CN109828371B - 一种基于移动散斑光源的大视场散射成像方法 - Google Patents

一种基于移动散斑光源的大视场散射成像方法 Download PDF

Info

Publication number
CN109828371B
CN109828371B CN201910244923.4A CN201910244923A CN109828371B CN 109828371 B CN109828371 B CN 109828371B CN 201910244923 A CN201910244923 A CN 201910244923A CN 109828371 B CN109828371 B CN 109828371B
Authority
CN
China
Prior art keywords
light source
movable
speckle
speckle light
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910244923.4A
Other languages
English (en)
Other versions
CN109828371A (zh
Inventor
金欣
王枭宇
季向阳
戴琼海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Tsinghua University
Original Assignee
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Tsinghua University filed Critical Shenzhen Graduate School Tsinghua University
Priority to CN201910244923.4A priority Critical patent/CN109828371B/zh
Publication of CN109828371A publication Critical patent/CN109828371A/zh
Application granted granted Critical
Publication of CN109828371B publication Critical patent/CN109828371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于移动散斑光源的大视场散射成像方法,包括:搭建基于移动散斑光源的大视场散射成像的装置以用于对待观测的目标物在透过散射介质后进行成像,装置包括可移动散斑光源和相机传感器,其中可移动散斑光源产生的非相干光依次经过目标物和散射介质后被相机传感器采集成像;设置可移动散斑光源和相机传感器的参数以建立所采集图像参数与可移动散斑光源之间的对应关系,实现有效的多幅图像的采集;对采集的多幅图像作预处理,构建集成强度矩阵;根据集成强度矩阵,利用自相关运算提取目标物的自相关信息,并利用相位恢复算法重建得到目标物的空域分布信息。本发明提出的大视场散射成像方法使得系统视场不再受记忆效应范围的限制。

Description

一种基于移动散斑光源的大视场散射成像方法
技术领域
本发明涉及计算视觉与数字图像处理领域,尤其涉及一种基于移动散斑光源的大视场散射成像方法。
背景技术
散射介质广泛存在于自然界中,特别是在深海探测、生物组织观测等领域具有广泛应用。散射介质由于其内部折射率分布未知且复杂,会改变原有光线的传播方向,这使得重构散射层背后的目标物变得十分困难。
现有的透过强散射介质散射成像方法,主要包括以下四类:波前整型法、基于点扩散函数(PSF)的反卷积方法、扫描式相关成像法、单曝光式相关成像法。其中,波前整型法通过在光路中引入空间光调制器(SLM),对光的相位进行逐点调制,补偿散射介质引入的相位干扰。但这种方法需要侵入式地将待观测目标物移除出系统,以实现相位标定,因此无法广泛应用在真实场景中。基于点扩散函数的反卷积方法,根据记忆效应范围内系统的点扩散函数的平移不变性,在系统内引入参考点光源以测量系统的PSF,并利用反卷积对目标物进行高分辨率重建;但该方法需要人为标定PSF,同时视场受限于记忆效应范围。扫描式相关成像法和单曝光式相关成像法,都能在记忆效应范围内,利用自相关运算及相位恢复的方法实现非侵入式的简单目标物的重构,但其视场范围同样受限于记忆效应,导致这两种成像方法必须在满足一定的物距或待观测目标物尺寸的情况下才能使用,无法适用于复杂多变情况下的大视场散射成像。
以上背景技术内容的公开仅用于辅助理解本发明的构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
为了解决上述技术问题,本发明提出一种基于移动散斑光源的大视场散射成像方法,使得系统视场不再受记忆效应范围的限制。
为了达到上述目的,本发明采用以下技术方案:
本发明公开了一种基于移动散斑光源的大视场散射成像方法,包括以下步骤:
A1:搭建基于移动散斑光源的大视场散射成像的装置以用于对待观测的目标物在透过散射介质后进行成像,所述装置包括可移动散斑光源和相机传感器,其中所述可移动散斑光源产生的非相干光依次经过所述目标物和所述散射介质后被所述相机传感器采集成像;
A2:设置所述可移动散斑光源和所述相机传感器的参数以建立所采集图像参数与所述可移动散斑光源之间的对应关系,实现有效的多幅图像的采集;
A3:对步骤A2采集的多幅图像作预处理,构建集成强度矩阵;
A4:根据集成强度矩阵,利用自相关运算提取所述目标物的自相关信息,并利用相位恢复算法重建得到所述目标物的空域分布信息。
优选地,所述可移动散斑光源包括可移动平台和散斑光源,所述散斑光源架设在所述可移动平台上,且所述可移动平台具有X-Y方向二自由度。
优选地,步骤A2中设置所述可移动散斑光源的参数具体包括:设定所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒尺寸和颗粒分布,以及设定所述可移动散斑光源的移动方式。
优选地,其中设定所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒尺寸以使得散斑的颗粒尺寸远小于所述目标物的线宽,设定所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒分布以使得散斑的强度分布具有无序性,设定所述可移动散斑光源的移动方式以使得在所述目标物所在平面形成的散斑的每次移动的距离小于或等于所述目标物的线宽且散斑的移动范围大于或等于所述目标物的尺寸。
优选地,其中设定所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒尺寸以使得散斑的颗粒尺寸远小于所述目标物的线宽具体包括:通过下式来调节所述可移动散斑光源的颗粒尺寸:
Figure BDA0002010784300000021
其中,C表示散斑的最小颗粒尺寸,β表示非相干光由所述可移动散斑光源所在平面到所述目标物所在平面的等效缩比,β>1;Δl表示所述目标物的线宽。
优选地,设定所述可移动散斑光源的移动方式以使得在所述目标物所在平面形成的散斑的每次移动的距离小于或等于所述目标物的线宽且散斑的移动范围大于或等于所述目标物的尺寸具体包括:通过下式来调节所述可移动散斑光源的移动方式:
Figure BDA0002010784300000031
其中,Sx表示所述可移动散斑光源沿X方向移动的步长,Sy表示所述可移动散斑光源沿Y方向移动的步长;Lx表示所述目标物沿X方向的最大尺寸,Ly表示所述目标物沿Y方向的最大尺寸;Nx表示所述可移动散斑光源沿X方向移动的总次数,Ny表示所述可移动散斑光源沿Y方向移动的总次数,β表示非相干光由所述可移动散斑光源所在平面到所述目标物所在平面的等效缩比,β>1;Δl表示所述目标物的线宽。
优选地,设定所述可移动散斑光源的移动方式还包括使得在所述可移动散斑光源移动的过程中,所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒尺寸及颗粒分布均保持不变,且所述目标物始终处在所述可移动散斑光源的照射区内。
优选地,步骤A2中设置所述相机传感器的参数具体包括:设定所述相机传感器的采集频率与所述可移动散斑光源的移动频率相对应。
优选地,步骤A3中构建得到的Nx×Ny维的集成强度矩阵IIM为:
Figure BDA0002010784300000032
Nx表示所述可移动散斑光源沿X方向移动的总次数,Ny表示所述可移动散斑光源沿Y方向移动的总次数;其中:
Figure BDA0002010784300000041
Im,n(x,y)表示所述可移动散斑光源沿X方向移动m次且沿Y方向移动n次时相机所采集到的图像,x和y表示二维图像坐标系;
其中,构建的系统集成强度矩阵IIM等价于:
IIM=S(x,y)*O(x,y)
*表示二维卷积运算,S(x,y)表示在所述目标物所在平面形成的散斑的强度分布,O(x,y)表示所述目标物的空域分布信息。
优选地,步骤A4具体包括:
对集成强度矩阵作自相关运算:
Figure BDA0002010784300000042
其中,δ函数为尖峰函数,即根据上式通过集成强度矩阵的自相关运算可获得所述目标物的自相关信息;
然后再对所述目标物的自相关信息作傅里叶变化、开根号处理得到所述目标物的幅值谱,再利用相位恢复算法重建目标物的空域信息O(x,y)。
与现有技术相比,本发明的有益效果在于:本发明提出的基于移动散斑光源的大视场散射成像方法,通过可移动散斑光源照射待观测的目标物,并根据其经过散射介质后采集到的多幅模糊图像构建集成强度矩阵,即待观测的目标物所在平面形成的散斑和目标物的空域分布信息的卷积信号,最后利用自相关运算及相位恢复算法,实现了待观测的目标物的高分辨率重建,其中该方法中整体均未涉及散射介质的记忆效应理论,因此系统的视场不受记忆效应范围的限制,从而使得该方法能实现相对大视场的散射成像,解决了现有的散射成像方法中视场受限的问题,在工业和日常生活中均具有较大的应用前景。
附图说明
图1是本发明优选实施例的基于移动散斑光源实现大视场散射成像方法的流程图;
图2是本发明优选实施例的基于移动散斑光源实现大视场散射成像的装置图;
图3是采用图2的装置的非相干光经过调制及传播后,在目标物所在平面形成强度二值化或连续分布的散斑图样;
图4是二维散斑图像的自相关的尖峰函数特性图。
具体实施方式
下面对照附图并结合优选的实施方式对本发明作进一步说明。
如图1所示,本发明的优选实施例公开了一种基于移动散斑光源实现大视场散射成像方法,包括以下步骤:
A1:如图2所示,搭建基于移动散斑光源实现大视场散射成像的装置,装置包括二自由度移动散斑光源10和相机传感器20,该装置用于对待观测的目标物30在透过散射介质40后进行成像,其中二自由度移动散斑光源10、待观测的目标物30、散射介质40和相机传感器20依次排列在同一轴线上,以使得二自由移动散斑光源10产生的二自由度可移动非相干光依次经过待观测目标物30和散射介质40后,被相机传感器20采集;
其中,对系统各部分的要求如下:
1)二自由度移动散斑光源10:作为成像系统的照明部分,散斑光源能够发射出具有一定强度及统计分布特性的非相干光,同时散斑光源架设在高精度X-Y二自由度平移台上,用以实现对散斑光源发射出的非相干光在目标物所在平面形成的散斑的二维位置精密调控。
2)相机传感器20:相机传感器用于采集在散斑光源照射下,待测目标物经过散射介质后,在相机传感器平面形成的模糊图像,也即采集待观测目标物形成模糊图像,并用于后续重建。其中相机传感器可以采用单色相机传感器或彩色相机传感器均可。
3)待观测的目标物30:利用光学掩模板携带待观测的目标物的信息,即带有物体信息部分的掩模板能够实现对入射光线的全透射,非物体信息部分的掩模板能实现对入射光线的零透射,物体信息以光学掩模板上目标物光线透射率分布的形式体现。
4)散射介质40:散射介质比如云雾干扰、浑浊深海、生物组织等等,其内部折射率未知且复杂,会扰乱穿过散射介质的光线原有方向,导致提取物体有效信息困难;传统光学成像方法无法实现其清晰成像。
A2:设定系统装置各部分的参数,包括设定散斑光源产生的非相干光在目标物所在平面形成的散斑的颗粒尺寸和颗粒分布,设定散斑光源的移动方式,以及设置相机传感器位置和采集模式;建立所采集图像参数与散斑光源参数之间的对应关系,实现有效的多幅图像采集;
1)设定散斑图样的颗粒尺寸、颗粒分布,及散斑光源的移动方式:
非相干光经过调制及传播后,在目标物所在平面形成强度二值化或连续分布的散斑图样,如图3所示。在本实施例中,对散斑图样颗粒尺寸的要求是,在目标物所在平面形成的散斑的颗粒尺寸要远小于待观测目标物的线宽(在本实施例中,目标物所在平面形成的散斑的颗粒尺寸要小于或等于待观测目标物的线宽的三分之一),这需要限制非相干光的调制模式,以及通过限制散斑光源和目标物之间的距离,控制系统散斑的等效缩比,进而实现对目标物所在平面散斑颗粒尺寸的调节,即:
Figure BDA0002010784300000061
其中,C表示散斑光源产生的非相干光在目标物所在平面形成的散斑图样的最小颗粒尺寸,β表示非相干光由散斑光源所在平面到目标物所在平面的等效缩比(β>1),缩小散斑光源和目标物之间的距离,等效缩比β减小,反之β增大;Δl表示目标物的线宽,表示光学掩模板上透光实线(即目标物区域)的最小宽度。
对散斑图样颗粒分布的要求是,散斑强度分布具有无序性,即二维散斑图像的自相关需具有尖峰函数的特性,如图4所示。
对散斑光源移动方式的要求具体体现在散斑光源的二自由度移动步长上,即经过等效缩比后,待观测目标物所在平面形成的散斑的每次移动的距离要小于或等于待观测目标物的线宽,散斑的二自由度移动范围要大于或等于目标物的尺寸,即:
Figure BDA0002010784300000071
其中,Sx表示散斑光源沿X方向移动的步长,Sy表示散斑光源沿Y方向移动的步长;Lx表示目标物沿X方向的最大尺寸,Ly表示目标物沿Y方向的最大尺寸;Nx表示散斑光源沿X方向移动的总次数,Ny表示散斑光源沿Y方向移动的总次数。
在光源移动的过程中,光源产生散斑的颗粒尺寸及颗粒分布等均保持不变,同时保证光学掩模板的目标物区域始终处在散斑光源的照射区内。
2)设置相机传感器的位置和采集模式:
相机传感器固定于系统的光轴附近即可,相机的采集频率要配合散斑光源的二维移动,即散斑光源每移动一次,相机采集当前散斑光源位置下的图像。相机传感器采集图片的总数N与散斑光源X方向移动次数Nx和Y方向移动次数Ny的关系可表述为:
N=Nx·Ny. (3)
A3:对采集到的多幅模糊图像作预处理,构建系统集成强度矩阵IIM。
步骤A2中基于散斑光源移动方式和图像采集方式,相机传感器共采集到N张二维强度分布,表示为:I1,1(x,y),I1,2(x,y),……,Im,n(x,y),……,INx,Ny(x,y),其中,Im,n(x,y)表示散斑光源沿X方向移动m次且沿Y方向移动n次时相机所采集到的图像,x和y表示二维图像坐标系。系统集成矩阵IIM的构建过程如下:
Figure BDA0002010784300000072
由此得到Nx×Ny维的集成矩阵IIM:
Figure BDA0002010784300000073
上述构建过程中,模拟了二维卷积预算的特点,即构建的系统集成强度矩阵IIM等价于:
IIM=S(x,y)*O(x,y), (6)
其中,*表示二维卷积运算,S(x,y)表示在目标物所在平面的散斑强度分布,O(x,y)表示目标物空域分布信息,以光学掩模板上光线透射率分布的形式存在,携带有目标物的信息。
A4:根据处理得到的集成强度矩阵IIM,及分析得出的IIM与散斑强度分布S(x,y)和目标物空域分布信息O(x,y)之间的卷积关系,利用自相关运算提取目标物的自相关信息,并利用傅里叶变换、相位恢复算法等重建目标物空域分布信息。
1)对集成强度矩阵作自相关运算:
Figure BDA0002010784300000081
根据步骤A2要求的散斑光源强度分布的无序性,散斑的自相关可近似为尖峰函数(即近似的δ函数):
Figure BDA0002010784300000082
其中,任何信号和δ函数卷积的结果即是该信号本身,也即集成强度矩阵的自相关可进一步简化为:
Figure BDA0002010784300000083
即待观测目标物的自相关信息可直接从集成强度矩阵的自相关中获取。
2)对待观测目标物的自相关信息作傅里叶变化、开根号处理得到目标物的幅值谱,再利用相位恢复算法(Hybrid Input-Output and Error-Reduction)重建目标物的空域分布信息O(x,y)。
为了能够非侵入式重建散射介质后的待观测目标物,同时实现远超记忆效应范围的大视场成像,本发明优选实施例提出一种基于移动散斑光源的大视场散射成像方法,首先构建具有特定散斑颗粒尺寸和散斑强度分布的散斑光源,通过控制散斑光源的二维移动及相机同步采集,获取系统的集成强度矩阵IIM,人为构建出待观测目标物所在平面形成的散斑和目标物的空域分布信息的卷积信号;最后利用自相关运算及相关相位恢复算法,实现待观测目标物的高分辨率重建;整体方法未涉及散射介质的记忆效应理论,因此系统视场不受记忆效应范围的限制。
综上所述,本发明利用可二维移动的强度分布无序的散斑光源照射待观测目标物,并根据其经过散射介质后采集到的模糊图像,恢复待观测目标物的空域信息;该方法能实现相对大视场的散射成像,解决了现有的散射成像方法视场受限的问题,在工业和日常生活中具有较大应用的应用前景。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (9)

1.一种基于移动散斑光源的大视场散射成像方法,其特征在于,包括以下步骤:
A1:搭建基于移动散斑光源的大视场散射成像的装置以用于对待观测的目标物在透过散射介质后进行成像,所述装置包括可移动散斑光源和相机传感器,其中所述可移动散斑光源产生的非相干光依次经过所述目标物和所述散射介质后被所述相机传感器采集成像;
A2:设置所述可移动散斑光源和所述相机传感器的参数以建立所采集图像参数与所述可移动散斑光源之间的对应关系,实现有效的多幅图像的采集;
A3:对步骤A2采集的多幅图像作预处理,构建集成强度矩阵;
A4:根据集成强度矩阵,利用自相关运算提取所述目标物的自相关信息,并利用相位恢复算法重建得到所述目标物的空域分布信息;
其中,步骤A3中构建得到的Nx×Ny维的集成强度矩阵IIM为:
Figure FDA0003071693530000011
Nx表示所述可移动散斑光源沿X方向移动的总次数,Ny表示所述可移动散斑光源沿Y方向移动的总次数;其中:
Figure FDA0003071693530000012
Im,n(x,y)表示所述可移动散斑光源沿X方向移动m次且沿Y方向移动n次时相机所采集到的图像,x和y表示二维图像坐标系;
其中,构建的系统集成强度矩阵IIM等价于:
IIM=S(x,y)*O(x,y)
*表示二维卷积运算,S(x,y)表示在所述目标物所在平面形成的散斑的强度分布,O(x,y)表示所述目标物的空域分布信息。
2.根据权利要求1所述的大视场散射成像方法,其特征在于,所述可移动散斑光源包括可移动平台和散斑光源,所述散斑光源架设在所述可移动平台上,且所述可移动平台具有X-Y方向二自由度。
3.根据权利要求1所述的大视场散射成像方法,其特征在于,步骤A2中设置所述可移动散斑光源的参数具体包括:设定所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒尺寸和颗粒分布,以及设定所述可移动散斑光源的移动方式。
4.根据权利要求3所述的大视场散射成像方法,其特征在于,其中设定所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒尺寸以使得散斑的颗粒尺寸远小于所述目标物的线宽,设定所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒分布以使得散斑的强度分布具有无序性,设定所述可移动散斑光源的移动方式以使得在所述目标物所在平面形成的散斑的每次移动的距离小于或等于所述目标物的线宽且散斑的移动范围大于或等于所述目标物的尺寸。
5.根据权利要求4所述的大视场散射成像方法,其特征在于,其中设定所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒尺寸以使得散斑的颗粒尺寸远小于所述目标物的线宽具体包括:通过下式来调节所述可移动散斑光源的颗粒尺寸:
Figure FDA0003071693530000021
其中,C表示散斑的最小颗粒尺寸,β表示非相干光由所述可移动散斑光源所在平面到所述目标物所在平面的等效缩比,β>1;Δl表示所述目标物的线宽。
6.根据权利要求4所述的大视场散射成像方法,其特征在于,设定所述可移动散斑光源的移动方式以使得在所述目标物所在平面形成的散斑的每次移动的距离小于或等于所述目标物的线宽且散斑的移动范围大于或等于所述目标物的尺寸具体包括:通过下式来调节所述可移动散斑光源的移动方式:
Figure FDA0003071693530000022
其中,Sx表示所述可移动散斑光源沿X方向移动的步长,Sy表示所述可移动散斑光源沿Y方向移动的步长;Lx表示所述目标物沿X方向的最大尺寸,Ly表示所述目标物沿Y方向的最大尺寸;Nx表示所述可移动散斑光源沿X方向移动的总次数,Ny表示所述可移动散斑光源沿Y方向移动的总次数,β表示非相干光由所述可移动散斑光源所在平面到所述目标物所在平面的等效缩比,β>1;Δl表示所述目标物的线宽。
7.根据权利要求3所述的大视场散射成像方法,其特征在于,设定所述可移动散斑光源的移动方式还包括使得在所述可移动散斑光源移动的过程中,所述可移动散斑光源产生的非相干光在所述目标物所在平面形成的散斑的颗粒尺寸及颗粒分布均保持不变,且所述目标物始终处在所述可移动散斑光源的照射区内。
8.根据权利要求1所述的大视场散射成像方法,其特征在于,步骤A2中设置所述相机传感器的参数具体包括:设定所述相机传感器的采集频率与所述可移动散斑光源的移动频率相对应。
9.根据权利要求1所述的大视场散射成像方法,其特征在于,步骤A4具体包括:
对集成强度矩阵作自相关运算:
Figure FDA0003071693530000031
其中,δ函数为尖峰函数,即根据上式通过集成强度矩阵的自相关运算可获得所述目标物的自相关信息;
然后再对所述目标物的自相关信息作傅里叶变化、开根号处理得到所述目标物的幅值谱,再利用相位恢复算法重建目标物的空域信息O(x,y)。
CN201910244923.4A 2019-03-28 2019-03-28 一种基于移动散斑光源的大视场散射成像方法 Active CN109828371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910244923.4A CN109828371B (zh) 2019-03-28 2019-03-28 一种基于移动散斑光源的大视场散射成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910244923.4A CN109828371B (zh) 2019-03-28 2019-03-28 一种基于移动散斑光源的大视场散射成像方法

Publications (2)

Publication Number Publication Date
CN109828371A CN109828371A (zh) 2019-05-31
CN109828371B true CN109828371B (zh) 2021-07-27

Family

ID=66873160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910244923.4A Active CN109828371B (zh) 2019-03-28 2019-03-28 一种基于移动散斑光源的大视场散射成像方法

Country Status (1)

Country Link
CN (1) CN109828371B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110807822B (zh) * 2019-10-14 2022-03-22 北京理工大学 基于Wirtinger Flow算法的散斑相关成像方法及装置
CN110823812B (zh) * 2019-10-29 2020-11-24 上海交通大学 基于机器学习的散射介质成像方法及系统
CN111982865A (zh) * 2019-11-21 2020-11-24 清华大学深圳国际研究生院 一种全玻片荧光超光谱快速获取方法和装置
CN111179368B (zh) * 2019-12-26 2023-04-07 西安电子科技大学 大视场多目标散斑成像方法、装置、电子设备及存储介质
CN111103697B (zh) * 2020-01-04 2021-10-26 四川大学 利用空间光调制器实现基于相位多样性的散射介质成像
CN111257287B (zh) * 2020-01-22 2022-11-25 清华大学深圳国际研究生院 一种基于无先验目标定位的大视场散射成像方法和装置
CN111369627B (zh) * 2020-03-05 2023-04-07 电子科技大学 一种非侵入式散斑定向成像方法
CN113281305B (zh) * 2021-05-17 2023-04-14 太原理工大学 一种基于散射介质实现超分辨显微成像方法及其装置
CN116506714B (zh) * 2023-06-26 2023-09-26 之江实验室 成像方法、装置、系统、存储介质以及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105005053B (zh) * 2015-07-13 2017-11-21 西安电子科技大学 基于led照明的随机散射关联成像系统及成像方法
CN105259155B (zh) * 2015-11-16 2017-12-19 清华大学深圳研究生院 一种快速非侵入式半透明成像方法及装置
CN105759440A (zh) * 2016-04-29 2016-07-13 西安电子科技大学 基于结构光照的随机散射光学超衍射极限成像方法
US10349837B2 (en) * 2017-01-08 2019-07-16 The Florida International University Board Of Trustees Materials and methods for non-invasively measuring temperature distribution in the eye
CN107247332B (zh) * 2017-08-04 2019-11-08 清华大学深圳研究生院 一种基于散斑估计和反卷积的非侵入式散射成像方法

Also Published As

Publication number Publication date
CN109828371A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN109828371B (zh) 一种基于移动散斑光源的大视场散射成像方法
Moon et al. Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy
JP4865930B2 (ja) 構造化された照射および均一な照射の両方を用いて光学的に切片化された画像を生成するためのシステムおよび方法
CN107247332B (zh) 一种基于散斑估计和反卷积的非侵入式散射成像方法
US11022731B2 (en) Optical phase retrieval systems using color-multiplexed illumination
CN108319009B (zh) 基于结构光调制的快速超分辨成像方法
CN108895985B (zh) 一种基于单像素探测器的物体定位方法
US10664685B2 (en) Methods, systems, and devices for optical sectioning
US9715098B2 (en) Sparse deconvolution spatial light microscopy in two and three dimensions
CN108535681B (zh) 一种透过散射介质的目标4d跟踪系统及方法
CN109884018A (zh) 一种基于神经网络的亚微米级无透镜显微成像方法及系统
CN112161953B (zh) 一种基于散射介质的宽光谱单帧散射成像方法
CN110292361B (zh) 一种超宽范围的皮肤成像设备与方法
CN110378473A (zh) 基于深度学习和随机图案的相位层析方法及装置
EP3881137A1 (en) System and method for transforming holographic microscopy images to microscopy images of various modalities
CN110942423B (zh) 一种基于傅里叶叠层成像的远场超分辨率重建方法
CN111141706B (zh) 一种透过散射介质宽场的三维成像方法
WO2018064397A1 (en) High resolution photoacoustic imaging in scattering media using structured illumination
CN113298700B (zh) 一种在散射场景中的高分辨图像重构方法
Qiao et al. Snapshot coherence tomographic imaging
CN110231310A (zh) 一种隐藏在不透明散射介质的目标的成像方法
CN113218914B (zh) 一种非侵入式散射介质点扩展函数获取装置及方法
CN110989155B (zh) 一种基于滤光片阵列的无透镜显微成像装置及重构方法
CN111917964B (zh) 一种无透镜荧光显微成像装置及其图像重建方法
CN110703276B (zh) 在强散射条件下的傅里叶成像装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant