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical class C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- 241000288105 Grus Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004218 nerve net Anatomy 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Photovoltaic Devices (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
输出向量 | 故障类型 | 输出向量的代码 |
y<sub>1</sub> | 开路 | 1000 |
y<sub>2</sub> | 短路 | 0100 |
y<sub>3</sub> | 老化 | 0010 |
y<sub>4</sub> | 遮阴 | 0001 |
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710159693.2A CN106961249B (zh) | 2017-03-17 | 2017-03-17 | 一种光伏阵列故障诊断和预警方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710159693.2A CN106961249B (zh) | 2017-03-17 | 2017-03-17 | 一种光伏阵列故障诊断和预警方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106961249A CN106961249A (zh) | 2017-07-18 |
CN106961249B true CN106961249B (zh) | 2019-02-19 |
Family
ID=59471258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710159693.2A Active CN106961249B (zh) | 2017-03-17 | 2017-03-17 | 一种光伏阵列故障诊断和预警方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106961249B (zh) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107421763B (zh) * | 2017-08-01 | 2019-11-15 | 上海庆科信息技术有限公司 | 一种设备故障检测方法及装置 |
CN107632521B (zh) * | 2017-08-30 | 2020-09-29 | 中国矿业大学 | 一种基于决策树和神经网络的恒电位仪控制方法 |
CN107909096A (zh) * | 2017-11-08 | 2018-04-13 | 南京因泰莱电器股份有限公司 | 一种基于二分k‑均值聚类的逆变器故障预警判据实现方法 |
CN108009221A (zh) * | 2017-11-22 | 2018-05-08 | 国网湖北省电力有限公司 | 一种用于户用光伏发电控制维护的自助式事件数据库 |
CN109842372A (zh) * | 2017-11-28 | 2019-06-04 | 中国电力科学研究院有限公司 | 一种光伏组件故障检测方法和系统 |
CN107991967A (zh) * | 2017-12-24 | 2018-05-04 | 谢小坚 | 一种基于光伏物理模型的光伏发电故障诊断系统 |
CN108062571B (zh) * | 2017-12-27 | 2021-04-27 | 福州大学 | 基于差分进化随机森林分类器的光伏阵列故障诊断方法 |
CN108376298B (zh) * | 2018-02-12 | 2023-11-10 | 湘潭大学 | 一种风电机组发动机温度故障预警诊断方法 |
CN108614934B (zh) * | 2018-04-24 | 2022-05-06 | 国网青海省电力公司 | 光伏电站故障成本计算的方法及系统 |
CN108666915A (zh) * | 2018-05-22 | 2018-10-16 | 江苏容源电力设备有限公司 | 地埋式变电器安全维护方法 |
CN109086891B (zh) * | 2018-06-15 | 2022-07-22 | 重庆大学 | 基于模糊逻辑推理的热斑故障诊断方法 |
CN109150104A (zh) | 2018-08-10 | 2019-01-04 | 江南大学 | 一种基于随机森林算法的光伏阵列故障诊断方法 |
CN109039281A (zh) * | 2018-08-10 | 2018-12-18 | 江南大学 | 一种基于改进随机森林算法的光伏阵列故障诊断方法 |
CN109298228A (zh) * | 2018-09-13 | 2019-02-01 | 安徽天尚清洁能源科技有限公司 | 一种基于光伏组串电流异常的智能化诊断方法及系统 |
CN109359866B (zh) * | 2018-10-17 | 2024-05-03 | 塔比星信息技术(深圳)有限公司 | 基于租赁设备的风险隐患监控方法、装置和计算机设备 |
CN109194286B (zh) * | 2018-11-27 | 2020-05-22 | 阳光电源股份有限公司 | 一种光伏组件的故障诊断方法和装置 |
CN109670652A (zh) * | 2018-12-29 | 2019-04-23 | 石家庄科林电气股份有限公司 | 一种光伏组件的故障预测方法 |
CN110146316A (zh) * | 2019-04-10 | 2019-08-20 | 广州瑞松北斗汽车装备有限公司 | 汽车生产线功能柜的故障诊断方法及系统 |
CN109842373B (zh) * | 2019-04-15 | 2020-04-28 | 国网河南省电力公司电力科学研究院 | 基于时空分布特性的光伏阵列故障诊断方法及装置 |
CN110515781B (zh) * | 2019-07-03 | 2021-06-22 | 北京交通大学 | 一种复杂系统状态监测及故障诊断方法 |
CN110399926B (zh) * | 2019-07-26 | 2021-11-30 | 广州辰创科技发展有限公司 | 一种路灯故障诊断方法及装置 |
CN110338134A (zh) * | 2019-07-31 | 2019-10-18 | 海南赛维斯科技有限公司 | 一种基于神经网络的增氧机故障自动处理系统及方法 |
CN112533233B (zh) * | 2019-09-19 | 2023-04-07 | 中国移动通信集团重庆有限公司 | 一种基于用户交互的无线网络探测方法、装置和系统 |
CN110619479B (zh) * | 2019-09-23 | 2022-05-24 | 阳光电源股份有限公司 | 光伏组件的故障判别模型建模方法及故障判别方法 |
CN110598802B (zh) * | 2019-09-26 | 2021-07-27 | 腾讯科技(深圳)有限公司 | 一种内存检测模型训练的方法、内存检测的方法及装置 |
US11251749B2 (en) | 2019-10-16 | 2022-02-15 | Tata Consultancy Services Limited | Methods and systems for fault detection, diagnosis and localization in solar panel network |
CN111046940A (zh) * | 2019-12-06 | 2020-04-21 | 中车长春轨道客车股份有限公司 | 一种基于决策树与神经网络的车门故障诊断方法 |
CN111198098A (zh) * | 2020-01-14 | 2020-05-26 | 重庆邮电大学 | 一种基于人工神经网络的风力发电机轴承故障预测方法 |
CN111478660B (zh) * | 2020-03-02 | 2021-07-20 | 珠海格力电器股份有限公司 | 一种光伏板控制方法、装置、终端及计算机可读介质 |
CN111555716B (zh) * | 2020-03-13 | 2023-07-28 | 远景智能国际私人投资有限公司 | 光伏阵列工作状态的确定方法、装置、设备及存储介质 |
CN111275295B (zh) * | 2020-03-23 | 2023-06-30 | 华北电力大学 | 一种基于反距离权重插值的分布式光伏故障诊断方法 |
CN111680820B (zh) * | 2020-05-08 | 2022-08-19 | 国网河南省电力公司电力科学研究院 | 分布式光伏电站故障诊断方法和装置 |
TWI730796B (zh) * | 2020-06-03 | 2021-06-11 | 友達光電股份有限公司 | 太陽能發電方法 |
CN112245728B (zh) * | 2020-06-03 | 2022-11-29 | 北京化工大学 | 一种基于集成树的呼吸机假阳性报警信号识别方法及系统 |
CN112116171A (zh) * | 2020-09-29 | 2020-12-22 | 山东建筑大学 | 一种新型基于神经网络的光伏发电功率预测方法 |
CN112215428B (zh) * | 2020-10-20 | 2022-08-26 | 国网山东省电力公司电力科学研究院 | 基于误差修正和模糊逻辑的光伏发电功率预测方法及系统 |
CN112966003A (zh) * | 2021-03-02 | 2021-06-15 | 广州汇通国信科技有限公司 | 一种基于神经网络算法的数据质量问题排查方法 |
CN113050746A (zh) * | 2021-03-24 | 2021-06-29 | 温州大学 | 一种基于记忆增强的光伏发电系统最大功率跟踪方法 |
CN113489457B (zh) * | 2021-06-01 | 2022-08-16 | 厦门科华数能科技有限公司 | 光伏组件故障检测方法及装置 |
CN113688987B (zh) * | 2021-08-30 | 2023-08-01 | 远景智能国际私人投资有限公司 | 光伏监测模型的训练方法、光伏设备的监测方法及设备 |
CN115264763A (zh) * | 2022-06-13 | 2022-11-01 | 王者 | 一种智能温控器和智能温控器的控制方法 |
CN115563549B (zh) * | 2022-10-27 | 2023-10-20 | 武汉理工大学 | 一种焊接缺陷成因诊断方法、系统及电子设备 |
CN116310859B (zh) * | 2023-01-16 | 2023-09-12 | 自然资源部国土卫星遥感应用中心 | 一种基于多源遥感数据的光伏阵列故障智能检测方法 |
CN117129815B (zh) * | 2023-10-27 | 2024-02-02 | 南京中鑫智电科技有限公司 | 一种基于物联网的多劣化绝缘子综合检测方法和系统 |
CN117670300B (zh) * | 2023-12-08 | 2024-06-14 | 西安中创新能网络科技有限责任公司 | 一种分布式光伏设备检测运维系统及方法 |
CN117404820B (zh) * | 2023-12-08 | 2024-03-01 | 胜利油田胜兴集团有限责任公司 | 基于物联网的热管式太阳能运行故障诊断系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008132066A1 (en) * | 2007-04-27 | 2008-11-06 | Siemens Aktiengesellschaft | A method for computer-assisted learning of one or more neural networks |
CN104537416A (zh) * | 2014-12-05 | 2015-04-22 | 沈阳航空航天大学 | 一种基于hbf神经网络观测器的故障诊断方法 |
CN105631517A (zh) * | 2015-12-17 | 2016-06-01 | 河海大学 | 基于思维进化Elman神经网络的光伏发电功率短期预测方法 |
CN105954616A (zh) * | 2016-05-05 | 2016-09-21 | 江苏方天电力技术有限公司 | 基于外特性电气参数的光伏组件故障诊断方法 |
CN106058914A (zh) * | 2016-05-27 | 2016-10-26 | 国电南瑞科技股份有限公司 | 基于Elman算法的配网发电预测技术的电压优化方法 |
CN106291339A (zh) * | 2015-05-20 | 2017-01-04 | 国网上海市电力公司 | 一种基于人工神经网络的断路器故障诊断专家系统 |
-
2017
- 2017-03-17 CN CN201710159693.2A patent/CN106961249B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008132066A1 (en) * | 2007-04-27 | 2008-11-06 | Siemens Aktiengesellschaft | A method for computer-assisted learning of one or more neural networks |
CN104537416A (zh) * | 2014-12-05 | 2015-04-22 | 沈阳航空航天大学 | 一种基于hbf神经网络观测器的故障诊断方法 |
CN106291339A (zh) * | 2015-05-20 | 2017-01-04 | 国网上海市电力公司 | 一种基于人工神经网络的断路器故障诊断专家系统 |
CN105631517A (zh) * | 2015-12-17 | 2016-06-01 | 河海大学 | 基于思维进化Elman神经网络的光伏发电功率短期预测方法 |
CN105954616A (zh) * | 2016-05-05 | 2016-09-21 | 江苏方天电力技术有限公司 | 基于外特性电气参数的光伏组件故障诊断方法 |
CN106058914A (zh) * | 2016-05-27 | 2016-10-26 | 国电南瑞科技股份有限公司 | 基于Elman算法的配网发电预测技术的电压优化方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106961249A (zh) | 2017-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106961249B (zh) | 一种光伏阵列故障诊断和预警方法 | |
CN111237134B (zh) | 一种基于GRA-LSTM-stacking模型的海上双馈风力发电机故障诊断方法 | |
CN109270407B (zh) | 基于多源信息融合的特高压直流输电线路故障原因辨识方法 | |
CN104391189B (zh) | 基于三级诊断的大型光伏阵列故障诊断定位方法 | |
WO2020029327A1 (zh) | 一种基于改进随机森林算法的光伏阵列故障诊断方法 | |
CN110879377B (zh) | 基于深度信念网络的计量装置故障溯源方法 | |
CN108805256A (zh) | 基于布谷鸟算法与bp神经网络的光伏组件故障诊断方法 | |
CN106021806A (zh) | 一种基于核函数极限学习机的光伏组串故障诊断方法 | |
Rao et al. | Dropout and pruned neural networks for fault classification in photovoltaic arrays | |
CN108983749A (zh) | 基于k-svd训练稀疏字典的光伏阵列故障诊断方法 | |
CN115455746B (zh) | 一种核动力装置运行监测数据异常检测与校正一体化方法 | |
CN116526478A (zh) | 基于改进的蛇群优化算法的短期风电功率预测方法及系统 | |
CN115146739A (zh) | 基于堆叠时间序列网络的电力变压器故障诊断方法 | |
Bouazzi et al. | Deep recurrent neural networks based Bayesian optimization for fault diagnosis of uncertain GCPV systems depending on outdoor condition variation | |
CN118188342A (zh) | 一种面向风机的故障预警与寿命预测方法 | |
Livera et al. | Advanced diagnostic approach of failures for grid-connected photovoltaic (PV) systems | |
CN117787698A (zh) | 基于供电范围最大化的微网风险评估方法及系统 | |
Sairam et al. | Explainable Incipient Fault Detection Systems for Photovoltaic Panels | |
Gawali et al. | Fault prediction model in wind turbines using deep learning structure with enhanced optimisation algorithm | |
Zare et al. | Fault diagnosis in photovoltaic modules using a straightforward voltage-current characteristics evaluation | |
ES2905141T3 (es) | Método para la monitorización de parques eólicos | |
Benninger et al. | Anomaly detection by comparing photovoltaic systems with machine learning methods | |
Vahidi et al. | Fault detection and classification in PV arrays using machine learning algorithms in the presence of noisy data | |
TWI379093B (en) | Method and portable device for fault diagnosis of photovoltaic power generating system | |
Jiurong et al. | A data-driven fault diagnosis method for photovoltaic modules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Wang Yusong Inventor after: Dong Meichen Inventor after: Ye Jin Inventor after: Hu Liangqing Inventor after: He Huaguang Inventor after: Xie Min Inventor before: Ye Jin Inventor before: Dong Meichen Inventor before: Wang Yusong Inventor before: Hu Liangqing Inventor before: He Huaguang Inventor before: Xie Min |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Wang Yusong Inventor after: Yuan Yubao Inventor after: Zhang Kuizhong Inventor after: Zhang Xiangping Inventor after: Li Xiaonan Inventor after: Cao Xiaoguang Inventor after: Dong Meichen Inventor after: Ye Jin Inventor after: Hu Liangqing Inventor after: He Huaguang Inventor after: Xie Min Inventor after: Chang Shengqiang Inventor after: Chen Hongyu Inventor after: Chen He Inventor before: Wang Yusong Inventor before: Dong Meichen Inventor before: Ye Jin Inventor before: Hu Liangqing Inventor before: He Huaguang Inventor before: Xie Min |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190513 Address after: 530004 100 East University Road, XiXiangTang District, Nanning, the Guangxi Zhuang Autonomous Region Co-patentee after: Shijiazhuang KE Electric Co.,Ltd. Patentee after: Guangxi University Address before: 530004 100 East University Road, XiXiangTang District, Nanning, the Guangxi Zhuang Autonomous Region Patentee before: Guangxi University |