CN111275295B - 一种基于反距离权重插值的分布式光伏故障诊断方法 - Google Patents

一种基于反距离权重插值的分布式光伏故障诊断方法 Download PDF

Info

Publication number
CN111275295B
CN111275295B CN202010025661.5A CN202010025661A CN111275295B CN 111275295 B CN111275295 B CN 111275295B CN 202010025661 A CN202010025661 A CN 202010025661A CN 111275295 B CN111275295 B CN 111275295B
Authority
CN
China
Prior art keywords
power
power station
fault
distance
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010025661.5A
Other languages
English (en)
Other versions
CN111275295A (zh
Inventor
朱红路
史淯城
王海政
潘晶娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202010025661.5A priority Critical patent/CN111275295B/zh
Publication of CN111275295A publication Critical patent/CN111275295A/zh
Application granted granted Critical
Publication of CN111275295B publication Critical patent/CN111275295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了属于光伏发电故障诊断技术领域的一种基于反距离权重插值的分布式光伏故障诊断方法,具体说是一种基于反距离权重插值和时间序列特征分析的分布式光伏故障诊断方法。以空间PR、相似系数、特征距离等三个指标为诊断依据,并且设计了分布式光伏电站异常分析方法。本发明可以在无气象信息条件下,获取分布式电站的理论发电量,提供了进行故障诊断过程必要信息,解决无参考辐照数据或辐照数据异常时的分布式光伏电站故障检测问题,为光伏电站在风险评估和系统可靠性分析方面提供支持。

Description

一种基于反距离权重插值的分布式光伏故障诊断方法
技术领域
本发明属于光伏发电故障诊断技术领域,特别涉及一种基于反距离权重插值的分布式光伏故障诊断方法,具体说是一种基于反距离权重插值和时间序列特征分析的分布式光伏故障诊断方法。
背景技术
光分布式光伏价格低廉,不受地理位置限制,可满足离网系统能源需求,市场广阔。根据国际市场研究机构Technavio发布的可再生能源分布式发电(RDEG)技术市场将在2019-2023期间增长295.15GW规模。在国民经济高度依赖电力的今天,我国经济的发展对供电可靠性与电能质量的较高需求已是不争的事实。随着分布式光伏的规模逐渐扩大,对分布式光伏电站的运行状态进行准确判断,及时发现异常状态是保障分布式光伏电站安全、经济运行的重要手段。
目前的分布光伏电站不同与大型并网式光伏电站,其运行时收集到的数据往往缺乏电站场地的气象数据。气象信息的缺乏导致以往许多光伏电站分析方法的失效,在实际的工程应用中受到了约束。因此需要从新的角度分析评价分布式光伏电站。
另外,实际光伏的出力情况复杂,出力数据与理论数据差异较大,为了分析电站数据,需要能够有效描述光伏电站运行状态的指标,提出基于时间和空间函数的分布式光伏电站直流侧薄弱点诊断方法。
发明内容
本发明的目的是提供一种基于反距离权重插值的分布式光伏故障诊断方法,其特征在于,包括以下步骤:
S1.收集分布式光伏各个电站历史运行数据,记录距离信息,进行数据预处理;
S2.根据反距离插值算法进行电站理论发电量的计算,优化计算参数;
S3.根据光伏电站的故障机理分析建立状态诊断模型;
S4.利用状态诊断模型对电站状态进行判断,实现光伏电站的故障诊断。
所述历史运行数据包括光伏电站历史功率数据,并且需要记录下各个电站的空间距离信息,对数据进行归一化和预处理。
所述步骤S2包括:
S21.根据步骤S1所收集的数据,筛选距离目标电站最近的10个电站,利用反距离权重插值方法对目标电站理论输出值进行计算;反距离权重插值具体计算分析如下:
步骤1:选择目标点x0,确定n个参考电站xi,读取目标电站和参考电站之间的距离d(x0,xi);i=1.2…n;
步骤2:计算n个参考电站的权重w(x0,xi),权重是距离倒数的函数,
Figure SMS_1
其中,p为权重下降速度,取值为2;
步骤3:利用参考电站的测量值y(xi)计算目标电站的拟合值
Figure SMS_2
Figure SMS_3
接下来分别计算电站数为1-10的10个电站的误差:
Figure SMS_4
Figure SMS_5
其中:
Figure SMS_6
为目标电站的输出拟合值,y(xi)为目标电站的输出测量值,以上值都经过归一化,n为参考电站个数;
S22.根据步骤S21的计算结果,统计分析光伏电站不同输入下的计算误差,选取误差最小的电站数目作为输入,接下来根据历史数据相似性和物理距离作为选择标准对输入电站类型进行确定,计算不同电站选择的拟合误差。
依据相似性分析基于两两电站之间的皮尔森相关系数,皮尔森相关系数可以定义两时间序列的相似程度,数值越接近1则相似程度越高。其定义如下:
Figure SMS_7
式中:r为两个光伏电站输出的相关系数;
Figure SMS_8
为两电站输出时间序列的平均值;其中X是选取为电站1光伏电站电气数据时间序列,Y是对照电站的电气数据时间序列;
S23.以步骤S22中的统计分析结果为依据,选取拟合误差最小的电站输入作为计算的电站。
所述步骤S3包括:
S31.对不同故障的产生机理进行分析,并对故障类型进行分类;分类为两种故障类型:
故障1型包含电站中某些阵列发生短路或者断路故障,故障阵列与主网断开,而其他阵列则不受影响,继续正常工作,此种异常状态会导致电站输出的异常跌落;
故障2型包含由于阵列的阴影遮挡,异常老化所致的故障,这种异常状态的发生会导致电站输出值无规律波动,并且引起一定的电站输出功率下降;
S32.通过上述分析,不同故障对光伏阵列输出时间序列的影响各不相同,在开路故障条件下,光伏输出功率时间序列的相关系数为0,而特征距离增大,空间PR性能指标(performance ratio)减小;在短路故障条件下,光伏输出功率序列的相关系数下降,特征距离增大,空间PR减小;在阴影故障条件下,功率时间序列的相关系数下降但不为0,而特征距离增大,空间PR减小;在老化故障条件下,功率序列的相关系数不变,但是特征距离增大,空间PR减小:
所述步骤S4包括:
S41.根据S2中进行分析的最佳输入进行计算,以3个相关性最高的电站作为输入电站,在确定目标电站后,选取距离最近的10个电站作为待选电站,通过历史相似性计算得到相关性最高的3个电站,根据3个输入电站的功率值计算目标电站的参考值;
S42.对计算获得的参考值的准确性进行验证,判断依据利用3σ准则,对之前的7天的历史拟合数据进行计算,求出数据的平均值和方差,进行判断后,如果数据位于正常范围内,可以继续进行下一步的分析计算,如果数据不在3σ范围内,则需要选取之前分析过程中次最好的结果进行计算,并再次对计算结果进行验证;如果保持在正常范围内可以进行下一步计算,还不在范围内,需要检查计算过程,并报告异常状态;其中,σ指标准差;
S43.为了对电站的运行状态进行分析,需要引入适合的评价指标,接下来从空间PR、相似性、相对距离等三个角度分别提出了3个评价指标。利用这三个指标可以对电站的运行状态进行评估;对S42步骤中计算出的理论参考值进行时间序列提取,计算3个时间序列指标:
所述空间PR指标表示的是实际发电量与理论发电量的比值:
Figure SMS_9
其中:
PRSpatial:空间平均系统效率指标;
PIDW:通过IDW方法得到的功率预测值;
Pr:电站实际测量得到的功率值;
所述相对距离,从相对欧式距离RED(Relative Euclidean distance)直观的衡
量实际功率和参考功率两个时间序列之间的偏差:
Figure SMS_10
式中:δ(XTar,XRef)为两时间序列的相关系数;其中XTar是目标电站的测量电气数据时间序列,XRef是通过IDW方法拟合得到的参考电气数据时间序列。时间分辨率为5min,时间序列长度按照经验选取为1hour。
所述相似性,皮尔森相关系数可以定义参考测量时间序列和拟合输出时间序列的相似度;
Figure SMS_11
式中:r为两时间序列的相关系数;
Figure SMS_12
为两时间序列的平均值。其中XTar是目标电站的测量电气数据时间序列,XRef是通过IDW方法拟合得到的参考电气数据时间序列。时间分辨率为5min,时间序列长度按照经验选取为3hours;
S44.根据S43中确定的状态模型诊断故障状态,主要按照以下规则:如果NsPR_means-2σ<NsPR<NsPR_means+2σ和NDis_means-2σ<NDis<NDis_means+2σ同时存在,如不满足则属于正常状态或是需要检查计算状态,若NSim_means-2σ<NSim<NSim_means+2σ满足,则可以判断为故障2型,不满足则为故障1型;以上公式中NsPR,NDis,Nsim分别是空间PR、相对距离和相似性指标,而NsPR_means,NDis_means和NSim_means分别是以上指标的15天平均值。
本发明的有益效果是本发明以对分布式光伏电站的运行状态进行诊断,为发电企业在分布式电站的风险评估和系统可靠性分析方面提供更为丰富的诊断信息;该分布式光伏故障诊断方法的优点如下:
1.将反距离权重插值方法应用在异常诊断领域,从空间领域挖掘一个区域内分布式的电站的联系,进行理论参考值获取;
2.实现了分布式电站的故障诊断与辨识而不依靠气象信息和多余的电气信息,对于目前运行条件简陋的电站运维有工程指导意义;
3.本发明从空间信息和时间信息两个层面进行分析,利用时间序列特征指标变化,对故障进行诊断。
附图说明
图1为分布式光伏电站故障诊断流程图。
图2为线性拟合确定电站数图。
图3为不同故障下时间序列的相似性图,其中,a为电压时间序列;b为电流时间序列;c为功率时间序列;
图4为不同时间序列指标在故障情况下分布图,其中,(a)为故障序列与拟合序列之间的比较;(b)为sPR比较;(c)为相似性比较;
图5为不同时间序列指标在故障情况下分布图,其中,(a)为故障序列与拟合序列之间的比较;(b)为sPR比较;(c)为相似性比较;(d)为距离指标。
具体实施方式
本发明提供一种基于反距离权重插值的分布式光伏故障诊断方法,下面结合附图和具体实施例,对本发明作进一步说明。
图1所示为分布式光伏电站故障诊断流程图,分布式光伏电站故障诊断具体步骤如下:
S1.收集分布式光伏各个电站历史运行数据,记录距离信息,进行数据预处理:
S2.根据反距离插值算法进行电站理论发电量的计算,优化计算参数:
S21.根据步骤S1所收集的数据,筛选距离目标电站最近的10个电站,利用反距离权重插值方法对目标电站理论输出值进行计算。
反距离权重插值显式假设:每个参考电站都有一种局部影响,并且这种影响会随着距离的增大而减小。通过计算所有参考电站在目标电站上影响总和,可以获得一个基于地理信息的参考值。目标阵列的各项运行参数可以通过周围阵列的已知参数预测得到。反距离权重插值具体计算分析如下:
步骤1:选择目标点x0,确定n个参考电站xi,读取目标电站和参考电站之间的距离d(x0,xi)。
步骤2:计算n个参考电站的权重w(x0,xi),权重是距离倒数的函数
Figure SMS_14
步骤3:利用参考电站的测量值y(xi)计算目标电站的拟合值
Figure SMS_15
(如图2所示),
Figure SMS_16
接下来分别计算电站数为1-10的10个电站的误差:
Figure SMS_17
Figure SMS_18
其中:
Figure SMS_19
为目标电站的输出拟合值,y(xi)为目标电站的输出测量值,以上值都经过归一化,n为拟合值个数。
需要确定反距离权重插值方法在分布式理论发电量计算中输入源个数,,具体方案如下:首先选取电站1作为目标电站,从剩余电站中随机选取n(n=2,3,……,9)个电站作为参考电站进行拟合,计算拟合误差。分别选取电站2-9重复上述过程。最后将每次拟合电站个数为n的误差进行平均。一般选择3个电站或按照计算结果确定输入源个数。
S22.根据步骤S21的计算结果,在得到最佳的输入电站个数后,需要进一步明确输入电站的选择依据。本发明按相关性大小选择输入电站。
S23.以步骤S22中的统计分析结果为依据,选取3个最高相关性的电站输入作为计算的电站。
S3.根据光伏电站的故障机理分析建立状态诊断模型:
S31.对不同故障的产生机理进行分析,并对故障类型进行分类。分类为两种故障类型:故障1型包含电站中某些阵列发生短路或者断路故障,故障阵列与主网断开,而其他阵列则不受影响,继续正常工作,此种异常状态会导致电站输出的异常跌落。
故障2型包含由于阵列的阴影遮挡,异常老化所致的故障,这种异常状态的发生会导致电站输出值无规律波动,并且引起一定的电站输出功率下降;
图3表示不同故障条件下光伏输出序列与正常输出序列的相似性分析,其中,a为电压时间序列;b为电流时间序列;c为功率时间序列;通过皮尔森系数定义可知,皮尔森相关系数可看作为两时间序列样本所绘出的方向向量之间夹角的余弦值,在一定程度上可反应两时间序列的相似性特征,但是无法识别样本点在空间尺度上的拉伸、压缩和位移。由图3可以得到如下结论:老化故障(积灰):各输出时间序列的皮尔森相关系数均稳定在1左右,这是因为皮尔森相关系数主要表征两时间序列的相似性特征。而老化故障(积灰)下,虽然光伏阵列输出功率会下降,但是其波动趋势与正常条件下一致。因此,仅依靠皮尔森相关系数无法对老化故障进行识别。阴影故障:图3对光伏阵列早晚局部阴影情况进行了分析,当发生阴影故障时,光伏功率时间序列的皮尔森相关系数均下降,阴影消失后恢复正常。局部短路故障:当光伏阵列发生局部短路故障时,功率序列的皮尔森相关系数在发生故障时出现突变,尔后恢复正常。开路故障:当光伏阵列中某一支路发生开路故障时,该支路完全从阵列中断开,功率输出为0。此时,该支路输出时间序列的皮尔森相关系数由正常条件下的1骤减为0.
相对欧式距离可理解为两时间序列之间的面积,能直观的表示两时间序列在空间尺度上的偏离程度。图4表示不同故障条件下光伏输出时间序列的偏差性分析,其中,a为电压时间序列;b为电流时间序列;c为功率时间序列;从图4可知,老化故障/局部阴影故障/开路故障条件下,均会造成功率序列的相对欧式距离增大。但是由于局部短路故障并不影响光伏阵列的电流序列,因此此时功率序列的相对欧式距离增大。
S32.以步骤S31中的统计分析结果为依据,提取故障特征:通过皮尔森系数定义可知,以皮尔森相关系数作为两时间序列样本所绘出的方向向量之间夹角的余弦值,在一定程度上可反应两时间序列的相似性特征,但是无法识别样本点在空间尺度上的拉伸、压缩和位移。由于皮尔森相关系数无法识别样本点在空间尺度上的改变,因此基于相对欧式距离对时间序列的偏差性进行分析。相对欧式距离能非常直观的衡量两时间序列的偏差程度,距离越大则偏离程度越高。根据计算出的结果,将不同故障对应的时间序列变化特征总结出来。
不同故障对光伏阵列输出时间序列的影响各不相同,其总结如表1所示。由表可知:开路故障条件下,光伏输出功率时间序列的相关系数为0,而特征距离增大,空间PR减小;短路故障条件下,光伏输出功率序列的相关系数下降,特征距离增大,空间PR减小;阴影故障条件下,功率时间序列的相关系数下降但不为0,而特征距离增大,空间PR减小;老化故障条件下,功率序列的相关系数不变,但是特征距离增大,空间PR减小:
表1故障下指标变化规则
Figure SMS_20
S4.利用模型对电站状态进行判断实现光伏电站的故障诊断:
S41.根据S2中进行分析的最佳输入进行计算,以3个相关性最高的电站作为输入电站为例。在确定目标电站后,选取距离最近的10个电站作为待选电站,通过历史相似性计算得到相关性最高的3个电站,根据3个输入电站的功率值计算目标电站的参考值
实例选择电站1作为目标电站进行分析,首先计算了4天的空间插值参考值。利用参考值与实际数据进行了对比,计算了插值模拟的误差,分析模拟值的准确性。误差结果为:RMSE=0.0996,MRE=0.2410可以看出总的误差在10%以内,拟合精度很高,可以满足进一步的电站性能分析需求;
S42.对计算获得的参考值的准确性进行验证,判断依据利用3σ准则,对之前的7天的历史拟合数据进行计算,求出数据的平均值和方差,进行判断后,如果数据位于正常范围内,可以继续进行下一步的分析计算,如果数据不在3σ范围内,则需要选取之前分析过程中次最好的结果进行计算,并再次对计算结果进行验证。如果保持在正常范围内可以进行下一步计算,还不在范围内,需要检查计算过程,并报告异常状态。
S43.为了对电站的运行状态进行分析,需要引入适合的评价指标。接下来从PR、相似性、相对距离等三个角度分别提出了3个评价指标。利用这三个指标可以对电站的运行状态进行评估。对S42步骤中计算出的理论参考值进行时间序列提取,计算3个时间序列指标:
空间PR指标表示的是实际发电量与理论发电量的比值,其中实际发电量就是指一段时间内电站输入电网的电量,理论发电量是通过空间插值获得预测功率对时间积分求得的。空间PR指标也等于预测功率和实际测量功率的比值。
Figure SMS_21
其中:
PRSpatial:空间平均系统效率指标
PIDW:通过IDW方法得到的功率预测值
Pr:电站实际测量得到的功率值
空间PR指标直观的显示电站运行状态,理论上电站的PR值越高,说明该电站性能越好,运行效率高。
相对欧式距离直观的衡量实际功率和参考功率两个时间序列之间的偏差,欧式距离越大则两功率之间的差别越大,其定义如下:
Figure SMS_22
式中:δ(XTar,XRef)为两时间序列的相关系数;其中XTar是目标电站的测量电气数据时间序列,XRef是通过IDW方法拟合得到的参考电气数据时间序列。时间分辨率为5min,时间序列长度按照经验选取为1hour。
以皮尔森相关系数定义参考测量时间序列和拟合输出时间序列的相似度,数值接近1则相似程度高;其定义如下:
Figure SMS_23
式中:r为两时间序列的相关系数;
Figure SMS_24
为两时间序列的平均值。其中XTar是目标电站的测量电气数据时间序列,XRef是通过IDW方法拟合得到的参考电气数据时间序列。时间分辨率为5min,时间序列长度按照经验选取为3hours。
图5所示为不同时间序列指标在故障情况下分布图,其中,(a)为故障序列与拟合序列之间的比较;(b)为sPR比较;(c)为相似性比较;(d)为距离指标。同时展示参考功率与测量功率计算值以及参考功率与故障功率的计算值以方便对比。
S44.根据S43中确定的状态模型诊断故障状态,主要按照以下规则:如果NsPR_means-2σ<NsPR<NsPR_means+2σ和NDis_means-2σ<NDis<NDis_means+2σ同时存在,如不满足则属于正常状态或是需要检查计算状态,若NSim_means-2σ<NSim<NSim_means+2σ满足,则可以判断为故障2型,不满足则为故障1型;以上公式中NsPR,NDis,Nsim分别是空间PR,距离和相似性指标,而NsPR_means,NDis_means和NSim_means分别是以上指标的15天平均值。
本发明主要解决了在无气象数据条件下,分布式电站输出参考值的获取,以及分布式电站的异常状态检测。

Claims (4)

1.一种基于反距离权重插值的分布式光伏故障诊断方法,其特征在于,包括以下步骤:
S1.收集分布式光伏各个电站历史运行数据,记录距离信息,进行数据预处理;
S2.根据反距离插值算法进行电站理论发电量的计算,优化计算参数;具体包括如下子步骤:
S21.根据步骤S1所收集的数据,筛选距离目标电站最近的10个电站,利用反距离权重插值方法对目标电站理论输出值进行计算;反距离权重插值具体计算分析如下:
步骤1,选择目标点x0,确定n个参考电站xi,读取目标电站和参考电站之间的距离d(x0,xi);i=1.2…n;
步骤2,计算n个参考电站的权重w(x0,xi),权重是距离倒数的函数,
Figure FDA0004051990370000011
其中p为权重下降速度,取值为2;
步骤3,利用参考电站的测量值y(xi)计算目标电站的拟合值
Figure FDA0004051990370000016
Figure FDA0004051990370000012
接下来分别计算电站数为1-10的10个电站的误差:
Figure FDA0004051990370000013
Figure FDA0004051990370000014
其中,
Figure FDA0004051990370000015
为目标电站的输出拟合值,y(xi)为目标电站的输出测量值,以上值都经过归一化,n为参考电站个数;
S22.根据步骤S21的计算结果,统计分析光伏电站不同输入下的计算误差,选取误差最小的电站数目作为输入,接下来根据历史数据相似性和物理距离作为选择标准对输入电站类型进行确定,计算不同电站选择的拟合误差;
依据相似性分析基于两两电站之间的皮尔森相关系数定义两时间序列的相似程度,数值越接近1则相似程度越高;其定义如下:
Figure FDA0004051990370000021
式中,r为两个光伏电站输出的相关系数;
Figure FDA0004051990370000022
为两电站输出时间序列的平均值;其中X是选取为电站1光伏电站电气数据时间序列,Y是对照电站的电气数据时间序列;
S23.以步骤S22中的统计分析结果为依据,选取拟合误差最小的电站输入作为计算的电站;
S3.根据光伏电站的故障机理分析建立状态诊断模型;
S4.利用状态诊断模型对电站状态进行判断,实现光伏电站的故障诊断。
2.根据权利要求1所述基于反距离权重插值的分布式光伏故障诊断方法,其特征在于,所述历史运行数据包括光伏电站历史功率数据,并且需要记录下各个电站的空间距离信息,对数据进行归一化和预处理。
3.根据权利要求1所述基于反距离权重插值的分布式光伏故障诊断方法,其特征在于,所述步骤S3包括:
S31.对不同故障的产生机理进行分析,并对故障类型进行分类;分类为两种故障类型:
故障1型包含电站中某些阵列发生短路或者断路故障,故障阵列与主网断开,而其他阵列则不受影响,继续正常工作,此种异常状态会导致电站输出的异常跌落;
故障2型包含由于阵列的阴影遮挡,异常老化所致的故障,这种异常状态的发生会导致电站输出值无规律波动,并且引起一定的电站输出功率下降;
S32.通过上述分析,不同故障对光伏阵列输出时间序列的影响各不相同,在开路故障条件下,光伏输出功率时间序列的相关系数为0,而特征距离增大,空间PR减小;在短路故障条件下,光伏输出功率序列的相关系数下降,特征距离增大,空间PR减小;在阴影故障条件下,功率时间序列的相关系数下降但不为0,而特征距离增大,空间PR减小;在老化故障条件下,功率序列的相关系数不变,但是特征距离增大,空间PR减小:
4.根据权利要求1所述基于反距离权重插值的分布式光伏故障诊断方法,其特征在于,所述步骤S4包括:
S41.根据S2中进行分析的最佳输入进行计算,以3个相关性最高的电站作为输入电站,在确定目标电站后,选取距离最近的10个电站作为待选电站,通过历史相似性计算得到相关性最高的3个电站,根据3个输入电站的功率值计算目标电站的参考值;
S42.对计算获得的参考值的准确性进行验证,判断依据利用3σ准则,对之前的7天的历史拟合数据进行计算,求出数据的平均值和方差,进行判断后,如果数据位于正常范围内,可以继续进行下一步的分析计算,如果数据不在3σ范围内,则需要选取之前分析过程中次最好的结果进行计算,并再次对计算结果进行验证;如果保持在正常范围内可以进行下一步计算,还不在范围内,需要检查计算过程,并报告异常状态;其中,σ指标准差;
S43.为了对电站的运行状态进行分析,引入适合的评价指标,从空间PR相似性、相对距离三个角度分别提出了3个评价指标;利用这三个指标对电站的运行状态进行评估;对S42步骤中计算出的理论参考值进行时间序列提取,计算3个时间序列指标:
所述空间PR指标表示的是实际发电量与理论发电量的比值:
Figure FDA0004051990370000041
其中:
PRSpatial:空间平均系统效率指标;
PIDW:通过IDW方法得到的功率预测值;
Pr:电站实际测量得到的功率值;
所述相对距离,从相对欧式距离RED直观的衡量实际功率和参考功率两个时间序列之间的偏差:
Figure FDA0004051990370000042
式中:δ(XTar,XRef)为两时间序列的相关系数;其中XTar是目标电站的测量电气数据时间序列,XRef是通过IDW方法拟合得到的参考电气数据时间序列。时间分辨率为5min,时间序列长度按照经验选取为1hour;
所述相似性,以皮尔森相关系数定义参考测量时间序列和拟合输出时间序列的相似度;
Figure FDA0004051990370000043
式中:r为两时间序列的相关系数;
Figure FDA0004051990370000044
为两时间序列的平均值;其中XTar是目标电站的测量电气数据时间序列,XRef是通过IDW方法拟合得到的参考电气数据时间序列,时间分辨率为5min,时间序列长度按照经验选取为3hours;
S44.根据S43中确定的状态模型诊断故障状态,按照以下规则:如果NsPR_means-2σ<NsPR<NsPR_means+2σ和NDis_means-2σ<NDis<NDis_means+2σ同时存在,若NSim_means-2σ<NSim<NSim_means+2σ满足,则可以判断为故障2型,不满足则为故障1型;以上公式中NsPR,NDis,Nsim分别是空间PR、相对距离和相似性指标,而NsPR_means,NDis_means和NSim_means分别是以上指标的15天平均值。
CN202010025661.5A 2020-03-23 2020-03-23 一种基于反距离权重插值的分布式光伏故障诊断方法 Active CN111275295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010025661.5A CN111275295B (zh) 2020-03-23 2020-03-23 一种基于反距离权重插值的分布式光伏故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010025661.5A CN111275295B (zh) 2020-03-23 2020-03-23 一种基于反距离权重插值的分布式光伏故障诊断方法

Publications (2)

Publication Number Publication Date
CN111275295A CN111275295A (zh) 2020-06-12
CN111275295B true CN111275295B (zh) 2023-06-30

Family

ID=71003005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010025661.5A Active CN111275295B (zh) 2020-03-23 2020-03-23 一种基于反距离权重插值的分布式光伏故障诊断方法

Country Status (1)

Country Link
CN (1) CN111275295B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491360B (zh) * 2020-10-19 2022-04-08 阳光电源股份有限公司 光伏组串的故障诊断方法及系统、可读存储介质
CN114070198B (zh) * 2021-12-06 2023-11-07 北京中电普华信息技术有限公司 分布式光伏发电系统的故障诊断方法、装置和电子设备
CN114994451B (zh) * 2022-08-08 2022-10-11 山东交通职业学院 一种船舶电气设备故障探测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961249A (zh) * 2017-03-17 2017-07-18 广西大学 一种光伏阵列故障诊断和预警方法
CN109379042A (zh) * 2018-09-30 2019-02-22 河北隆基泰和云能源科技有限公司 一种用于分析户用光伏遮挡物的方法及系统
CN109842373A (zh) * 2019-04-15 2019-06-04 国网河南省电力公司电力科学研究院 基于时空分布特性的光伏阵列故障诊断方法及装置
CN110336534A (zh) * 2019-07-15 2019-10-15 龙源(北京)太阳能技术有限公司 一种基于光伏阵列电气参数时间序列特征提取的故障诊断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961249A (zh) * 2017-03-17 2017-07-18 广西大学 一种光伏阵列故障诊断和预警方法
CN109379042A (zh) * 2018-09-30 2019-02-22 河北隆基泰和云能源科技有限公司 一种用于分析户用光伏遮挡物的方法及系统
CN109842373A (zh) * 2019-04-15 2019-06-04 国网河南省电力公司电力科学研究院 基于时空分布特性的光伏阵列故障诊断方法及装置
CN110336534A (zh) * 2019-07-15 2019-10-15 龙源(北京)太阳能技术有限公司 一种基于光伏阵列电气参数时间序列特征提取的故障诊断方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴春华 ; 徐文新 ; 李智华 ; 徐立娟 ; 柏同杨 ; .光伏系统直流电弧故障检测方法及其抗干扰研究.中国电机工程学报.2018,(第12期),全文. *
魏子杰 ; 李爱武 ; 邵帅 ; 胡阳 ; 朱红路 ; .基于FCM-FM算法的光伏阵列故障诊断.新能源进展.2017,(第04期),全文. *

Also Published As

Publication number Publication date
CN111275295A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
CN111275295B (zh) 一种基于反距离权重插值的分布式光伏故障诊断方法
Kang et al. Big data analytics in China's electric power industry: modern information, communication technologies, and millions of smart meters
CN105353256A (zh) 一种输变电设备状态异常检测方法
CN110222991B (zh) 基于rf-gbdt的计量装置故障诊断方法
CN110221976B (zh) 一种基于度量技术的计量终端软件质量量化评价方法
CN113592134B (zh) 一种基于能源数据的电力碳排放评估系统及方法
CN103103570B (zh) 基于主元相似性测度的铝电解槽况诊断方法
CN103886518A (zh) 一种基于监测点电能质量数据挖掘的电压暂降预警方法
CN112065668A (zh) 一种风电机组状态异常评估方法及系统
CN111669123A (zh) 用于对光伏组串进行故障诊断的方法和装置
CN114595762A (zh) 一种光伏电站异常数据序列提取方法
CN113866708A (zh) 一种基于智能断路器的电能表计量误差分析方法
CN113466520A (zh) 一种在线识别失准电能表的方法
CN111192163B (zh) 基于风电机组运行数据的发电机可靠度中短期预测方法
CN115343579A (zh) 一种电网故障分析方法、装置及电子设备
CN112347655B (zh) 一种基于机组运行性能评估的风电场理论功率计算方法
CN115310653A (zh) 基于性能退化数据的光伏阵列剩余寿命预测方法
CN114595989A (zh) 一种风电机组性能评估方法及装置
CN110873857B (zh) 基于多源数据融合的智能电能表运行状态评价方法及系统
CN113505909A (zh) 一种面向短期风电功率趋势预测的误差补偿方法
Sarquis Filho et al. Practical recommendations for the design of automatic fault detection algorithms based on experiments with field monitoring data
Mosca et al. A new real-time approach for the load forecasting in the operation of sub-transmission systems
CN117411436B (zh) 光伏组件状态检测方法、系统及存储介质
CN115828165B (zh) 一种新能源智能微电网数据处理方法及系统
CN117648588B (zh) 基于相关性网络图聚类分析的气象雷达参数异常识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant