CN109839895A - A kind of method that cutter geometrical structure parameter and working process parameter optimize jointly - Google Patents

A kind of method that cutter geometrical structure parameter and working process parameter optimize jointly Download PDF

Info

Publication number
CN109839895A
CN109839895A CN201910066455.6A CN201910066455A CN109839895A CN 109839895 A CN109839895 A CN 109839895A CN 201910066455 A CN201910066455 A CN 201910066455A CN 109839895 A CN109839895 A CN 109839895A
Authority
CN
China
Prior art keywords
parameters
tool
machining process
parameter
orthogonal test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910066455.6A
Other languages
Chinese (zh)
Other versions
CN109839895B (en
Inventor
张祥雷
纪军豪
高成
张靖
周宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201910066455.6A priority Critical patent/CN109839895B/en
Publication of CN109839895A publication Critical patent/CN109839895A/en
Application granted granted Critical
Publication of CN109839895B publication Critical patent/CN109839895B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Numerical Control (AREA)

Abstract

本发明提供一种刀具几何结构参数和加工工艺参数共同优化的方法,包括确定刀具的结构参数、加工工艺参数及各自的取值范围;在各取值范围中构建出加工工艺参数正交试验和刀具结构参数正交试验,根据两组正交试验获得的切削力数据和切削温度数据,得到切削力模型及切削温度模型;根据切削力模型及切削温度模型,构建出刀具几何结构参数优化目标函数;根据待优化的加工目标,确定需优化的加工工艺参数,构建出加工工艺参数优化目标函数;根据上述两个优化目标函数,构建出共同优化模型并求最优解,得到优化后的刀具结构参数和加工工艺参数各自对应的值。实施本发明,综合考虑实际加工过程中各加工目标,获得最优的刀具结构参数和加工工艺参数。

The invention provides a method for co-optimizing tool geometric structure parameters and machining process parameters, including determining the tool structure parameters, machining process parameters and their respective value ranges; constructing an orthogonal test and a machining process parameter in each value range Orthogonal test of tool structure parameters, according to the cutting force data and cutting temperature data obtained by two sets of orthogonal tests, the cutting force model and cutting temperature model are obtained; according to the cutting force model and cutting temperature model, the optimization objective function of tool geometric structure parameters is constructed ;According to the machining objective to be optimized, determine the machining process parameters to be optimized, and construct the optimization objective function of the machining process parameters; According to the above two optimization objective functions, construct a joint optimization model and find the optimal solution to obtain the optimized tool structure The corresponding values of the parameters and the machining process parameters. By implementing the present invention, the optimal tool structure parameters and machining process parameters are obtained by comprehensively considering various machining objectives in the actual machining process.

Description

一种刀具几何结构参数和加工工艺参数共同优化的方法A method for co-optimizing tool geometry parameters and machining process parameters

技术领域technical field

本发明涉及机械加工技术领域,尤其涉及一种刀具几何结构参数和加工工艺参数共同优化的方法。The invention relates to the technical field of machining, in particular to a method for co-optimizing tool geometric structure parameters and machining process parameters.

背景技术Background technique

刀具结构参数设计对能否发挥刀具材料性能优势至关重要,好的刀具结构可以提高数倍的加工效率。同样,切削加工工艺参数设立合理与否直接关系着加工效率和生产成本,对工件加工质量也有着决定性的影响。The design of tool structure parameters is very important to whether the performance advantages of the tool material can be exerted. A good tool structure can improve the processing efficiency several times. Similarly, whether the setting of cutting process parameters is reasonable or not is directly related to the processing efficiency and production cost, and also has a decisive impact on the processing quality of the workpiece.

目前,关于刀具结构参数和加工工艺参数优化的研究非常多,比较有代表性的有丁郭,金燕鸣,刘佩杰,余浪,“U71Mn钢轨的成形铣削力的测试与建模”,《工具技术》,2018,第11期,32-38页;又如,张宏基,葛媛媛,唐虹,“高速铣削工艺参数对AM50A镁合金铣削力和表面形貌的影响”,《西北工业大学学报》,2018,第1期,124-131页;又如,崔峰,王德超,朴成道,“基于能耗和表面粗糙度的车削参数优化研究”,《机床也液压》,2018,第21期,136-140页;又如,赵淑军,曾桂林,刘均,马术文,“BP神经网络在立铣刀结构参数优化中的应用”,《组合机床与自动化加工技术》,2017,第6期,18-25页等。At present, there are many studies on the optimization of tool structure parameters and machining process parameters. The more representative ones are Ding Guo, Jin Yanming, Liu Peijie, Yu Lang, "Testing and Modeling of Forming Milling Force of U71Mn Rail", "Tool Technology" , 2018, No. 11, pp. 32-38; another example, Zhang Hongji, Ge Yuanyuan, Tang Hong, "Influence of high-speed milling process parameters on the milling force and surface morphology of AM50A magnesium alloy", "Journal of Northwestern Polytechnical University", 2018 , No. 1, pp. 124-131; another example, Cui Feng, Wang Dechao, Pu Chengdao, "Research on the optimization of turning parameters based on energy consumption and surface roughness", "Machine Tool Hydraulics", 2018, No. 21, 136- 140 pages; another example, Zhao Shujun, Zeng Guilin, Liu Jun, Ma Shuwen, "The Application of BP Neural Network in the Optimization of End Mill Structural Parameters", "Combined Machine Tool and Automated Machining Technology", 2017, Issue 6, 18- 25 pages, etc.

从上述研究中可以发现,现有参数优化仅仅局限于刀具结构参数和加工工艺参数的单方面优化,没有同时优化刀具结构参数与加工工艺参数。因此,研究刀具几何结构参数和加工工艺参数共同优化的方法,对综合考虑实际加工过程中的各个加工目标(如切削力、切削温度、表面质量、刀具寿命、材料去除率、加工成本等),充分发挥刀具的切削性能具有重要意义。It can be found from the above research that the existing parameter optimization is only limited to the unilateral optimization of tool structure parameters and machining process parameters, and there is no simultaneous optimization of tool structure parameters and machining process parameters. Therefore, the method of co-optimizing tool geometric structure parameters and machining process parameters is studied, and various machining objectives (such as cutting force, cutting temperature, surface quality, tool life, material removal rate, machining cost, etc.) in the actual machining process are comprehensively considered. It is of great significance to give full play to the cutting performance of the tool.

发明内容SUMMARY OF THE INVENTION

本发明实施例所要解决的技术问题在于,提供一种刀具几何结构参数和加工工艺参数共同优化的方法,能综合考虑实际加工过程中的各个加工目标,获得最优的刀具结构参数和加工工艺参数。The technical problem to be solved by the embodiments of the present invention is to provide a method for co-optimizing tool geometric structure parameters and machining process parameters, which can comprehensively consider various machining objectives in the actual machining process, and obtain optimal tool structure parameters and machining process parameters. .

为了解决上述技术问题,本发明实施例提供了一种刀具几何结构参数和加工工艺参数共同优化的方法,包括以下步骤:In order to solve the above-mentioned technical problems, the embodiment of the present invention provides a method for co-optimizing tool geometric structure parameters and machining process parameters, including the following steps:

确定刀具的结构参数及加工工艺参数,并获取各结构参数及各加工工艺参数分别对应的取值范围;Determine the structural parameters and machining process parameters of the tool, and obtain the corresponding value ranges of each structural parameter and each machining process parameter;

在所获取到的各结构参数及各加工工艺参数分别对应的取值范围中,构建出加工工艺参数正交试验和刀具结构参数正交试验,根据两组正交试验获得的切削力和切削温度,采用交替拟合的方式得到切削力模型及切削温度模型;其中,所述加工工艺参数正交试验为刀具结构参数固定,对每个加工工艺参数设立n个水平的正交试验;所述刀具结构参数正交试验为加工工艺参数固定,对每个刀具结构参数设立n个水平的正交试验;n为正整数;;In the obtained value range of each structural parameter and each machining process parameter, an orthogonal test of machining process parameters and an orthogonal test of tool structure parameters are constructed. According to the cutting force and cutting temperature obtained by the two sets of orthogonal tests , the cutting force model and the cutting temperature model are obtained by alternate fitting; wherein, the orthogonal test of the machining process parameters is that the tool structure parameters are fixed, and n levels of orthogonal tests are set up for each machining process parameter; the cutter Orthogonal test of structural parameters is that the processing parameters are fixed, and n levels of orthogonal tests are set up for each tool structural parameter; n is a positive integer;

根据所得到的切削力模型及切削温度模型,利用线性加权法来构建出以切削力最小和切削温度最低为优化目标的刀具几何结构参数优化目标函数;According to the obtained cutting force model and cutting temperature model, the linear weighting method is used to construct the optimization objective function of the tool geometry parameters with the minimum cutting force and the minimum cutting temperature as the optimization goals;

确定待优化的多个加工目标,并根据所确定的待优化的多个加工目标,确定出需优化的加工工艺参数,且进一步基于所确定的待优化的多个加工目标,采用线性加权法来构建出加工工艺参数的优化目标函数;Determine multiple processing targets to be optimized, and determine the processing process parameters to be optimized according to the determined multiple processing targets to be optimized, and further based on the determined multiple processing targets to be optimized, use a linear weighting method to Construct the optimization objective function of the processing parameters;

根据所述刀具几何结构参数优化目标函数及所述刀具加工工艺参数优化目标函数,构建出刀具几何结构参数及加工工艺参数的共同优化模型,并对所述刀具几何结构参数及加工工艺参数的共同优化模型求最优解,得到优化后的刀具结构参数和加工工艺参数各自对应的值。According to the optimization objective function of the tool geometric structure parameters and the optimization objective function of the tool machining process parameters, a joint optimization model of the tool geometric structure parameters and the machining process parameters is constructed, and the common optimization model of the tool geometric structure parameters and the machining process parameters is established. The optimization model is used to find the optimal solution, and the corresponding values of the optimized tool structure parameters and machining process parameters are obtained.

其中,所述刀具的结构参数的取值范围根据切削加工经验及刀具手册来确定;所述刀具的加工工艺参数根据切削加工经验、加工工艺手册、机床约束、刀具约束及工件约束来确定。Wherein, the value range of the structural parameters of the tool is determined according to cutting processing experience and tool manual; the processing technology parameters of the tool are determined according to cutting processing experience, processing technology manual, machine tool constraints, tool constraints and workpiece constraints.

其中,所述切削力模型是根据加工工艺参数正交试验和刀具结构参数正交试验所得的切削力数据采用循环法求解所得;其中,Wherein, the cutting force model is obtained by using the cyclic method to solve the cutting force data obtained from the orthogonal test of the machining process parameters and the orthogonal test of the tool structure parameters; wherein,

所述切削力模型所采用的循环法求解的具体步骤为,先根据加工工艺参数正交试验结果,推导出切削力经验公式,在不改变加工工艺参数的固定系数的前提下,增加刀具结构参数的系数,利用结构参数正交试验结果,拟合出刀具结构参数的系数;接着,不改变刀具结构参数的固定系数,利用加工工艺参数正交试验结果,重新拟合出新的加工工艺参数的系数,再不改变加工工艺参数的指数系数,利用刀具结构参数正交试验结果,拟合出刀具结构参数的系数;依此类推,对刀具交替进行多次加工工艺参数正交试验和多次结构参数正交试验直至所述切削力经验公式中的加工工艺参数和结构参数的系数均将达到稳定值为止,得到切削力模型。The specific steps for solving the cyclic method adopted by the cutting force model are: first, according to the orthogonal test results of the machining process parameters, deduce the cutting force empirical formula, and increase the tool structure parameters on the premise of not changing the fixed coefficient of the machining process parameters. Then, without changing the fixed coefficients of the tool structure parameters, use the orthogonal test results of the machining process parameters to re-fit the new machining process parameters. coefficient, and then do not change the exponential coefficient of the machining process parameters, and use the results of the orthogonal test of the tool structure parameters to fit the coefficient of the tool structure parameters; and so on, perform multiple orthogonal tests of the machining process parameters and multiple structural parameters on the tool alternately. Orthogonal tests are carried out until the coefficients of the machining process parameters and structural parameters in the empirical formula of cutting force all reach stable values, and the cutting force model is obtained.

其中,所述切削温度模型是根据加工工艺参数正交试验和刀具结构参数正交试验所得的切削温度数据采用二次非线性最小二乘法回归拟合而成的。Wherein, the cutting temperature model is obtained by quadratic nonlinear least square regression fitting according to the cutting temperature data obtained from the orthogonal test of machining process parameters and the orthogonal test of tool structure parameters.

其中,所述待优化的多个加工目标包括表面质量、刀具寿命、材料去除率和加工成本。Wherein, the multiple processing objectives to be optimized include surface quality, tool life, material removal rate and processing cost.

实施本发明实施例,具有如下有益效果:Implementing the embodiment of the present invention has the following beneficial effects:

本发明通过综合考虑实际加工过程中的各个加工目标,获得最优的刀具结构参数和加工工艺参数。The present invention obtains optimal tool structure parameters and machining process parameters by comprehensively considering various machining targets in the actual machining process.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, obtaining other drawings according to these drawings still belongs to the scope of the present invention without any creative effort.

图1为本发明实施例提出的一种刀具几何结构参数和加工工艺参数共同优化的方法的流程图;1 is a flowchart of a method for co-optimizing tool geometry parameters and machining process parameters proposed by an embodiment of the present invention;

图2为本发明实施例提出的一种刀具几何结构参数和加工工艺参数共同优化的方法中步骤S5的求刀具几何结构参数及加工工艺参数的共同优化模型最优解的流程图。FIG. 2 is a flowchart of finding the optimal solution of the co-optimization model of tool geometric structure parameters and machining process parameters in step S5 in a method for co-optimizing tool geometric structure parameters and machining process parameters according to an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings.

如图1所示,为本发明实施例中,提出的一种刀具几何结构参数和加工工艺参数共同优化的方法,包括以下步骤:As shown in FIG. 1 , in the embodiment of the present invention, a proposed method for co-optimizing tool geometry parameters and machining process parameters includes the following steps:

步骤S1、确定刀具的结构参数及加工工艺参数,并获取各结构参数及各加工工艺参数分别对应的取值范围;Step S1, determine the structural parameters and processing technology parameters of the tool, and obtain the corresponding value ranges of each structural parameter and each processing technology parameter;

步骤S2、在所获取到的各结构参数及各加工工艺参数分别对应的取值范围中,构建出加工工艺参数正交试验和刀具结构参数正交试验,根据两组正交试验获得的切削力和切削温度,采用交替拟合的方式得到切削力模型及切削温度模型;其中,所述加工工艺参数正交试验为刀具结构参数固定,对每个加工工艺参数设立n个水平的正交试验;所述刀具结构参数正交试验为加工工艺参数固定,对每个刀具结构参数设立n个水平的正交试验;n为正整数;Step S2, in the acquired value ranges of each structural parameter and each machining process parameter, construct an orthogonal test of machining process parameters and an orthogonal test of tool structure parameters, and obtain the cutting force according to the two sets of orthogonal tests. and cutting temperature, the cutting force model and the cutting temperature model are obtained by alternate fitting; wherein, the orthogonal test of the machining process parameters is that the tool structure parameters are fixed, and n levels of orthogonal tests are set up for each machining process parameter; The tool structure parameter orthogonal test is that the machining process parameters are fixed, and n levels of orthogonal tests are set up for each tool structure parameter; n is a positive integer;

步骤S3、根据所得到的切削力模型及切削温度模型,利用线性加权法来构建出以切削力最小和切削温度最低为优化目标的刀具几何结构参数优化目标函数;Step S3: According to the obtained cutting force model and cutting temperature model, a linear weighting method is used to construct a tool geometry parameter optimization objective function with the minimum cutting force and the minimum cutting temperature as the optimization goals;

步骤S4、确定待优化的多个加工目标,并根据所确定的待优化的多个加工目标,确定出需优化的加工工艺参数,且进一步基于所确定的待优化的多个加工目标,采用线性加权法来构建出加工工艺参数的优化目标函数;;Step S4: Determine multiple processing targets to be optimized, and determine the processing process parameters to be optimized according to the determined multiple processing targets to be optimized, and further based on the determined multiple processing targets to be optimized, use linearity. The weighting method is used to construct the optimization objective function of the processing parameters;

步骤S5、根据所述刀具几何结构参数优化目标函数及所述刀具加工工艺参数优化目标函数,构建出刀具几何结构参数及加工工艺参数的共同优化模型,并对所述刀具几何结构参数及加工工艺参数的共同优化模型求最优解,得到优化后的刀具结构参数和加工工艺参数各自对应的值。Step S5, according to the tool geometric structure parameter optimization objective function and the tool machining process parameter optimization objective function, construct a joint optimization model of the tool geometric structure parameters and machining process parameters, and analyze the tool geometric structure parameters and machining process parameters. The joint optimization model of parameters is used to find the optimal solution, and the corresponding values of the optimized tool structure parameters and machining process parameters are obtained.

具体过程为,在步骤S1中,根据刀具的结构及加工条件等来确定刀具的结构参数及加工工艺参数,并在机械加工过程中,由于受到加工设备等的限制,刀具的结构参数和加工工艺参数只能在满足限制条件的范围内取值。此时,刀具的结构参数的取值范围根据切削加工经验及刀具手册来确定,而刀具的加工工艺参数根据切削加工经验、加工工艺手册、机床约束、刀具约束及工件约束来确定。The specific process is: in step S1, the structural parameters and processing technology parameters of the tool are determined according to the structure and processing conditions of the tool, and during the machining process, due to the limitation of processing equipment, the structural parameters and processing technology of the tool Parameters can only take values within the range that satisfies the constraints. At this time, the value range of the structural parameters of the tool is determined according to the cutting processing experience and the tool manual, and the processing parameters of the tool are determined according to the cutting processing experience, the processing technology manual, the machine tool constraints, the tool constraints and the workpiece constraints.

在步骤S2中,固定刀具结构参数,对每个加工工艺参数设立n个水平,进行加工工艺参数正交试验,然后固定加工工艺参数,对每个刀具结构参数设立n个水平进行刀具结构参数正交试验,并记录每组试验的切削力数据和切削温度数据。In step S2, the tool structure parameters are fixed, n levels are set for each machining process parameter, the orthogonal test of the machining process parameters is performed, and then the machining process parameters are fixed, n levels are set for each tool structure parameter, and the tool structure parameter positive test is performed. Submit the test, and record the cutting force data and cutting temperature data for each set of tests.

此时,切削力模型综合考虑了刀具结构参数和加工工艺参数,该模型是根据加工工艺参数正交试验和刀具结构参数正交试验所得的切削力数据采用循环法求解所得;其中,At this time, the cutting force model comprehensively considers the tool structure parameters and the machining process parameters. The model is obtained by the cyclic method based on the cutting force data obtained from the orthogonal test of the machining process parameters and the orthogonal test of the tool structure parameters; among them,

切削力模型所采用的循环法求解的具体步骤为,先根据加工工艺参数正交试验结果,推导出切削力经验公式,在不改变加工工艺参数的固定系数的前提下,增加刀具结构参数的系数,利用结构参数正交试验结果,拟合出刀具结构参数的系数;接着,不改变刀具结构参数的固定系数,利用加工工艺参数正交试验结果,重新拟合出新的加工工艺参数的系数,再不改变加工工艺参数的指数系数,利用刀具结构参数正交试验结果,拟合出刀具结构参数的系数;依此类推,对刀具交替进行多次加工工艺参数正交试验和多次结构参数正交试验直至所述切削力经验公式中的加工工艺参数和结构参数的系数均将达到稳定值为止,得到切削力模型。The specific steps of the cyclic method used in the cutting force model are to first derive the cutting force empirical formula according to the orthogonal test results of the machining process parameters, and increase the coefficient of the tool structure parameters without changing the fixed coefficient of the machining process parameters. , using the results of the orthogonal test of the structural parameters to fit the coefficients of the tool structural parameters; then, without changing the fixed coefficients of the tool structural parameters, using the orthogonal test results of the machining process parameters, re-fit the coefficients of the new machining process parameters, Without changing the exponential coefficients of the machining process parameters, the coefficients of the tool structure parameters are fitted by using the results of the orthogonal test of the tool structure parameters; The experiment is carried out until the coefficients of the machining process parameters and structural parameters in the empirical formula of the cutting force all reach stable values, and the cutting force model is obtained.

同理,切削温度模型也综合考虑了刀具结构参数和加工工艺参数,该模型是根据加工工艺参数正交试验和刀具结构参数正交试验所得的切削温度数据采用二次非线性最小二乘法回归拟合而成的。In the same way, the cutting temperature model also comprehensively considers the tool structure parameters and machining process parameters. combined.

在步骤S3中,采用线性加权法,建立以切削力最小和切削温度最低为优化目标的刀具几何结构参数优化目标函数。In step S3, a linear weighting method is used to establish an optimization objective function of tool geometry parameters with the minimum cutting force and the minimum cutting temperature as the optimization goals.

在步骤S4中,结合实际加工情况,根据待优化的多个加工目标(表面质量、刀具寿命、材料去除率、加工成本)确定出需优化的加工工艺参数,基于待优化的多个加工目标,采用线性加权法来构建出加工工艺参数的优化目标函数。。In step S4, combined with the actual processing situation, the processing parameters to be optimized are determined according to the multiple processing targets to be optimized (surface quality, tool life, material removal rate, and processing cost). Based on the multiple processing targets to be optimized, The linear weighting method is used to construct the optimization objective function of the processing parameters. .

在步骤S5中,根据所述刀具几何结构参数优化目标函数及所述刀具加工工艺参数优化目标函数,建立刀具几何结构参数及加工工艺参数的共同优化模型,采用循环法求出综合考虑时的最优刀具结构参数和加工工艺参数,优化流程见图2。应当说明的是,该优化流程采用常见的收敛算法,属于较常见的技术手段,在此不再赘述。In step S5, according to the optimization objective function of the tool geometric structure parameters and the optimization objective function of the tool machining process parameters, a joint optimization model of the tool geometric structure parameters and the machining process parameters is established, and the cycle method is used to obtain the most comprehensive consideration. Optimize the tool structure parameters and machining process parameters, and the optimization process is shown in Figure 2. It should be noted that the optimization process adopts a common convergence algorithm, which is a relatively common technical means, and will not be repeated here.

可以理解的是,该刀具几何结构参数及加工工艺参数的共同优化模型可以根据不同的优化目标调整各目标的优化权值,以得到特定需求下的最优的结构参数与加工工艺参数,当机床、刀具材料以及工件材料发生变化时,只需要调整目标函数、约束条件的相应系数,变可应用于新的优化问题。It can be understood that the joint optimization model of the tool geometric structure parameters and machining process parameters can adjust the optimization weights of each goal according to different optimization goals, so as to obtain the optimal structural parameters and machining process parameters under specific requirements. , tool material and workpiece material change, only need to adjust the objective function, the corresponding coefficients of constraints, the change can be applied to new optimization problems.

以硬质合金刀具铣削航空铝合金7075为例,对本发明实施例中的一种刀具几何结构参数和加工工艺参数共同优化的方法的应用场景做进一步说明:Taking the milling of aviation aluminum alloy 7075 with a cemented carbide tool as an example, the application scenario of a method for co-optimizing tool geometry parameters and processing process parameters in the embodiment of the present invention is further described:

1.由于受到加工设备等的限制,结构参数和加工工艺参数只能在满足限制条件的范围内取值,确定以下约束条件:1. Due to the limitation of processing equipment, etc., structural parameters and processing technology parameters can only take values within the range that meets the constraints, and the following constraints are determined:

(1)表面粗糙度约束(1) Surface roughness constraints

式中,Ramax为最大需用粗糙度。In the formula, Ramax is the maximum required roughness.

(2)铣削速度约束(2) Milling speed constraint

v≥vhigh v≥v high

式中,vhigh为高速铣削的最低速度。In the formula, v high is the minimum speed of high-speed milling.

(3)加工余量约束(3) Machining allowance constraints

apmin≤ap≤apmax a pmin ≤a p ≤a pmax

式中,apmin,apmax分别为最小、最大许用轴向切深。where a pmin and a pmax are the minimum and maximum allowable axial depth of cut, respectively.

(4)机床主轴转速约束(4) Spindle speed constraint of machine tool

nmin≤n≤nmax n min ≤n≤n max

式中,nmin,nmax分别为机床允许的最低转速和最高转速,切削速度与机床主轴之间存在如下关系:则切削速度约束可以表示如下:In the formula, n min and n max are the minimum and maximum speeds allowed by the machine tool, respectively, and the relationship between the cutting speed and the machine tool spindle is as follows: Then the cutting speed constraint can be expressed as follows:

(5)机床进给速度约束(5) Machine tool feed speed constraint

vfmin≤vf≤vfmax v fmin ≤vf≤v fmax

式中,vfmin,vfmax分别为机床提供的最小进给速度和最大进给速度。机床进给速度与刀具的每齿进给量之间存在如下关系:vf=fz×Ff×n,则每齿进给速度可以表示如下:In the formula, v fmin and v fmax are the minimum and maximum feed rates provided by the machine tool, respectively. There is the following relationship between the feed rate of the machine tool and the feed per tooth of the tool: v f =f z ×F f ×n, then the feed rate per tooth can be expressed as follows:

(6)机床主轴扭矩约束(6) Torque constraint of machine tool spindle

式中,Mmax为机床主轴允许的最大扭矩,d为刀具直径。In the formula, M max is the maximum torque allowed by the spindle of the machine tool, and d is the diameter of the tool.

(7)机床有效功率约束(7) Effective power constraints of machine tools

式中,η为机床传动效率,Pmax为机床电机最大功率。In the formula, η is the transmission efficiency of the machine tool, and Pmax is the maximum power of the machine tool motor.

(8)轴向切深约束(8) Axial depth of cut constraint

刀具的切削深度必须小于刀刃的长度,否则会造成加工终止,表达式如下:The cutting depth of the tool must be less than the length of the cutting edge, otherwise the machining will be terminated. The expression is as follows:

ap≤Lr a p ≤L r

式中,Lr为刀具的刃长。In the formula, L r is the blade length of the tool.

(9)径向切深约束(9) Radial depth of cut constraint

由于受到刀具直径的限制,径向切深应该小于或等于刀具直径,否者会造成加工的不连续,表达式如下:Due to the limitation of the tool diameter, the radial depth of cut should be less than or equal to the tool diameter, otherwise it will cause discontinuity in processing, the expression is as follows:

ae≤da e ≤ d

(10)刀具刚度约束(10) Tool stiffness constraints

式中,Fr为径向切削力,l为悬伸长度,E为刀具的弹性模量,I为惯性矩,δmax为刀具允许的最大变形量。In the formula, F r is the radial cutting force, l is the overhang length, E is the elastic modulus of the tool, I is the moment of inertia, and δ max is the maximum allowable deformation of the tool.

(11)刀具寿命约束(11) Tool life constraints

对于刀具来说,设置的加工工艺参数必须能让刀具具有一定的使用寿命,否则刀具迅速损坏将不利于降低生产成本与减少生产时间。故加工工艺参数设置后必须使刀具的使用寿命大于某一最短使用时间,如下所示:For the tool, the set processing parameters must allow the tool to have a certain service life, otherwise the rapid damage of the tool will not be conducive to reducing production costs and production time. Therefore, after the machining process parameters are set, the service life of the tool must be greater than a certain minimum use time, as shown below:

Tlife≤Tlifemin T life ≤T lifemin

(12)切削温度约束(12) Cutting temperature constraints

切削温度直接影响刀具磨损和工件表面质量,切削过程中不连续切削产生的热应力会加速刀具的疲劳破坏和磨损。切削温度与加工工艺参数之间存在复杂的指数关系,切削温度的约束条件可表示如下:Cutting temperature directly affects tool wear and workpiece surface quality, and thermal stress generated by discontinuous cutting during cutting will accelerate tool fatigue damage and wear. There is a complex exponential relationship between cutting temperature and processing parameters, and the constraints of cutting temperature can be expressed as follows:

Kxvd1fz d2ap d3ae d4≤Txmax K x v d1 f z d2 a p d3 a e d4 ≤T xmax

式中,Kx,d1,d2,d3,d4分别为对应的系数。In the formula, K x , d1, d2, d3, and d4 are the corresponding coefficients, respectively.

2.固定加工工艺参数,对每个刀具结构参数设立4个水平,进行正交试验1,固定刀具结构参数,对每个加工工艺参数设立4个水平,进行正交试验2,记录每组试验的切削力和切削温度,用循环法求出切削力的通用新模型,模型表达式为:2. Fix the machining process parameters, set up 4 levels for each tool structure parameter, carry out the orthogonal test 1, fix the tool structure parameters, set up 4 levels for each machining process parameter, carry out the orthogonal test 2, record each group of tests The cutting force and cutting temperature of , the general new model of cutting force is obtained by the cyclic method.

式中,a0,d0为常数,ai,bi,ci,,di,,ei,fi(i=1,2,3,4)为各参数系数。In the formula, a 0 , d 0 are constants, a i , b i , c i , d i , e i , f i (i=1, 2, 3, 4) are the parameter coefficients.

3.根据前面的正交试验的结果,采用二次非线性最小二乘法回归拟合,得到切削温度通用新模型,模型表达式为:3. According to the results of the previous orthogonal test, the quadratic nonlinear least squares regression fitting is used to obtain a new general model of cutting temperature. The model expression is:

式中,g0为常数,gi,mi,ni(i=1,2,3,4)为各参数系数。In the formula, g 0 is a constant, g i , m i , and n i (i=1, 2, 3, 4) are coefficients of parameters.

4.采用线性加权法,建立以切削力最小和切削温度最低为优化目标的刀具几何结构参数优化目标函数,函数表达式如下:4. The linear weighting method is used to establish the optimization objective function of the tool geometry parameters with the minimum cutting force and the minimum cutting temperature as the optimization goals. The function expression is as follows:

f=min[k1F0/F(xi)+k2T0/T(xi)]f=min[k 1 F 0 /F(x i )+k 2 T 0 /T(x i )]

5.加工航空铝合金时,需要实现表面质量、刀具寿命、材料去除率、加工成本之间的平衡。5. When processing aerospace aluminum alloys, it is necessary to achieve a balance between surface quality, tool life, material removal rate, and processing cost.

(1)航空铝合金加工表面质量是判断工件质量的主要参数之一,对应于工件表面的粗糙度应当越小越好。根据许多学者的工件表面粗糙度试验研究,加工表面质量R通用数学模型为:(1) The surface quality of aerospace aluminum alloy machining is one of the main parameters for judging the quality of the workpiece, and the roughness corresponding to the surface of the workpiece should be as small as possible. According to the experimental research of workpiece surface roughness by many scholars, the general mathematical model of the machined surface quality R is:

式中,CR,c1,c2,c3,c4分别为对应的影响系数。In the formula, C R , c 1 , c 2 , c 3 , and c 4 are the corresponding influence coefficients, respectively.

(2)加工航空铝合金工件,刀具失效会造成工件表面质量下降,使零件疲劳特性、强度等材料力学性能下降,使飞机使用寿命降低。刀具失效也增加了换刀调整的时间,在总加工成本中占了较大的比重。根据泰勒公式,将刀具寿命Tlife定以为刀具的平均更换时间,表达式为:(2) When machining aviation aluminum alloy workpieces, the failure of the tool will cause the surface quality of the workpiece to decrease, and the mechanical properties of the parts such as fatigue characteristics and strength will decrease, and the service life of the aircraft will be reduced. Tool failure also increases the time for tool change and adjustment, which accounts for a larger proportion of the total machining cost. According to Taylor's formula, the tool life T life is determined as the average replacement time of the tool, and the expression is:

式中,Ctool,t1,t2,t3分别为系数,可用试验统计方法计算得到。In the formula, C tool , t 1 , t 2 , and t 3 are coefficients, respectively, which can be calculated by experimental statistical methods.

(3)通常情况下,航空铝合金工件的材料去除量非常大,所以铣削的材料去除率必然作为铣削优化的目标,对于铣削过程而言,材料去除率可表示为主轴转数n、轴向切深ap、径向切深ae、每齿进给量fz以及铣刀齿数Nf的函数,表达式如下:(3) Under normal circumstances, the material removal of aviation aluminum alloy workpieces is very large, so the material removal rate of milling must be the target of milling optimization. For the milling process, the material removal rate can be expressed as the number of spindle revolutions n, the axial direction The function of the depth of cut a p , the radial depth of cut a e , the feed per tooth f z and the number of teeth N f of the milling cutter, the expression is as follows:

MRR=n·ap·ae·fz·Nf MRR=n·a p ·a e ·f z ·N f

(4)加工成本最低是指生产每件工件的成本最低,单件生产成本可如下式计算:(4) The lowest processing cost refers to the lowest cost of producing each workpiece. The production cost of a single piece can be calculated as follows:

式中,tct,tm,tot分别为工序的切削时间、换刀时间、辅助时间,T为刀具的使用寿命,M为单位时间内机床的折旧费和全场开支。In the formula, t ct , t m , and t ot are the cutting time, tool change time, and auxiliary time of the process, respectively, T is the service life of the tool, and M is the depreciation expense of the machine tool and the overall expense per unit time.

6.采用线性加权法建立加工工艺参数优化目标函数,表达式如下:6. Use the linear weighting method to establish the optimization objective function of machining process parameters, and the expression is as follows:

式中,w1,w2,w3,w4分别为加工效率、刀具寿命、加工成本、表面质量的权值,四个权值的和为1。MRR0,Tlife0,Cu0,R0分别为优化前的加工效率、刀具寿命、加工成本、切削力。In the formula, w 1 , w 2 , w 3 , and w 4 are the weights of machining efficiency, tool life, machining cost, and surface quality, respectively, and the sum of the four weights is 1. MRR 0 , T life0 , C u0 , and R 0 are the machining efficiency, tool life, machining cost, and cutting force before optimization, respectively.

7.在硬质合金刀具几何结构参数及加工工艺参数模型的研究基础上,建立同时优化铣刀几何结构参数与加工工艺参数的模型,表达式如下:7. On the basis of the research on the geometrical parameters of the cemented carbide tool and the model of the machining process parameters, a model for simultaneously optimizing the geometrical parameters of the milling cutter and the machining process parameters is established. The expressions are as follows:

Z=[fmin(x)&Mmin(x)]Z=[ fmin (x)& Mmin (x)]

共同优化目标Z的两个优化对象fmin(x)和Mmin(x)的约束方程不同,且各自的优化目标不同,采用循环法逐步优化刀具结构参数和加工工艺参数。在优化后获得的这组参数下,切削力、切削温度、工件表面质量、刀具寿命、材料去除率和加工成本都在合理范围,此组优化后的加工参数具有非常好的使用性,推荐使用。该共同优化模型可以根据不同的优化目标调整各目标的优化权值,以得到特定需求下的最优刀具结构参数与加工工艺参数。The constraint equations of the two optimization objects f min (x) and M min (x) of the common optimization objective Z are different, and the respective optimization objectives are different. The cycle method is used to gradually optimize the tool structure parameters and machining process parameters. Under this set of parameters obtained after optimization, cutting force, cutting temperature, workpiece surface quality, tool life, material removal rate and processing cost are all within a reasonable range. This set of optimized processing parameters has very good usability and is recommended to use . The joint optimization model can adjust the optimization weights of each objective according to different optimization objectives, so as to obtain the optimal tool structure parameters and machining process parameters under specific requirements.

该实例中建立的共同优化模型是针对铣削试验所用的机床参数,以及硬质合金刀具铣削航空铝合金7075的加工过程而搭建的,模型中的各个系数都是在这个加工范围内设定和指定。当机床、刀具材料以及工件材料发生变化时,只需要调整目标函数、约束条件的相应系数,变可应用于新的优化问题。因此,该实例建立的模型具有通用性。The co-optimization model established in this example is built for the machine parameters used in the milling test and the machining process of milling aerospace aluminum alloy 7075 with carbide tools. All coefficients in the model are set and specified within this machining range. . When the machine tool, tool material and workpiece material change, it is only necessary to adjust the corresponding coefficients of the objective function and constraints, and the change can be applied to new optimization problems. Therefore, the model established by this example has generality.

实施本发明实施例,具有如下有益效果:Implementing the embodiment of the present invention has the following beneficial effects:

本发明通过综合考虑实际加工过程中的各个加工目标,获得最优的刀具结构参数和加工工艺参数。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,所述的存储介质,如ROM/RAM、磁盘、光盘等。The present invention obtains optimal tool structure parameters and machining process parameters by comprehensively considering various machining targets in the actual machining process. Those skilled in the art can understand that all or part of the steps in the methods of the above embodiments can be implemented by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium, and the storage Media such as ROM/RAM, magnetic disk, optical disk, etc.

以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。What is disclosed above is only a preferred embodiment of the present invention, and of course it cannot limit the scope of the rights of the present invention. Therefore, equivalent changes made according to the claims of the present invention are still within the scope of the present invention.

Claims (5)

1. A method for jointly optimizing geometrical structure parameters and machining process parameters of a cutter is characterized by comprising the following steps:
determining structural parameters and processing technological parameters of the cutter, and acquiring value ranges corresponding to the structural parameters and the processing technological parameters respectively;
constructing a machining process parameter orthogonal test and a cutter structure parameter orthogonal test in the value ranges corresponding to the obtained structural parameters and the machining process parameters respectively, and obtaining a cutting force model and a cutting temperature model by adopting an alternate fitting mode according to the cutting force and the cutting temperature obtained by the two sets of orthogonal tests; the orthogonal test of the processing technological parameters is that the structural parameters of the cutter are fixed, and n horizontal orthogonal tests are set for each processing technological parameter; the cutter structure parameter orthogonal test is characterized in that the processing technological parameters are fixed, and n horizontal orthogonal tests are set for each cutter structure parameter; n is a positive integer;
according to the obtained cutting force model and cutting temperature model, a tool geometric structure parameter optimization objective function taking the minimum cutting force and the minimum cutting temperature as optimization objectives is constructed by utilizing a linear weighting method;
determining a plurality of processing targets to be optimized, determining processing technological parameters to be optimized according to the determined plurality of processing targets to be optimized, and further constructing an optimization objective function of the processing technological parameters by adopting a linear weighting method based on the determined plurality of processing targets to be optimized;
and constructing a common optimization model of the geometrical parameters of the tool and the processing technological parameters according to the geometrical parameter optimization objective function of the tool and the processing technological parameter optimization objective function of the tool, and solving the optimal solution of the common optimization model of the geometrical parameters of the tool and the processing technological parameters to obtain respective corresponding values of the optimized geometrical parameters of the tool and the processing technological parameters.
2. The method for jointly optimizing geometric parameters and machining process parameters of a tool according to claim 1, wherein the range of values of the structural parameters of the tool is determined according to cutting and machining experience and a tool manual; the machining process parameters of the cutter are determined according to cutting and machining experiences, a machining process manual, machine tool constraints, cutter constraints and workpiece constraints.
3. The method for jointly optimizing geometric parameters and machining process parameters of a tool according to claim 1, wherein the cutting force model is obtained by solving the cutting force data obtained by the orthogonal test of the machining process parameters and the orthogonal test of the structural parameters of the tool by a circulation method; wherein,
the specific steps of the cyclic solution adopted by the cutting force model are that firstly, a cutting force empirical formula is deduced according to the orthogonal test result of the processing technological parameters, the coefficients of the structural parameters of the cutter are increased on the premise of not changing the fixed coefficients of the processing technological parameters, and the coefficients of the structural parameters of the cutter are fitted by using the orthogonal test result of the structural parameters; then, fitting a new coefficient of the processing technological parameter again by using the orthogonal test result of the processing technological parameter without changing the fixed coefficient of the structural parameter of the cutter, fitting a coefficient of the structural parameter of the cutter by using the orthogonal test result of the structural parameter of the cutter without changing the exponential coefficient of the processing technological parameter; and repeating the orthogonal test of the machining process parameters and the orthogonal test of the structural parameters for multiple times alternately until the coefficients of the machining process parameters and the structural parameters in the empirical formula of the cutting force reach stable values, thereby obtaining the cutting force model.
4. The method for jointly optimizing geometric parameters and machining process parameters of a tool according to claim 1, wherein the cutting temperature model is fit by quadratic non-linear least squares regression based on the cutting temperature data obtained from the orthogonal test of machining process parameters and the orthogonal test of structural parameters of the tool.
5. The method of claim 1 wherein the plurality of machining objectives to be optimized include surface quality, tool life, material removal rate, and machining cost.
CN201910066455.6A 2019-01-24 2019-01-24 Method for jointly optimizing geometric structure parameters and machining process parameters of cutter Expired - Fee Related CN109839895B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910066455.6A CN109839895B (en) 2019-01-24 2019-01-24 Method for jointly optimizing geometric structure parameters and machining process parameters of cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910066455.6A CN109839895B (en) 2019-01-24 2019-01-24 Method for jointly optimizing geometric structure parameters and machining process parameters of cutter

Publications (2)

Publication Number Publication Date
CN109839895A true CN109839895A (en) 2019-06-04
CN109839895B CN109839895B (en) 2021-03-30

Family

ID=66884078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910066455.6A Expired - Fee Related CN109839895B (en) 2019-01-24 2019-01-24 Method for jointly optimizing geometric structure parameters and machining process parameters of cutter

Country Status (1)

Country Link
CN (1) CN109839895B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110276400A (en) * 2019-06-24 2019-09-24 重庆大学 A tool holder optimization method based on AHP-gray relational analysis algorithm
CN111948977A (en) * 2020-08-21 2020-11-17 湖北工业大学 Multi-objective optimization method and system for stainless steel processing
CN113434979A (en) * 2021-06-28 2021-09-24 湘潭大学 Parameter optimization method for gear machining tool
CN113820999A (en) * 2021-09-26 2021-12-21 南昌航空大学 Stable milling process parameter optimization method based on neural network and genetic algorithm
CN114442573A (en) * 2021-12-31 2022-05-06 安徽天航机电有限公司 Efficient milling process suitable for 1J50 soft magnetic alloy magnetizer
CN118034063A (en) * 2024-04-08 2024-05-14 哈尔滨理工大学 Method and system for optimizing parameters of end mill head and end mill

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493686A (en) * 2009-02-26 2009-07-29 上海交通大学 Cutting tool mode parameter uncertain curve five-shaft numerical control process parameter optimizing method
CN103793577A (en) * 2014-02-25 2014-05-14 武汉科技大学 Method for optimizing and controlling little-cutting fluid processing technology in machining process
CN105488282A (en) * 2015-11-30 2016-04-13 南京航空航天大学 Cutting parameter segmentation and variable cutting depth optimizing method based on dynamic machining feature
WO2017077607A1 (en) * 2015-11-04 2017-05-11 三菱電機株式会社 Numerical control device
CN106682349A (en) * 2017-01-10 2017-05-17 湘潭大学 Cutting process parameter optimization method under micro lubrication condition
CN107480318A (en) * 2017-06-14 2017-12-15 大连理工大学 Hard brittle material thin-walled parts cutting technology optimization method
US10109457B2 (en) * 2013-07-11 2018-10-23 Tescan Orsay Holding, A.S. Method of specimen processing in an apparatus with two or more particle beams and apparatus for this processing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493686A (en) * 2009-02-26 2009-07-29 上海交通大学 Cutting tool mode parameter uncertain curve five-shaft numerical control process parameter optimizing method
US10109457B2 (en) * 2013-07-11 2018-10-23 Tescan Orsay Holding, A.S. Method of specimen processing in an apparatus with two or more particle beams and apparatus for this processing
CN103793577A (en) * 2014-02-25 2014-05-14 武汉科技大学 Method for optimizing and controlling little-cutting fluid processing technology in machining process
WO2017077607A1 (en) * 2015-11-04 2017-05-11 三菱電機株式会社 Numerical control device
CN105488282A (en) * 2015-11-30 2016-04-13 南京航空航天大学 Cutting parameter segmentation and variable cutting depth optimizing method based on dynamic machining feature
CN106682349A (en) * 2017-01-10 2017-05-17 湘潭大学 Cutting process parameter optimization method under micro lubrication condition
CN107480318A (en) * 2017-06-14 2017-12-15 大连理工大学 Hard brittle material thin-walled parts cutting technology optimization method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANGLEI ZHANG: "A novel milling force model based on the influence of tool geometric parameters in end milling", 《ADVANCES IN MECHANICAL ENGINEERING》 *
王永胜: "基于有限元和遗传算法的金属切削过程物理仿真及优化", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110276400A (en) * 2019-06-24 2019-09-24 重庆大学 A tool holder optimization method based on AHP-gray relational analysis algorithm
CN110276400B (en) * 2019-06-24 2021-08-17 重庆大学 A Toolholder Selection Method Based on AHP-Gray Relational Analysis Algorithm
CN111948977A (en) * 2020-08-21 2020-11-17 湖北工业大学 Multi-objective optimization method and system for stainless steel processing
CN111948977B (en) * 2020-08-21 2021-08-10 湖北工业大学 Multi-objective optimization method and system for stainless steel processing
CN113434979A (en) * 2021-06-28 2021-09-24 湘潭大学 Parameter optimization method for gear machining tool
CN113820999A (en) * 2021-09-26 2021-12-21 南昌航空大学 Stable milling process parameter optimization method based on neural network and genetic algorithm
CN113820999B (en) * 2021-09-26 2023-04-07 南昌航空大学 Stable milling process parameter optimization method based on neural network and genetic algorithm
CN114442573A (en) * 2021-12-31 2022-05-06 安徽天航机电有限公司 Efficient milling process suitable for 1J50 soft magnetic alloy magnetizer
CN114442573B (en) * 2021-12-31 2024-06-07 安徽天航机电有限公司 Efficient milling process suitable for 1J50 magnetically soft alloy magnetizer
CN118034063A (en) * 2024-04-08 2024-05-14 哈尔滨理工大学 Method and system for optimizing parameters of end mill head and end mill

Also Published As

Publication number Publication date
CN109839895B (en) 2021-03-30

Similar Documents

Publication Publication Date Title
CN109839895B (en) Method for jointly optimizing geometric structure parameters and machining process parameters of cutter
CN104517033B (en) A kind of numerical control processing technology parameter Multipurpose Optimal Method towards energy efficiency
CN104880991A (en) Energy-efficiency-oriented multi-step numerical control milling process parameter multi-objective optimization method
CN111563301A (en) An optimization method for milling machining parameters of thin-walled parts
CN109754332B (en) Cutting force-based energy consumption model modeling method for machine tool milling process
Li et al. Multiobjective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II
CN108319223A (en) A kind of thread turning process parameter optimizing method of Oriented Green manufacture
CN109299567B (en) Energy-saving-oriented design optimization method for main transmission system of numerically controlled lathe
CN114004042B (en) Efficient milling parameter optimization method for rough machining of difficult-to-machine material fused with cutter wear monitoring
CN106650119B (en) Prediction method of tool life of CFRP and titanium alloy laminated structure drilling tool
CN106624166B (en) CFRP and titanium alloy laminated construction reaming method
CN108133091A (en) A kind of method that lathe carbon emission Optimized model is established based on cutting tool state
CN102303127B (en) Method for removing incomplete thread by turning of numerically controlled lathe
CN113239461B (en) Deformation control method for asymmetric structure complex thin-wall part
CN111650890A (en) Energy-saving optimization method for batch machining process parameters of CNC turning considering tool wear
CN106774162A (en) A kind of digital control processing parameter Multipurpose Optimal Method
Xie et al. Selection of optimum turning parameters based on cooperative optimization of minimum energy consumption and high surface quality
CN113189948A (en) Method for optimizing processing technological parameters of sheet parts by considering processing precision reliability
CN111881559A (en) Machining parameter optimization method based on combination weight-double decision and surface quality multi-objective
CN112859590B (en) Turning chatter cutting parameter optimization method and system based on workpiece deformation
CN108717494A (en) Titanium alloy blisk Flank machining cutting parameter optimization method towards multiple target
CN112528535A (en) Mortise broaching process simulation analysis method based on heat-force-flow multi-field coupling
CN112100827A (en) A Power Consumption Modeling Method for Machine Tool Milling Process Considering Tool Wear
CN111644716B (en) Optimal extrusion tap for thread processing of aluminum alloy thin-walled parts and its realization method
CN105631072B (en) A kind of aluminium alloy roughing tool design method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210330