CN109830374B - Production process of negative electrode foil, negative electrode foil and polymer solid-state aluminum electrolytic capacitor - Google Patents

Production process of negative electrode foil, negative electrode foil and polymer solid-state aluminum electrolytic capacitor Download PDF

Info

Publication number
CN109830374B
CN109830374B CN201910214877.3A CN201910214877A CN109830374B CN 109830374 B CN109830374 B CN 109830374B CN 201910214877 A CN201910214877 A CN 201910214877A CN 109830374 B CN109830374 B CN 109830374B
Authority
CN
China
Prior art keywords
aluminum substrate
negative electrode
electrode foil
coating
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910214877.3A
Other languages
Chinese (zh)
Other versions
CN109830374A (en
Inventor
吕上
朱金勇
蒋武斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Nanuo Foil Co ltd
Original Assignee
Anhui Nanuo Foil Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Nanuo Foil Co ltd filed Critical Anhui Nanuo Foil Co ltd
Priority to CN202110473612.2A priority Critical patent/CN113178334B/en
Priority to CN201910214877.3A priority patent/CN109830374B/en
Publication of CN109830374A publication Critical patent/CN109830374A/en
Application granted granted Critical
Publication of CN109830374B publication Critical patent/CN109830374B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The invention relates to a production process of a negative foil, the negative foil and a polymer solid-state aluminum electrolytic capacitor, wherein the production process of the negative foil comprises the following steps: s1, selecting an aluminum substrate; s2, a step of forming a dielectric layer, comprising the steps of: a) preparing slurry; b) etching the surface of the aluminum substrate to form holes, coating the slurry on the surface of the aluminum substrate with the holes, drying the surface, feeding the aluminum substrate into a rolling mill, pressing the coating into the holes, and compacting the coating on the holes and the surface of the aluminum substrate; c) and carbonizing. On the premise of improving the specific volume, the negative foil adopted by the same specific volume is obviously thinned, and meanwhile, the polymer solid-state aluminum electrolytic capacitor produced by the negative foil has obviously reduced volume and ESR value in products with the same capacity, and contributes to the miniaturization and current resistance of the polymer solid-state aluminum electrolytic capacitor.

Description

Production process of negative electrode foil, negative electrode foil and polymer solid-state aluminum electrolytic capacitor
Technical Field
The invention belongs to the technical field of capacitors, and particularly relates to a negative foil, a production process of the negative foil and a polymer solid-state aluminum electrolytic capacitor manufactured by adopting the negative foil.
Background
As is well known, miniaturization of electronic components has been an industry hotspot. In recent years, various smart terminals have been rapidly developed in the fields of consumer electronics for consumer use, industrial manufacturing, automotive electronics, military communications, and the like. The realization of these terminal functions is free from component support without miniaturization, and the realization of more functions in a limited space has become a necessary trend, and the demand for component miniaturization will continue to continue.
The capacitor is an essential device in an electronic circuit as a basic component, is generally used for functions of AC resistance direct current, filtering, bypass, coupling and quick charge and discharge, can be used for reducing ripples and absorbing noise generated by a switching regulator, and can also be used for post-stage voltage stabilization to improve the stability and transient response capability of equipment. No ripple noise or residual jitter should appear in the power supply output. Among various types of capacitors, the polymer solid aluminum electrolytic capacitor is still the most cost-effective choice in terms of volume-to-volume ratio and volume-to-price ratio, and is widely applied to consumer electronics products, communication products, automatic control, automobile industry, photoelectric products, high-speed railways, aviation and military equipment and the like.
According to the capacitance calculation formula C = epsilon S/d of the capacitor, wherein C is the capacitance, epsilon is the dielectric constant of the dielectric, S is the facing area of the positive electrode plate and the negative electrode plate of the capacitor, and d is the distance between the positive electrode plate and the negative electrode plate, it can be seen that the capacitance of the capacitor is in direct proportion to the dielectric constant of the dielectric, the area of the electrode plates is in direct proportion, and the distance between the electrodes is in inverse proportion.
In the actual structure of the liquid aluminum electrolytic capacitor, there are two capacitors, in which the positive electrode foil and the electrolyte form a capacitor C1, the electrolyte and the negative electrode foil form a capacitor C2, and the two capacitors are connected in series, and the total capacity C = (C1 × C2)/(C1 + C2), and in order to increase the total capacity, the capacities of the positive electrode foil and the negative electrode foil need to be increased. The first method of capacity increase is to increase the dielectric constant of the dielectric, using a valve metal with a high oxide dielectric constant, such as: tantalum, niobium, and the like, but these metals are rare metals, and are relatively small in the amount of resources on the earth, expensive, and lower in cost performance than aluminum; the second method is to reduce the distance between electrodes, and in the polymer solid aluminum electrolytic capacitor, the dielectric is Al oxide203The film layer, the distance between electrodes is the thickness of the oxide film, and the positive electrode foil film layer is in direct proportion to the capacitor withstand voltage, so that the thickness of the oxide film cannot be reduced at the same level as the withstand voltage. The oxide film of the negative foil is stable, and the extremely thin oxide layer formed on the surface of the negative foil is only slightly thicker than the natural oxide film and cannot be reduced any more; the third method is a conventional method for increasing the area of the electrode foil to increase the capacity and miniaturize the capacity. Polymer solids have long been usedThe miniaturization of the aluminum electrolytic capacitor depends on the surface-enlarging corrosion technology of the aluminum foil, namely, the surface of the aluminum foil is corroded into a spongy cavity by an electrochemical corrosion method, so that the area of the spongy cavity is enlarged. With the continuous progress of the technology, the face expansion times are increased year by year. However, the current technology has reached its physical limit basically, the increasing speed is very slow, taking the negative electrode foil as an example, the specific volume is 500uF/cm2The left and right are maximum degrees, but after the capacitor is connected with the positive foil capacitor in series, the whole capacitance capacity is still greatly influenced, and the further miniaturization of the polymer solid-state aluminum electrolytic capacitor is prevented.
Research has been conducted for many years to increase the specific volume of the negative foil and reduce the loss of the capacity of the positive foil, and a more advanced scheme is to attach a material with a high dielectric constant to an aluminum substrate and increase epsilon to increase the capacity. Among them, Japanese capacitor corporation developed a method of plating titanium on an aluminum substrate by vapor deposition, the titanium surface was in the form of a pyramid having irregularities to increase the surface area to some extent, and then passivated to form TiO on the surface2Film due to TiO2Has a specific Al content203The specific volume of the negative electrode foil made by the method is greatly improved, but the specific volume can only reach 1000 uF/cm due to the nonideal surface area2To the extent that, in low voltage bulk capacitors, there is still some loss of positive foil capacitance.
However, in order to increase the capacitance of a capacitor, chinese patent 201080013193.4 relates to an electrode structure, a capacitor, a battery, and a method for manufacturing an electrode structure, the electrode structure having: aluminum material; a dielectric layer formed on a surface of the aluminum material; and an intermediate layer containing aluminum and carbon, which is formed between the aluminum material and the dielectric layer and in at least a partial region of the surface of the aluminum material, wherein the dielectric layer contains dielectric particles containing a valve metal, and an organic layer is formed on at least a partial surface of the dielectric particles. Meanwhile, the manufacturing method of the electrode structure body comprises the following steps: 1) a mixture layer forming step of forming a mixture layer containing dielectric particles of a valve metal and a binder on a surface of an aluminum material; 2) and a heating step of heating the aluminum material having the mixture layer formed thereon in a state of being placed in a space containing a hydrocarbon-containing substance.
Although the electrode structure described above has a dielectric particle layer of valve metal attached to an aluminum foil to increase the specific volume of the electrode, the dielectric particles are tightly bonded to the aluminum foil through aluminum carbide, and therefore, heating is required in a space containing a hydrocarbon substance, which is not preferable in terms of safety and economy.
Disclosure of Invention
The technical problem to be solved by the invention is to overcome the defects of the prior art and provide an improved production process of the negative electrode foil, which does not need to carry out carbonization treatment in a space containing hydrocarbon substances, thereby not only improving the production safety, but also greatly reducing the production cost; on the other hand, the specific volume is improved on the premise of enhancing the adhesion between the dielectric layer and the aluminum base material layer, and meanwhile, the dielectric layer contains metal particles to enhance the conductivity of the negative electrode foil.
Also relates to a negative electrode foil manufactured by the process. On the premise of improving the specific volume, the cathode foil adopted by the capacitor with the same capacity is obviously thinned.
The invention also provides a polymer solid aluminum electrolytic capacitor made by adopting the negative electrode foil, metal particles are added into dielectric particles of valve metal, the resistance of a covering layer is reduced, the ESR of the capacitor is small,
meanwhile, in the product with the same capacity, the volume of the product is obviously reduced, and great contribution is made to the miniaturization of the capacitor.
In order to solve the technical problems, the invention adopts a technical scheme that:
a production process of a negative electrode foil comprises the following steps:
s1, selecting an aluminum substrate, wherein the aluminum content is 99.0-99.9%;
s2, a step of forming a dielectric layer, comprising the steps of: a) preparing slurry, namely selecting dielectric oxide particles of valve metal, metal particles, organic resin, a dispersant and a solvent according to the mass ratio of 1: 0.05-0.2: 0.1-1: 0.0001-0.01: 5-50, mixing, stirring and uniformly mixing; b) etching the surface of the aluminum substrate to form holes, coating the slurry on the surface of the aluminum substrate with the holes, drying the surface, feeding the aluminum substrate into a rolling mill, pressing the coating into the holes, and compacting the coating on the holes and the surface of the aluminum substrate; c) carbonizing, wherein the aperture of the hole is 50-500 nm, and the hole depth is 100-1000 nm; and the thickness of the coating formed on the surface of the aluminum substrate after rolling is 50-80% of the thickness of the coating formed on the surface of the aluminum substrate before rolling.
Preferably, the selected aluminum substrate is put into a hydrochloric acid solution with the concentration of 0.1-4 mol/L and the temperature of 20-100 ℃ for soaking for 5-60 s, then a nitric acid solution with the concentration of 2-4 wt% is adopted for washing, and then the aluminum substrate is washed by clean water and dried. The method mainly comprises the steps that an aluminum substrate is soaked in an acid solution, impurities in the aluminum substrate and aluminum form a micro-battery effect, holes are corroded in the surface of the aluminum substrate, and meanwhile, the size of the expected holes is achieved by controlling the reaction temperature, the acid concentration and the reaction time, so that the finally formed dielectric layer and the aluminum substrate are high in combination firmness and not prone to falling off.
Preferably, the pores are distributed over the surface of the aluminum substrate at a density of 1X 103~9×105Per cm2
Preferably, the aperture of the hole is 100-300 nm; the hole depth of the hole is 400-700 nm; the holes are distributed on the surface of the aluminum substrate with a density of 1 × 104~5×104Per cm2. At this time, dense bonding of the dielectric layer and the surface of the aluminum substrate can be optimally achieved.
Preferably, the thickness of the coating formed on the surface of the aluminum substrate after rolling is 0.5 to 5 μm.
According to a specific embodiment and preferred aspect of the present invention, the oxide dielectric particles of the valve metal have an average particle diameter of 10 to 500nm, and the valve metal is one or more of magnesium, thorium, cadmium, tungsten, tin, tantalum, titanium, hafnium, zirconium and niobium. Generally, the average particle size of the oxide dielectric particles of the selected valve metal is 40 to 200 nm. In the case of non-spherical particles, the particle size is defined as the average of the major axis diameter and the minor axis diameter.
Preferably, the metal particles have an average particle diameter of 5 to 100nm and are one or more of silver, gold, nickel, copper, titanium, cobalt, zirconium and chromium.
Then, with respect to the above-mentioned particles, the shape thereof is not limited, and a sphere, a flake, a column, or the like is common.
Preferably, before the step c), drying for 10-300 s in a high temperature furnace at 100-300 ℃ to complete the drying of the coating surface. The purpose of the drying at this point is: part of the solvent in the mixture layer is volatilized, the corresponding volume is emptied, and surface drying is realized.
Preferably, in step c) of S2, the heat treatment temperature is 400 to 600 ℃, the heat treatment time is 1 to 48 hours, and the carbonization is performed under the condition of isolating oxygen.
The conditions for excluding oxygen mainly refer to an inert gas atmosphere, a vacuum atmosphere or a reducing atmosphere.
The other technical scheme of the invention is as follows: the negative electrode foil manufactured by the production process comprises an aluminum substrate with holes on the surface and a dielectric layer compacted on the holes and the surface of the aluminum substrate.
The other technical scheme of the invention is as follows: a polymer solid-state aluminum electrolytic capacitor comprises a core package, wherein the core package comprises the negative electrode foil.
Meanwhile, the organic resin in the present application is: a carboxyl-modified polyolefin resin; a vinyl acetate resin; vinyl chloride resin; vinyl chloride-vinyl acetate copolymer resin; a vinyl alcohol resin; a fluorinated vinyl resin; acrylic resin; a polyester resin; a urethane resin; an epoxy resin; urea resin; a phenolic resin; an acrylonitrile resin; nitrocellulose resins; paraffin wax; synthetic resins such as polyethylene wax; and natural resins such as wax, tar, glue, lacquer, rosin, beeswax and the like, and the main functions of the coating are as follows: 1. enabling physical connection between the dielectric particles; 2. after the heat treatment, the dielectric particles are carbonized to form electrical continuity between the dielectric particles and the aluminum substrate.
The solvents in this application are: ketones, esters, alcohols, aromatics, aliphatics, water, etc., which mainly function as: 1. the viscosity of the slurry is adjusted, so that the coating is convenient; 2. and after drying, volatilizing to leave a gap, so that the electrolyte can conveniently enter the coating and contact with the dielectric particles.
The dispersing agent in this example is: fatty acids, fatty amides, metallic soaps and the like, which mainly play a role in: reduce the aggregation of particles in a dispersion system and facilitate the mixing and dispersion of slurry.
Due to the adoption of the technical scheme, compared with the prior art, the invention has the following advantages:
on the premise of improving the specific volume, the negative foil adopted by the same specific volume is obviously thinned, and meanwhile, the polymer solid-state aluminum electrolytic capacitor produced by the negative foil has obviously reduced volume and ESR value in products with the same capacity, and contributes to the miniaturization and current resistance of the polymer solid-state aluminum electrolytic capacitor.
Drawings
Fig. 1 is a schematic structural view of a negative electrode foil according to the present invention before rolling;
fig. 2 is a schematic view of a rolled negative electrode foil according to the present invention;
FIG. 3 is a schematic view of the particle structure of FIG. 1 (before rolling);
FIG. 4 is a schematic view of the particle structure of FIG. 2 (after rolling);
wherein: 1. an aluminum substrate; 10. a hole; 2. a dielectric layer; 2a, a bonding layer; 2b, a cover layer; c. oxide dielectric particles of a valve metal; d. metal particles.
Detailed Description
The preferred embodiments of the present invention will be described in conjunction with the accompanying drawings, and it will be understood that they are described herein for the purpose of illustration and explanation and not limitation.
Example 1
Referring to fig. 1 and 2, the present embodiment provides a negative electrode foil including an aluminum substrate 1, and a dielectric layer 2 formed on a surface of the aluminum substrate 1.
Specifically, the production process of the negative electrode foil comprises the following steps:
s1, selecting an aluminum substrate, wherein the aluminum substrate is an aluminum foil with the aluminum content of 99.5% and the thickness of 30 mu m;
s2, a step of forming a dielectric layer, comprising the steps of: a) preparing slurry; b) etching the surface of the aluminum substrate to form holes, coating the slurry on the surface of the aluminum substrate with the holes, drying the surface, feeding the aluminum substrate into a rolling mill, pressing the coating into the holes, and compacting the coating on the holes and the surface of the aluminum substrate; c) and carbonizing.
In the step a), the oxide dielectric particles of the valve metal, the metal particles, the organic resin, the dispersant and the solvent are mixed in a mass ratio of 1: 0.15: mixing the materials at a ratio of 0.6: 0.0002: 7, stirring and mixing uniformly to prepare slurry.
In this example, the oxide of the valve metal is titanium dioxide particles, and the particle size of the titanium dioxide particles is 50 to 80 nm; the metal particles are silver particles of 30-60 nm; the adopted organic resin is phenolic resin; the solvent used is acetone; the adopted dispersant is triolein.
Step b) it can be carried out in three steps: firstly, forming holes; secondly, coating to form a coating; and thirdly, rolling, and elaborating each step in detail below.
Soaking the selected aluminum substrate in 0.5mol/L hydrochloric acid solution at the temperature of 60 +/-2 ℃ for 10s, washing by using 3wt% nitric acid aqueous solution, washing by using clean water and drying. Through the aluminum base material soaking in the acid solution, impurities in the aluminum base material and aluminum form a micro-battery effect, holes are corroded on the surface of the aluminum base material, and meanwhile, the size of the expected holes is achieved by controlling the reaction temperature, the acid concentration and the reaction time, so that the finally formed dielectric layer and the aluminum base material are high in combination firmness and not prone to falling off
Specifically, the holes 10 are recessed from the surface of the aluminum substrate 1, the diameter of the holes 10 is 100-150 nm, the depth of the holes is 400-500 nm, and the distribution density of the holes on the surface of the aluminum substrate 1 is 3 × 103Per cm2
Secondly, the prepared slurry is directly and uniformly coated on the surface of the aluminum substrate, and then dried in a tunnel furnace at 200 + -5 ℃ for 90 seconds to dry the surface of the coating, wherein the thickness of the coating formed upward from the surface of the aluminum substrate (excluding the wall surface of the hole) is 4.2 μm.
In (c), a part of the coating is pressed into the holes and fills the holes to form a bonding layer 2a by rolling, and the remaining part is pressed against the bonding layer 2a and the surface covering layer 2b of the aluminum substrate 1.
In this example, the thickness of the covering layer 2b after rolling was 2.6 μm, i.e. 61.9% of the thickness of the coating layer before rolling.
In step c), the rolled foil is put into a reducing atmosphere for heat treatment at 580 +/-5 ℃ for 12 +/-1 h, so that the organic resin in the coating is carbonized to form a conductive framework, and the titanium dioxide nano-particles and the silver particles are attached to the surface of the aluminum substrate and are electrically conducted with the aluminum substrate 1 to form the dielectric layer 2.
Meanwhile, as shown in fig. 3 and 4, the formation processes of the bonding layer and the capping layer before and after the rolling can be clearly expressed, and the approximate distribution of the titanium dioxide particles and the silver particles can also be seen.
The specific volume of the aluminum substrate after etching is 25uF/cm through testing2(ii) a The specific volume of the negative electrode foil with the dielectric layer formed thereon was 4897. mu.F/cm2(10 times the specific volume in the prior art, and thus can be referred to as a high specific volume negative foil); intercepting a negative foil sample with the length multiplied by the width of 15cm multiplied by 1cm, and carrying out resistance detection along the length direction, wherein the resistance of the negative foil sample is 13.2m omega; the adhesion obtained by tape stripping was 92%, and the calculation method for the adhesion test was: adhesion (%) = (weight of sample after peeling-weight of aluminum foil itself used as a base material ÷ (weight of sample before peeling-weight of aluminum foil itself used as a base material) × 100%, which is a means commonly used in the art and will not be described in detail herein, and specific volume after adhesion test is 4521. mu.F/cm2
Meanwhile, the voltage of the electrode foil is selected to be 11VF and the specific volume is selected to be 220 muF/cm2The positive electrode foil of (2), the size of the positive electrode foil being 0.6cm × 4cm (length x width), then selecting the negative electrode foil in the embodiment, wherein the size of the negative electrode foil is 0.6cm x 5cm (length x width), and making the negative electrode foil into a polymer solid-state aluminum electrolytic capacitor, and then randomly taking 10 capacitor products out of the polymer solid-state aluminum electrolytic capacitors of the same batch for testing, wherein the average value of the capacity of the capacitor is 407 muF; the average value of ESR was 4.9 m.OMEGA.; after a life test in which a rated voltage was impressed at 105 ℃ for 3000 hours, the average value of the capacity of the capacitor was 397. mu.F, the rate of change in the capacity was-2.46%, and the average value of ESR was 5.4 m.OMEGA..
Example 2
The negative electrode foil according to the present embodiment has substantially the same structure and process as those of embodiment 1, except that:
1) the forming process of the holes in this example is: soaking the selected aluminum substrate in a hydrochloric acid solution with the concentration of 0.5mol/L and the temperature of 80 ℃ for 15s, then washing the aluminum substrate by using a 3wt% nitric acid aqueous solution, then washing the aluminum substrate by using clear water and drying the aluminum substrate.
Specifically, the aperture of the holes 10 is 150 to 250nm, the depth of the holes is 450 to 550nm, and the distribution density of the holes on the surface of the aluminum substrate 1 is 1 × 104Per cm2
In this example, titanium dioxide particles, silver particles, an organic resin, a dispersant, and a solvent are mixed in a mass ratio of 1: 0.10: mixing the materials at a ratio of 0.6: 0.0002: 8, stirring and mixing uniformly to prepare slurry.
In this example, the slurry coating applied to the surface of the aluminum substrate was dried in a tunnel oven at 280. + -. 5 ℃ for 50 seconds to dry the surface of the coating and then rolled.
In step c), the rolled foil is put into an inert gas atmosphere for heat treatment at the temperature of 500 +/-5 ℃ for 20 +/-1 h, so that the organic resin in the coating is carbonized to form a conductive framework, and the titanium dioxide nano-particles and the silver particles are attached to the surface of the aluminum substrate and are electrically conducted with the aluminum substrate to form the dielectric layer 2.
The specific volume of the aluminum substrate after etching is 53 mu F/cm2(ii) a The specific volume of the negative electrode foil with the dielectric layer formed thereon was 4832. mu.F/cm2(ii) a Length of cutThe resistance of a negative foil sample with a width of 15cm multiplied by 1cm is detected along the length direction, and the resistance is 13.9m omega; adhesion obtained by tape stripping was 97%; the specific volume after the adhesion test was 4711. mu.F/cm2
Meanwhile, the voltage of the electrode foil is also selected to be 11VF and the specific volume is selected to be 220 muF/cm2The size of the positive electrode foil is 0.6cm multiplied by 4cm, then the negative electrode foil in the embodiment is selected, the size of the negative electrode foil is 0.6cm multiplied by 5cm, the polymer solid aluminum electrolytic capacitor is made, then 10 capacitor products are arbitrarily taken out from the polymer solid aluminum electrolytic capacitors in the same batch for testing, and the average value of the capacitance of the capacitor is 408 uF; the average value of ESR was 5.0 m.OMEGA.; after a life test in which a rated voltage was impressed at 105 ℃ for 3000 hours, the capacity became 399. mu.F on average, the rate of change in capacity was-2.21%, and the average value of ESR was 5.7 m.OMEGA..
Example 3
The negative electrode foil according to the present embodiment has substantially the same structure and process as those of embodiment 1, except that:
1) the forming process of the holes in this example is: soaking the selected aluminum substrate in a hydrochloric acid solution with the concentration of 1mol/L and the temperature of 80 ℃ for 20s, then washing by using a 3wt% nitric acid aqueous solution, then washing by using clear water and drying.
Specifically, the aperture of the holes 10 is 250-300 nm, the depth of the holes is 600-700 nm, and the distribution density of the holes on the surface of the aluminum substrate 1 is 4 × 105Per cm2
In this example, titanium dioxide particles, silver particles, an organic resin, a dispersant, and a solvent are mixed in a mass ratio of 1: 0.2: mixing the materials at a ratio of 0.6: 0.0002: 8, stirring and mixing uniformly to prepare slurry.
In this example, the slurry coating applied to the surface of the aluminum substrate was dried in a tunnel oven at 110. + -. 5 ℃ for 240 seconds to effect surface drying of the coating and then rolled, and the thickness of the covering layer 2b after rolling was 2.7 μm, that is, 64.3% of the thickness of the coating before rolling.
In step c), the rolled foil is put into a vacuum atmosphere for heat treatment at the temperature of 450 +/-5 ℃ for 30 +/-1 h, so that the organic resin in the coating is carbonized to form a conductive framework, and the titanium dioxide nano-particles and the silver particles are attached to the surface of the aluminum substrate and are electrically conducted with the aluminum substrate to form the dielectric layer 2.
The specific volume of the aluminum substrate after etching is 97 mu F/cm2(ii) a The specific volume of the negative electrode foil with the dielectric layer formed thereon was 4175. mu.F/cm2(ii) a Intercepting a negative foil sample with the length multiplied by the width of 15cm multiplied by 1cm, and carrying out resistance detection along the length direction, wherein the resistance of the negative foil sample is 14.8m omega; adhesion obtained by tape stripping was 99%; specific volume after adhesion test was 4123. mu.F/cm2
Meanwhile, the voltage of the electrode foil is also selected to be 11VF and the specific volume is selected to be 220 muF/cm2The size of the positive electrode foil is 0.6cm multiplied by 4cm, then the negative electrode foil in the embodiment is selected, the size of the negative electrode foil is 0.6cm multiplied by 5cm, the polymer solid aluminum electrolytic capacitor is made, then 10 capacitor products are arbitrarily taken out from the polymer solid aluminum electrolytic capacitors in the same batch for testing, and the average value of the capacitance of the capacitor is 405 muF; the average value of ESR was 5.2 m.OMEGA.; after a life test in which a rated voltage was impressed at 105 ℃ for 3000 hours, the capacity became 394. mu.F on average, the capacity change rate was-2.72%, and the average value of ESR was 5.9 m.OMEGA..
Comparative example 1
The negative foil structure and process involved in this comparative example are essentially the same as example 1, except that:
1) according to the comparative example, titanium dioxide particles, organic resin, a dispersing agent and a solvent are mixed according to the mass ratio of 1: 0.5: 0.001: 8, and are stirred and mixed uniformly to prepare slurry.
In this comparative example, the coated foil was directly fed into a heating furnace without a rolling process to be carbonized.
The specific volume of the aluminum substrate after etching is 53 mu F/cm2(ii) a The specific volume of the negative electrode foil formed with the dielectric layer was 5811. mu.F/cm2(ii) a Intercepting a negative foil sample with the length multiplied by the width of 15cm multiplied by 1cm, and carrying out resistance detection along the length direction, wherein the resistance of the negative foil sample is 14.2m omega; adhesion obtained by tape stripping was 44%; specific volume after adhesion test was 2549. mu.F/cm2
Meanwhile, the voltage of the electrode foil is also selected to be 11VF and the specific volume is selected to be 220 muF/cm2The size of the positive electrode foil is 0.6cm multiplied by 4cm, then the negative electrode foil in the comparative example is selected, the size of the negative electrode foil is 0.6cm multiplied by 5cm, the polymer solid aluminum electrolytic capacitor is made, then 10 capacitor products are arbitrarily taken out from the polymer solid aluminum electrolytic capacitors in the same batch for testing, and the average value of the capacitance of the capacitor is 408 muF; the average value of ESR was 7.7 m.OMEGA.; after a life test in which a rated voltage was impressed at 105 ℃ for 3000 hours, the average value of the capacity was 308. mu.F, the rate of change in the capacity was-24.51%, and the average value of ESR was 18.7 m.OMEGA..
Comparative example 2
The negative foil structure and process involved in this comparative example are essentially the same as example 1, except that:
1) the formation process of the holes in this comparative example was: soaking the selected aluminum substrate in a hydrochloric acid solution with the concentration of 1.5mol/L and the temperature of 90 ℃ for 25s, then washing by using a 3wt% nitric acid aqueous solution, then washing by using clear water and drying.
Specifically, the diameter of the holes 10 is 600 to 700nm, the depth of the holes is 1100 to 1200nm, and the distribution density of the holes on the surface of the aluminum substrate 1 is 2 × 106Per cm2
According to the comparative example, titanium dioxide particles, organic resin, a dispersing agent and a solvent are mixed according to the mass ratio of 1: 0.5: 0.001: 8, and are stirred and mixed uniformly to prepare slurry.
In this comparative example, the thickness of the covering layer 2b after rolling was 1.9 μm, that is, 45.2% of the thickness of the coating layer before rolling.
The specific volume of the aluminum substrate after etching is 204 mu F/cm after testing2(ii) a The specific volume of the negative electrode foil with the dielectric layer formed thereon was 3148. mu.F/cm2(ii) a Intercepting a negative foil sample with the length multiplied by the width of 15cm multiplied by 1cm, and carrying out resistance detection along the length direction, wherein the resistance of the negative foil sample is 17.8m omega; adhesion obtained by tape stripping was 99%; specific volume after adhesion test was 3127. mu.F/cm2
Meanwhile, the voltage of the electrode foil is also selected to be 11VF and the specific volume is selected to be 220 muF/cm2The size of the positive electrode foil is 0.6cm multiplied by 4cm, then the negative electrode foil in the embodiment is selected, the size of the negative electrode foil is 0.6cm multiplied by 5cm, the polymer solid aluminum electrolytic capacitor is made, then 10 capacitor products are arbitrarily taken out from the polymer solid aluminum electrolytic capacitors in the same batch for testing, and the average value of the capacitance of the capacitor is 405 muF; the average value of ESR was 8.1 m.OMEGA.; after a life test in which a rated voltage was impressed at 105 ℃ for 3000 hours, the capacity became 398. mu.F on average, the capacity change rate was-1.73%, and the average value of ESR was 9.0 m.OMEGA..
Comparative example 3
The negative foil structure and process involved in this comparative example are essentially the same as example 1, except that:
1) in this comparative example, the surface of the aluminum substrate was etched (i.e., the surface was flat and had no holes).
According to the comparative example, titanium dioxide particles, organic resin, a dispersing agent and a solvent are mixed according to the mass ratio of 1: 0.5: 0.001: 8, and are stirred and mixed uniformly to prepare slurry.
The thickness of the cover layer after rolling was 3.5 μm, i.e. 83.3% of the thickness of the coating layer before rolling.
The specific volume of the aluminum substrate which is not subjected to the etching treatment is tested to be 63uF/cm2(ii) a The specific volume of the negative electrode foil with the dielectric layer formed thereon was 5538. mu.F/cm2(ii) a Intercepting a negative foil sample with the length multiplied by the width of 15cm multiplied by 1cm, and carrying out resistance detection along the length direction, wherein the resistance of the negative foil sample is 13.1m omega; adhesion obtained by tape stripping was 11%; the specific volume after the adhesion test was 735. mu.F/cm2
Meanwhile, the voltage of the electrode foil is also selected to be 11VF and the specific volume is selected to be 220 muF/cm2The size of the positive electrode foil is 0.6cm multiplied by 4cm, then the negative electrode foil in the embodiment is selected, the size of the negative electrode foil is 0.6cm multiplied by 5cm, the polymer solid aluminum electrolytic capacitor is made, then 10 capacitor products are arbitrarily taken out from the polymer solid aluminum electrolytic capacitors in the same batch for testing, and the average value of the capacitance of the capacitor is 403 muF; the average value of ESR was 7.2 m.OMEGA.; after a life test of applying a rated voltage at 105 ℃ for 3000 hours, the capacity becomes 136 muF on average,the capacity change rate was-66.25%, and the average value of ESR was 45.1 m.OMEGA..
As can be seen from the comparative analysis, the main factors affecting the specific volume, adhesion and the like of the negative electrode foil are shown in two aspects: firstly, etching to form a hole; and II, rolling. Meanwhile, there is a close relationship between the two, such as:
the dielectric layer formed by shallow etching or no etching, rolling and carbonization can fall off and have insufficient adhesion in a tape stripping test; the holes formed by etching are too large or too deep, and a large amount of dielectric layers are sunk into the aluminum substrate after rolling, so that although the adhesion meets the requirement, the titanium dioxide particles, the silver particles and the aluminum foil embedded in the aluminum substrate are tightly combined, therefore, the titanium dioxide particles and the silver particles embedded in the aluminum foil cannot play the role of a dielectric medium, and the specific volume is greatly reduced.
In addition, the polymer solid-state aluminum electrolytic capacitors produced in the present application using the negative electrode foils according to examples 1 to 3 have an increased capacity of capacitance and a reduced resistance of the coating by selecting titanium dioxide particles having an extremely high dielectric constant as valve metal particles and combining silver particles, and then have a significantly improved ESR, a smaller capacity change of capacitance, and a longer service life, in addition to contributing to miniaturization and current resistance of the polymer solid-state aluminum electrolytic capacitors, in the case of a capacity substantially equivalent to that of the comparative example.
Finally, it should be noted that: although the present invention has been described in detail with reference to the embodiments, it will be apparent to those skilled in the art that modifications may be made to the embodiments or portions thereof without departing from the spirit and scope of the invention.

Claims (10)

1. A production process of a negative electrode foil comprises the following steps:
s1, selecting an aluminum substrate, wherein the aluminum content is 99.0-99.9%;
s2, a step of forming a dielectric layer, comprising the steps of: a) preparing slurry; b) coating the slurry on the surface of the aluminum substrate to form a coating; c) carbonizing;
the method is characterized in that:
the process for preparing the slurry in the step a) is as follows: selecting dielectric oxide particles of valve metal, metal particles, organic resin, a dispersing agent and a solvent according to the mass ratio of 1: 0.05-0.2: 0.1-1: 0.0001-0.01: 5-50, blending, stirring and uniformly mixing;
before the coating in the step b) is formed, etching the surface of the aluminum substrate to form holes, wherein the hole diameter is 50-500 nm, and the hole depth is 100-1000 nm;
drying the surface of the coating before the step c), and then feeding the coating into a rolling mill to press the coating into the holes and compact the coating on the holes and the surface of the aluminum substrate, wherein the thickness of the coating formed on the surface of the aluminum substrate after rolling is 50-80% of the thickness of the coating formed on the surface of the aluminum substrate before rolling.
2. The production process of the negative electrode foil according to claim 1, characterized in that: the surface etching treatment process of the aluminum substrate comprises the following steps: the selected aluminum substrate is placed into a hydrochloric acid solution with the concentration of 0.1-4 mol/L and the temperature of 20-100 ℃ for soaking for 5-60 s, then a nitric acid solution with the concentration of 2-4 wt% is adopted for washing, and then the aluminum substrate is washed by clean water and dried.
3. The production process of the negative electrode foil according to claim 1 or 2, characterized in that: the holes are distributed on the surface of the aluminum substrate at a density of 1 × 103~9×105Per cm2
4. The production process of the negative electrode foil according to claim 1, characterized in that: the aperture of the hole is 100-300 nm; the hole depth of the hole is 400-700 nm.
5. The production process of the negative electrode foil according to claim 1, characterized in that: the thickness of the coating formed on the surface of the aluminum substrate after rolling is 0.5 to 5 μm.
6. The production process of the negative electrode foil according to claim 1, characterized in that: the average particle size of oxide dielectric particles of the valve metal is 10-500 nm, and the valve metal is one or more of magnesium, thorium, cadmium, tungsten, tin, tantalum, titanium, hafnium, zirconium and niobium.
7. The production process of the negative electrode foil according to claim 1, characterized in that: the metal particles have an average particle size of 5-100 nm and are one or more of silver, gold, nickel, copper, titanium, cobalt, zirconium and chromium.
8. A process for producing the negative electrode foil according to claim 1, characterized in that: before the step c), drying for 10-300 s in a high temperature furnace at 100-300 ℃ to complete the drying of the coating surface.
9. A negative electrode foil produced by the process for producing a negative electrode foil according to any one of claims 1 to 8, said negative electrode foil comprising an aluminum substrate having said pores on the surface thereof, and a dielectric layer compacted on the pores and the surface of the aluminum substrate.
10. A polymer solid state aluminum electrolytic capacitor comprises a core package, and is characterized in that: the core package comprises the negative foil of claim 9.
CN201910214877.3A 2019-03-20 2019-03-20 Production process of negative electrode foil, negative electrode foil and polymer solid-state aluminum electrolytic capacitor Active CN109830374B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110473612.2A CN113178334B (en) 2019-03-20 2019-03-20 High specific volume negative electrode foil and polymer solid-state aluminum electrolytic capacitor
CN201910214877.3A CN109830374B (en) 2019-03-20 2019-03-20 Production process of negative electrode foil, negative electrode foil and polymer solid-state aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910214877.3A CN109830374B (en) 2019-03-20 2019-03-20 Production process of negative electrode foil, negative electrode foil and polymer solid-state aluminum electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110473612.2A Division CN113178334B (en) 2019-03-20 2019-03-20 High specific volume negative electrode foil and polymer solid-state aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
CN109830374A CN109830374A (en) 2019-05-31
CN109830374B true CN109830374B (en) 2021-04-20

Family

ID=66870542

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910214877.3A Active CN109830374B (en) 2019-03-20 2019-03-20 Production process of negative electrode foil, negative electrode foil and polymer solid-state aluminum electrolytic capacitor
CN202110473612.2A Active CN113178334B (en) 2019-03-20 2019-03-20 High specific volume negative electrode foil and polymer solid-state aluminum electrolytic capacitor

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110473612.2A Active CN113178334B (en) 2019-03-20 2019-03-20 High specific volume negative electrode foil and polymer solid-state aluminum electrolytic capacitor

Country Status (1)

Country Link
CN (2) CN109830374B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102634211B1 (en) * 2018-06-11 2024-02-05 니폰 케미콘 가부시키가이샤 Electrode body, electrolytic capacitor having electrode body, and method for manufacturing the electrode body
CN112151276B (en) * 2020-09-15 2022-05-24 宇启材料科技南通有限公司 Electrode foil, method for producing same, and electrolytic capacitor
CN112828291B (en) * 2020-12-31 2023-03-31 宁波通导电子有限公司 Manufacturing method of high-temperature operation robot
CN113102541B (en) * 2021-04-21 2021-11-16 湖南工程学院 Processing method of titanium-aluminum composite metal sheet
CN116072433B (en) * 2023-03-28 2023-06-02 深圳江浩电子有限公司 Aluminum electrolytic capacitor heat dissipation structure design manufacturing method, system and storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493210B2 (en) * 1998-01-23 2002-12-10 Matsushita Electric Industrial Co., Ltd. Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
JP5542801B2 (en) * 2009-03-23 2014-07-09 東洋アルミニウム株式会社 Electrode structure, capacitor, battery, and manufacturing method of electrode structure
CN102426924B (en) * 2011-10-13 2014-05-14 李荐 High-performance aluminum/carbon composite electrode foil and preparation method thereof
CN102832392A (en) * 2012-06-27 2012-12-19 长沙业翔能源科技有限公司 Current collector carbon coated aluminum foil and its preparation method
CN103825008B (en) * 2014-03-21 2016-01-13 中国科学院新疆理化技术研究所 A kind of preparation method of three-dimensional porous positive plate of lithium battery
CN105469989B (en) * 2016-01-21 2016-09-21 珠海华冠电容器有限公司 The manufacture method of high temperature resistant sheet type aluminum electrolytic capacitor
CN107316745B (en) * 2017-07-18 2019-05-07 丰宾电子(深圳)有限公司 Electrode structural body and aluminium electrolutic capacitor for aluminium electrolutic capacitor
CN107354498B (en) * 2017-07-18 2019-04-30 丰宾电子(深圳)有限公司 A kind of manufacturing method of the electrode foil for aluminum electrolytic capacitors of high pressure high capacity

Also Published As

Publication number Publication date
CN113178334A (en) 2021-07-27
CN113178334B (en) 2023-01-06
CN109830374A (en) 2019-05-31

Similar Documents

Publication Publication Date Title
CN109830374B (en) Production process of negative electrode foil, negative electrode foil and polymer solid-state aluminum electrolytic capacitor
CN101692412B (en) New type solid electrolytic capacitor and manufacturing method thereof
CN101419866B (en) Doped ceramic powder for use in forming capacitor anodes
TWI601330B (en) Electrode material and energy storage apparatus
CN101180695A (en) Wet electrolytic capacitors
JP2010093255A (en) Capacitor anode formed from powder containing coarse agglomerate and fine agglomerate
DE102007011361A9 (en) Wet electrolytic capacitor with a cathode coating
DE102007011358A1 (en) Wet electrolytic capacitor
JP2010199572A (en) Anode for solid electrolytic capacitor containing non-metallic surface treatment
CN102768902A (en) Method for manufacturing organic electrolytic capacitor
JP4914769B2 (en) Conductive paste for solid electrolytic capacitor electrode and method for producing electrode of solid electrolytic capacitor using the conductive paste
JP2009071300A (en) Solid-state electrolytic capacitor
CN109950046B (en) Production process of negative electrode foil, negative electrode foil and liquid aluminum electrolytic capacitor
CN202363267U (en) Solid electrolytic capacitor
GB2514486A (en) Solid electrolytic capacitor containing a pre-coat layer
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
WO2014119312A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP2001176757A (en) Electric double-layer capacitor
JPS6329919A (en) Capacitor
JP2004080019A (en) Energy storage device and its manufacturing method
KR100280292B1 (en) Tantalum Capacitor Manufacturing Method
CN101923966B (en) Solid tantalum electrolytic capacitor and preparation method thereof
CN102568864B (en) Capacitor structure and manufacturing method thereof
JP2002008954A (en) Electric double-layer capacitor, carbon electrode and method of manufacturing the same
JP2004304063A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant