CN109826741A - 一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法 - Google Patents

一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法 Download PDF

Info

Publication number
CN109826741A
CN109826741A CN201910126618.5A CN201910126618A CN109826741A CN 109826741 A CN109826741 A CN 109826741A CN 201910126618 A CN201910126618 A CN 201910126618A CN 109826741 A CN109826741 A CN 109826741A
Authority
CN
China
Prior art keywords
energy
water
water pump
storing container
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910126618.5A
Other languages
English (en)
Other versions
CN109826741B (zh
Inventor
王焕然
陈昊
侯付彬
贲岳
严凯
刘明明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
State Nuclear Electric Power Planning Design and Research Institute Co Ltd
Original Assignee
Xian Jiaotong University
State Nuclear Electric Power Planning Design and Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University, State Nuclear Electric Power Planning Design and Research Institute Co Ltd filed Critical Xian Jiaotong University
Priority to CN201910126618.5A priority Critical patent/CN109826741B/zh
Publication of CN109826741A publication Critical patent/CN109826741A/zh
Application granted granted Critical
Publication of CN109826741B publication Critical patent/CN109826741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本发明提供投资成本低,建造方便,不会造成生态破坏的以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法。所述的蓄能系统,包括水源、水泵机组、储能容器、释能管路、水轮机机组和发电机;所述的水源通过管道与水泵机组的进水接管相连通,水泵机组的出水接管与储能容器相连通;所述的储能容器通过释能管路与水轮机机组的进水接管相连通,水轮机机组的输出端与发电机的输入端相连通,发电机的供电端与外部的电网并网连接;所述的水轮机机组的出水接管通过管道与水源连通;所述的水泵机组的供电端连接外部电网;所述的储能容器还设置有与其内部连通的压缩机;所述的储能容器采用密封处理后的废弃隧道或者防空洞。

Description

一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽 水蓄能系统及方法
技术领域
本发明涉及储能领域,具体为一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法。
背景技术
近年来,随着风能、太阳能等间歇能源得到迅猛发展,伴生而来的弃风、弃光问题,及间歇能源并网给现有电网的控制和安全运行带来了诸多问题。既要满足间歇能源的大规模并网需求,又要保证电网的安全运行;电网的调峰能力决定电网对间歇式能源的接纳能力。
目前,我国电网整体调峰能力不到电网负荷的2%,国外电网的调峰能力为12%~15%。当前我国电网调峰主要依靠火电机组,已经无法解决间歇式能源的并网问题,原因在于频繁增减火电机组的发电负荷,会大幅缩短机组寿命、降低机组发电效率。诸如此类问题已经严重制约了新能源产业的发展。为从根本解决问题,只有发展电能大规模储存技术。一方面,通过电能大规模储存技术在电网中的广泛应用,增强电网的调峰能力;另一方面,大规模储能技术在风电场和太阳能发电厂的应用,可以解决弃风和弃光问题,将间歇能源转化为稳定、可控的优质能源。
物理储能技术领域内抽水蓄能和压缩空气储能是当前适合大规模、超大规模电力储能技术,均已实现了商业应用。抽水蓄能系统以其结构简单、运行高效、无化学污染等特点,是目前广泛使用的储能技术。
抽水蓄能系统通常需要一个上游水库、一个下游水库、输水管路和发电机组。其主要工作原理是在电网低谷时期,利用电网内较为便宜的电能驱动电动机带动水泵机组将下游水库的水输送到上游水库存储起来;在电网处于高峰期时,利用上下游水库水的重力势能转换为流体的动能并通过输水管路引入水轮机组将水的动能转换为水轮机组的机械能并带动发电机发电。
虽然抽水蓄能系统比起其他储能系统有诸多优势,但抽水蓄能系统仍有不可避免的缺点。抽水蓄能系统需要上下游水库来储存水,抽水蓄能系统的上下游水库需要筑坝来实现,而大坝会对生态环境造成破坏,并且会影响当地的生态系统;此外,抽水蓄能系统还有投资成本高、回收期限长、经济性较差等缺点,以上特点导致抽水蓄能系统无法广泛应用于各个地方。因此需要对传统筑坝式抽水蓄能系统进行改进,并开发一种高效、经济性好的储能系统。
发明内容
针对现有技术中存在的问题,本发明提供投资成本低,建造方便,不会造成生态破坏,能够利用废弃洞穴等自然资源避免筑坝和高压容器所造成的经济成本过高等问题的以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法。
本发明是通过以下技术方案来实现:
一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统,包括水源、水泵机组、储能容器、释能管路、水轮机机组和发电机;所述的水源通过管道与水泵机组的进水接管相连通,水泵机组的出水接管与储能容器相连通;所述的储能容器通过释能管路与水轮机机组的进水接管相连通,水轮机机组的输出端与发电机的输入端相连通,发电机的供电端与外部的电网并网连接;所述的水轮机机组的出水接管通过管道与水源连通;所述的水泵机组的供电端连接外部电网;所述的储能容器还设置有与其内部连通的压缩机;所述的储能容器采用密封处理后的废弃隧道或者防空洞。
优选的,所述的水泵机组包括第一级水泵、第二级水泵、第三级水泵和第四级水泵;所述的水源和储能容器之间设置有供水旁路和主供水管路,主供水管路上依次串联设置第一级水泵、第二级水泵、第三级水泵和第四级水泵;供水旁路经第五调节阀分别与第一级水泵、第二级水泵、第三级水泵和第四级水泵进水接管连接;
所述的第一级水泵和第二级水泵之间的主供水管路上设置有第六调节阀,第一级水泵的输出端经设置第十调节阀的第一级供水管路与储能容器连通;所述的第二级水泵和第三级水泵之间的主供水管路上设置有第七调节阀,第二级水泵的输出端经设置第十一调节阀的第二级供水管路与储能容器连通;所述的第三级水泵和第四级水泵之间的主供水管路上设置有第八调节阀,第三级水泵的输出端经设置第十二调节阀的第三级供水管路与储能容器连通;所述的第四级水泵与储能容器之间的主供水管路上设置有第九调节阀。
优选的,所述的水源和水泵机组之间、水泵机组和储能容器之间、储能容器和释能管路之间的管道上还分别设置有第一调节阀、第二调节阀和第三调节阀。
优选的,所述压缩机的动力输入端通过联轴器连接电动机,排气管通过管道与储能容器连通。
进一步,所述的压缩机与储能容器连通的管道上还设置有第四调节阀。
优选的,所述的释能管路采用由粗到细的渐缩型圆管,其两端设置有法兰,沿着侧壁安装有补偿器;释能管路的粗端为与储能容器连通的进口端,细端为与水轮机机组的进水接管连接的出口端。
优选的,所述的水源采用废弃隧道或者防空洞外的沟渠或蓄水池。
一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能方法,基于如上所述的系统,包括如下步骤,
a.压缩阶段:采用密封处理后的废弃隧道或者防空洞作为储能容器,在系统工作前期,通过压缩机预先压缩有压力的空气进入储能容器中;
b.储能阶段:当外部电网处于低谷时期时,通过水泵机组将水源内的水压入储能容器中,在水不断压入储能容器内部时,水推动储能容器中的有压力的空气并进行压缩,储能容器内的空气压力随着压缩过程不断升高;当储能容器中压缩空气的压力和水的压力相等时,达到气液平衡状态,关闭水泵机组;
c.释能发电阶段:当外部电网处于峰值时期时,储能容器中的水通过重力作用和压力作用压入释能管路中,通过释能管路进口流量变化范围对水轮机机组进行调节,并通过驱动发电机发电;当储能容器中的水处于设计要求的最低水位时,释能发电过程结束;循环步骤b和c。
优选的,当系统处于储能阶段时,第一级水泵、第二级水泵、第三级水泵和第四级水泵依次打开加压,或者同时打开通过并联或串联加压。
优选的,压缩阶段通过压缩机预先压缩有压力的空气进入储能容器中,使其内部压力不小于3Mpa。
与现有技术相比,本发明具有以下有益的技术效果:
本发明采用废弃的废弃隧道或者防空洞作为储能容器,降低了整个系统的投资成本,传统的抽水蓄能系统需要筑坝建设上、下游水库,系统设计成本高,并会对生态造成一定的破坏,而利用废弃隧道或者防空洞,可以根据实地情况进行不同发电能力的抽水蓄能系统的搭建,具有很强的灵活性,并且降低了储能系统的投资成本;同时,采用的水泵机组为变工况水泵机组,可以根据电网的峰谷变化情况对变工况水泵机组进行做工调节,在电网低谷期时水泵系统处于满负荷运转,降低了系统运行成本;本发明在储能阶段,水泵机组将水压入废弃隧道或者防空洞,随着水位不断的上升,废弃隧道或者防空洞内的空气被水不断压缩,使气体的压力不断增加,当废弃隧道或者防空洞内的水和空气压力相等时,废弃隧道或者防空洞内处于平衡状态,储能过程结束,这一过程是利用水泵系统进行压缩,而不是采用压缩机进行压缩,降低了系统的投资成本并避免了压缩机运行时产生的热损失;在释能阶段,通过洞穴内的高压环境,推动废弃隧道或者防空洞内的水进入释能管路,之后通过变工况水轮机机组进行发电。
本发明通过采用由数台水泵组合的水泵机组,可以根据电网负荷和实际废弃隧道或者防空洞的储能规模进行调整组合,降低系统运行成本;同时,储能容器内的空气通过水泵送入的水进行压缩,而不是压缩机,降低了系统的建设成本。
本发明采用将压缩机的动力输入端通过联轴器连接电动机,排气管通过管道与储能容器连通,从而保证在系统工作前期,能有效通过压缩机预先压缩一定压力的空气进入储能容器内;同时,在压缩机与储能容器连通的管道上还设置有第四调节阀,可以根据需要调节进入储能容器中的压缩空气量。
本发明采用的释能管路为针对系统专门设计的管路,能最大限度的降低水进入水轮机这一过程的流动阻力损失;采用的水轮机机组为高效的变流量水轮机机组,根据释能管路流出流量进行调节,可以提高整个系统的工作效率。
本发明通过采用废弃隧道或者防空洞外的沟渠或蓄水池作为水源,使得所采用的储能系统工作介质为清水和空气,属于清洁资源,其储藏量较为丰富,并且发生事故后也不会造成污染和较大的灾害,具有无排放无污染的优势。
附图说明
图1为本发明实施例中传统的抽水蓄能系统示意图。
图2为本发明实施例中的系统示意图。
图3为本发明中水泵机组的示意图。
图4为本发明中释能管路的示意图。
图中:水源1、第一调节阀2、第二调节阀4、第三调节阀6、第四调节阀13、水泵机组3、储能容器5、释能管路7、水轮机机组8、发电机9、电网10、压缩机11、电动机12、第一级水泵14、第二级水泵15、第三级水泵16、第四级水泵17、第五调节阀18、第六调节阀19、第七调节阀20、第八调节阀21、第九调节阀22、第十调节阀23、第十一调节阀24、第十二调节阀25、法兰26、补偿器27、上游水库28、下游水库29。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
实施例1
本发明一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统,如图2、图3和图4所示,包括水源1、第一调节阀2、第二调节阀4、第三调节阀6、第四调节阀13、水泵机组3、储能容器5、释能管路7、水轮机机组8、发电机9、电网10、压缩机11、电动机12、第一级水泵14、第二级水泵15、第三级水泵16、第四级水泵17、第五调节阀18、第六调节阀19、第七调节阀20、第八调节阀21、第九调节阀22、第十调节阀23、第十一调节阀24、第十二调节阀25、法兰26、补偿器27。
其中,水泵机组3通过联轴器与电机连接,水泵机组3为多台机组串并联组合成的变工况水泵系统;水泵机组3与水源1通过管道连接,管道上装配第一调节阀2,水泵机组3进口流量通过第一调节阀2控制;水泵机组3与储能容器5、释能管路7、水轮机机组8和水源1组成一个循环系统;
压缩机11与电动机12通过联轴器连接,并与储能容器5通过管道连接,利用第四调节阀13进行调节,水轮机机组8通过联轴器与发电机9连接;
释能管路7的进口流量与管路的长度以及管路内轮廓线对整个蓄能系统的效率密切相关,采用专门设计的管路并通过第三调节阀6将储能容器5中的水导入水轮机机组8做功,并带动发电机9工作发电,并将发出的电并入电网10,调节电网10运行紧张的问题。
对比图1中的传统抽水蓄能系统,本发明系统不再需要上下游水库。
在实际应用中,该系统包括以下工作过程:
压缩阶段,在系统工作前期通过压缩机11预先压缩一定压力的空气进入储能容器5。
储能阶段,通过水泵机组3将水源1内的水压入储能容器5。
释能阶段,通过压缩机11将高压储气罐内的空气压入储能容器5推动储能容器5内的水通过释能管路7进入水轮机机组8发电。
为降低系统的投资成本,选择以废弃隧道或者防空洞作为储能系统的储能容器5,并选择废弃隧道或者防空洞周围的沟渠或蓄水池作为系统水源1;具体过程如下:
在系统建设前,首先对废弃隧道或者防空洞进行相应的密封处理。在系统工作之前,可以利用压缩机11向废弃隧道或者防空洞的洞穴内压缩一定压力的空气,根据现有压缩空气储能系统的储气压力参考,其内部压力一般在3Mpa以上;因此在废弃隧道或者防空洞内压缩一定的空气;这一过程为一次性过程,可以在电网10低谷时期缓慢的进行压缩;
当废弃隧道或者防空洞内的空气达到预压条件下的压力时,系统可以进行工作;为保储能系统经济利益最大化并且满足对电网10的调峰能力,储能阶段选择电网10处于低谷时期,释能阶段选择电网10处于峰值时期;
在储能阶段,沟渠或蓄水池与水泵机组3之间的第一调节阀2处于开启状态,沟渠或蓄水池与水泵机组3之间的连接管路处于沟渠或蓄水池底部位置,沟渠或蓄水池内的水靠重力和压力作用导入水泵,使水泵机组3在运行时叶轮内处于非空载状态;当水泵机组3运行时,第二调节阀4处于开启状态,水泵机组3将沟渠或蓄水池内的水送入废弃隧道或者防空洞;
图3为变工况水泵机组3,是由多台不同工况的水泵组成的。通过控制系统对水泵机组3的各个调节阀进行控制,可以使机组运行在不同的工况下。当系统处于储能阶段时,开启第十调节阀23,通过第一级水泵14将沟渠或蓄水池内的水导入废弃隧道或者防空洞的洞穴中,洞穴内的空气被水不断压缩。当洞穴中的空气压力升高到某一时刻,第一级水泵14不足以满足系统的充能需要时,在这一时刻,通过控制系统关闭第十调节阀23并开启第六调节阀19和第十一调节阀24,通过第一级水泵14与第二级水泵15串联,将第一级水泵14与第二级水泵15进行组合,增大水泵机组3的扬程,继续对洞穴进行储水。同样,当废弃隧道或者防空洞洞穴内的空气被水继续压缩,第一级水泵14与第二级水泵15组合的水泵机组3无法满足系统储能这一过程时,与上述过程相同,通过控制系统关闭第十一调节阀24并开启第七调节阀20与第十二调节阀25。最终当第一级水泵14、第二级水泵15、第三级水泵16和第四级水泵17进行串联组合时,关闭第十调节阀23、第十一调节阀24和第十二调节阀25,开启第六调节阀19、第七调节阀20、第八调节阀21和第九调节阀22。水泵机组3的水泵的扬程和流量可以根据所需储能系统的储能规模进行选择。当选择不同工况的水泵时,除了上述的组合情况外,还可以同时开启第六调节阀19、第七调节阀20、第八调节阀21、第九调节阀22、第十调节阀23、第十一调节阀24和第十二调节阀25,水泵机组3通过管路将水进行分流,一部分水通过上级水泵直接冲入洞穴,另一部分水通过管路引入下一级水泵。以此类推组成四台水泵同时工作的变工况水泵机组3。此外,和可以通过开启第五调节阀18、第九调节阀22、第十调节阀23、第十一调节阀24和第十二调节阀25,组成有四台独立工作的变工况水泵机组3。具体选择哪一种变工况水泵机组3,可根据实际的废弃隧道或者防空洞的储能能力进行选择。
废弃隧道或者防空洞与压缩机11通过管路连接;在水不断送入废弃隧道或者防空洞这一过程中,由于洞穴内已经存在一定压力的空气,因此水泵机组3的压力头要高于废弃隧道或者防空洞内的压力;在水不断压入废弃隧道或者防空洞时,水推动废弃隧道或者防空洞内的气体进行压缩,洞内的空气压力随着压缩过程不断升高。考虑到废弃隧道或者防空洞内横截面的宽广,因此认为当废弃隧道或者防空洞内压缩空气的压力与废弃隧道或者防空洞内水的压力相等时,气液相处于平衡状态。在这一时刻,储能过程结束,关闭第二调节阀4。
当电网10处于峰值时,需要对电网10进行调节;在这一时刻,系统开始进行释能发电。在释能发电阶段,打开第三调节阀6,在这一过程中,废弃隧道或者防空洞内的水与空气具有一定的压力,相当于同等压力的水坝水头,洞穴内的水将通过重力作用以压力作用压入释能管路7。释能管路7如图4所示,包括法兰26和补偿器27,为连接废弃隧道或者防空洞与发电机9的主要部件。释能管路7由一系列横截面积不断变化的圆面组成的渐缩型圆管,洞穴内的水通过压缩机11二次压缩过的空气压力以及自重的作用,流入释能管路7内的水流量是变化的,通过释能管路7后水具有不同的水头,而本发明采用水轮机机组3是由不同水头的水轮机机组合而成,通过释能管路7进口流量变化范围对水轮机机组3运行进行调节,并通过联轴器驱动发电机9发电;当废弃隧道或者防空洞内的水处于设计要求的最低水位时,释能发电过程结束,关闭第三调节阀6;
其中,发电机9将所发出的电能并入电网10进行调峰。
实施例2
本发明一种有储能容器的变工况无水坝抽水蓄能方法,包括如下步骤,
a.压缩阶段:采用密封处理后的废弃隧道或者防空洞作为储能容器5,在系统工作前期,通过压缩机11预先压缩有压力的空气进入储能容器5中;
b.储能阶段:当外部电网10处于低谷时期时,通过水泵机组3将水源1内的水压入储能容器5中,在水不断压入储能容器5内部时,水推动储能容器5中的有压力的空气并进行压缩,储能容器5内的空气压力随着压缩过程不断升高;当储能容器5中压缩空气的压力和水的压力相等时,达到气液平衡状态,关闭水泵机组3;
c.释能发电阶段:当外部电网10处于峰值时期时,储能容器5中的水通过重力作用和压力作用压入释能管路7中,通过释能管路7进口流量变化范围对水轮机机组8进行调节,并通过驱动发电机9发电;当储能容器5中的水处于设计要求的最低水位时,释能发电过程结束;循环步骤b和c。
其中,当系统处于储能阶段时,第一级水泵14、第二级水泵15、第三级水泵16和第四级水泵17依次打开加压,或者同时打开通过并联或串联加压。
其中,压缩阶段通过压缩机11预先压缩有压力的空气进入储能容器5中,使其内部压力不小于3Mpa。
在实际应用中,如图1所示,不采用传统的修建上游水库28和下游水库29方式,而是根据本发明所选择的实际废弃隧道或者防空洞的条件,如图2所示,在运行前,会在洞穴内预压一定压力的空气,与废弃隧道或者防空洞附件是我沟渠或蓄水池类似这部分空气可以作为重复利用的工作介质。
其中,水泵机组3为多机组组合运行,可以根据具有不同储能规模的废弃隧道或者防空洞进行选择,并在电网10处于低谷期时满负荷运转。在储能过程中,本发明通过水泵机组3将沟渠或蓄水池内的水不断压入废弃隧道或者防空洞,利用水位不断上升压缩废弃隧道或者防空洞内的空气,而不是利用压缩机11进行空气压缩。
其中,在释能阶段,废弃隧道或者防空洞内的水通过本发明的释能管路7进行压能与动能的转换,并将能量转换后的高速水导入水轮机机组8进行发电。与传统的抽水蓄能系统相比,本发明的释能管路7长度根具水轮机匹配,一般在5-10米,远远小于传统抽水蓄能系统的管路长度,可以节省系统设备投资成本以及管路内的流动损失。本发明选用的水轮机机组8为高效的冲击式变工况水轮机,可以更高效的将从释能管路7流出的水流入水轮机机组8进行发电。
其中,本发明系统发出的电能可以并入电网10进行调峰,并且变电成本较低。
其中,本发明系统循环效率高,经济性能好,并且工作介质为空气和水,具有绿色无污染的特点,出现事故时,也不会造成较大的灾害。

Claims (10)

1.一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统,其特征在于:包括水源(1)、水泵机组(3)、储能容器(5)、释能管路(7)、水轮机机组(8)和发电机(9);所述的水源(1)通过管道与水泵机组(3)的进水接管相连通,水泵机组(3)的出水接管与储能容器(5)相连通;所述的储能容器(5)通过释能管路(7)与水轮机机组(8)的进水接管相连通,水轮机机组(8)的输出端与发电机(9)的输入端相连通,发电机(9)的供电端与外部的电网(10)并网连接;所述的水轮机机组(8)的出水接管通过管道与水源(1)连通;所述的水泵机组(3)的供电端连接外部电网(10);所述的储能容器(5)还设置有与其内部连通的压缩机(11);所述的储能容器(5)采用密封处理后的废弃隧道或者防空洞。
2.根据权利要求1所述的一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统,其特征在于:所述的水泵机组(3)包括第一级水泵(14)、第二级水泵(15)、第三级水泵(16)和第四级水泵(17);所述的水源(1)和储能容器(5)之间设置有供水旁路和主供水管路,主供水管路上依次串联设置第一级水泵(14)、第二级水泵(15)、第三级水泵(16)和第四级水泵(17);供水旁路经第五调节阀(18)分别与第一级水泵(14)、第二级水泵(15)、第三级水泵(16)和第四级水泵(17)进水接管连接;
所述的第一级水泵(14)和第二级水泵(15)之间的主供水管路上设置有第六调节阀(19),第一级水泵(14)的输出端经设置第十调节阀(23)的第一级供水管路与储能容器(5)连通;所述的第二级水泵(15)和第三级水泵(16)之间的主供水管路上设置有第七调节阀(20),第二级水泵(15)的输出端经设置第十一调节阀(24)的第二级供水管路与储能容器(5)连通;所述的第三级水泵(16)和第四级水泵(17)之间的主供水管路上设置有第八调节阀(21),第三级水泵(16)的输出端经设置第十二调节阀(25)的第三级供水管路与储能容器(5)连通;所述的第四级水泵(17)与储能容器(5)之间的主供水管路上设置有第九调节阀(22)。
3.根据权利要求1所述的一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统,其特征在于:所述的水源(1)和水泵机组(3)之间、水泵机组(3)和储能容器(5)之间、储能容器(5)和释能管路(7)之间的管道上还分别设置有第一调节阀(2)、第二调节阀(4)和第三调节阀(6)。
4.根据权利要求1所述的一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统,其特征在于:所述压缩机(11)的动力输入端通过联轴器连接电动机(12),排气管通过管道与储能容器(5)连通。
5.根据权利要求4所述的一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统,其特征在于:所述的压缩机(11)与储能容器(5)连通的管道上还设置有第四调节阀(13)。
6.根据权利要求1所述的一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统,其特征在于:所述的释能管路(7)采用由粗到细的渐缩型圆管,其两端设置有法兰(26),沿着侧壁安装有补偿器(27);释能管路(7)的粗端为与储能容器(5)连通的进口端,细端为与水轮机机组(8)的进水接管连接的出口端。
7.根据权利要求1所述的一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统,其特征在于:所述的水源(1)采用废弃隧道或者防空洞外的沟渠或蓄水池。
8.一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能方法,其特征在于:基于如权利要求1-7任意一项所述的系统,包括如下步骤,
a.压缩阶段:采用密封处理后的废弃隧道或者防空洞作为储能容器(5),在系统工作前期,通过压缩机(11)预先压缩有压力的空气进入储能容器(5)中;
b.储能阶段:当外部电网(10)处于低谷时期时,通过水泵机组(3)将水源(1)内的水压入储能容器(5)中,在水不断压入储能容器(5)内部时,水推动储能容器(5)中的有压力的空气并进行压缩,储能容器(5)内的空气压力随着压缩过程不断升高;当储能容器(5)中压缩空气的压力和水的压力相等时,达到气液平衡状态,关闭水泵机组(3);
c.释能发电阶段:当外部电网(10)处于峰值时期时,储能容器(5)中的水通过重力作用和压力作用压入释能管路(7)中,通过释能管路(7)进口流量变化范围对水轮机机组(8)进行调节,并通过驱动发电机(9)发电;当储能容器(5)中的水处于设计要求的最低水位时,释能发电过程结束;循环步骤b和c。
9.根据权利要求8所述的一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能方法,其特征在于:当系统处于储能阶段时,第一级水泵(14)、第二级水泵(15)、第三级水泵(16)和第四级水泵(17)依次打开加压,或者同时打开通过并联或串联加压。
10.根据权利要求8所述的一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能方法,其特征在于:压缩阶段通过压缩机(11)预先压缩有压力的空气进入储能容器(5)中,使其内部压力不小于3Mpa。
CN201910126618.5A 2019-02-20 2019-02-20 一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法 Active CN109826741B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910126618.5A CN109826741B (zh) 2019-02-20 2019-02-20 一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910126618.5A CN109826741B (zh) 2019-02-20 2019-02-20 一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法

Publications (2)

Publication Number Publication Date
CN109826741A true CN109826741A (zh) 2019-05-31
CN109826741B CN109826741B (zh) 2023-05-16

Family

ID=66863908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910126618.5A Active CN109826741B (zh) 2019-02-20 2019-02-20 一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法

Country Status (1)

Country Link
CN (1) CN109826741B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396288A (zh) * 2020-03-31 2020-07-10 国网湖南省电力有限公司 一种基于压力恒定的发电系统
CN111535886A (zh) * 2020-04-28 2020-08-14 国网湖南省电力有限公司 一种多能联合的压力恒定的发电系统
CN112065635A (zh) * 2020-08-14 2020-12-11 西安交通大学 一种基于废弃矿井的地下恒压压缩空气复合抽水储能系统及方法
CN112065634A (zh) * 2020-08-14 2020-12-11 西安交通大学 一种基于废弃矿井的地下抽水蓄能复合压缩空气储能系统及方法
CN112065633A (zh) * 2020-08-14 2020-12-11 西安交通大学 一种以废弃矿井为储能容器的地下抽水蓄能系统及方法
CN112160861A (zh) * 2020-08-27 2021-01-01 南方电网电动汽车服务有限公司 储能发电系统
CN112648127A (zh) * 2020-12-10 2021-04-13 西安热工研究院有限公司 一种基于退役大型火力发电电站水力设备的压水蓄能系统及方法
CN114458517A (zh) * 2022-01-26 2022-05-10 百穰新能源科技(深圳)有限公司 储能系统及其控制方法
CN114483421A (zh) * 2022-01-26 2022-05-13 百穰新能源科技(深圳)有限公司 抽水蓄能系统及其控制方法
CN115898740A (zh) * 2022-11-11 2023-04-04 武汉大学 一种用于废弃矿洞的压缩空气与水力发电联合储能系统
US20230313774A1 (en) * 2021-12-03 2023-10-05 Power8 Tech Inc. Power tunnel
WO2023239631A1 (en) * 2022-06-06 2023-12-14 Power8 Tech Inc. Power tunnel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT147135B (de) * 1935-08-23 1936-10-10 Alexander Weisz Fa Schutzgehäuse für Uhren.
CN102330603A (zh) * 2010-06-17 2012-01-25 气体产品与化学公司 用于周期性冷却、存储和加热大气气体的方法和系统
CN102536669A (zh) * 2010-12-30 2012-07-04 上海万德风力发电股份有限公司 风能、潮汐能互补蓄能发电系统
CN102619668A (zh) * 2012-04-06 2012-08-01 王焕然 恒压水-气共容舱电力储能系统
US20120280515A1 (en) * 2011-05-04 2012-11-08 Huang Henry C Mechanical energy storage method and device
CN102797613A (zh) * 2011-05-25 2012-11-28 中国科学院工程热物理研究所 一种抽水压缩空气储能系统
CN104265458B (zh) * 2014-07-31 2017-08-22 东南大学 一种压缩空气储能发电系统的工作方式
CN207392309U (zh) * 2017-08-30 2018-05-22 戚长胜 水泵串并联组合多区供水装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT147135B (de) * 1935-08-23 1936-10-10 Alexander Weisz Fa Schutzgehäuse für Uhren.
CN102330603A (zh) * 2010-06-17 2012-01-25 气体产品与化学公司 用于周期性冷却、存储和加热大气气体的方法和系统
CN102536669A (zh) * 2010-12-30 2012-07-04 上海万德风力发电股份有限公司 风能、潮汐能互补蓄能发电系统
US20120280515A1 (en) * 2011-05-04 2012-11-08 Huang Henry C Mechanical energy storage method and device
CN102797613A (zh) * 2011-05-25 2012-11-28 中国科学院工程热物理研究所 一种抽水压缩空气储能系统
CN102619668A (zh) * 2012-04-06 2012-08-01 王焕然 恒压水-气共容舱电力储能系统
CN104265458B (zh) * 2014-07-31 2017-08-22 东南大学 一种压缩空气储能发电系统的工作方式
CN207392309U (zh) * 2017-08-30 2018-05-22 戚长胜 水泵串并联组合多区供水装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396288B (zh) * 2020-03-31 2022-04-15 国网湖南省电力有限公司 一种基于压力恒定的发电系统
CN111396288A (zh) * 2020-03-31 2020-07-10 国网湖南省电力有限公司 一种基于压力恒定的发电系统
CN111535886B (zh) * 2020-04-28 2022-12-09 国网湖南省电力有限公司 一种多能联合的压力恒定的发电系统
CN111535886A (zh) * 2020-04-28 2020-08-14 国网湖南省电力有限公司 一种多能联合的压力恒定的发电系统
CN112065635A (zh) * 2020-08-14 2020-12-11 西安交通大学 一种基于废弃矿井的地下恒压压缩空气复合抽水储能系统及方法
CN112065634A (zh) * 2020-08-14 2020-12-11 西安交通大学 一种基于废弃矿井的地下抽水蓄能复合压缩空气储能系统及方法
CN112065633A (zh) * 2020-08-14 2020-12-11 西安交通大学 一种以废弃矿井为储能容器的地下抽水蓄能系统及方法
CN112160861A (zh) * 2020-08-27 2021-01-01 南方电网电动汽车服务有限公司 储能发电系统
CN112648127A (zh) * 2020-12-10 2021-04-13 西安热工研究院有限公司 一种基于退役大型火力发电电站水力设备的压水蓄能系统及方法
CN112648127B (zh) * 2020-12-10 2022-06-21 西安热工研究院有限公司 一种基于退役大型火力发电电站水力设备的压水蓄能系统及方法
US20230313774A1 (en) * 2021-12-03 2023-10-05 Power8 Tech Inc. Power tunnel
CN114458517A (zh) * 2022-01-26 2022-05-10 百穰新能源科技(深圳)有限公司 储能系统及其控制方法
CN114483421A (zh) * 2022-01-26 2022-05-13 百穰新能源科技(深圳)有限公司 抽水蓄能系统及其控制方法
CN114458517B (zh) * 2022-01-26 2024-01-16 百穰新能源科技(深圳)有限公司 储能系统及其控制方法
WO2023239631A1 (en) * 2022-06-06 2023-12-14 Power8 Tech Inc. Power tunnel
CN115898740A (zh) * 2022-11-11 2023-04-04 武汉大学 一种用于废弃矿洞的压缩空气与水力发电联合储能系统

Also Published As

Publication number Publication date
CN109826741B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN109826741A (zh) 一种以废弃隧道或者防空洞作为储能容器的变工况无水坝抽水蓄能系统及方法
CN108930627B (zh) 一种定压抽水压缩气体储能系统及储能方法
CN203257492U (zh) 压缩空气电力储能系统
CN104121049B (zh) 压缩空气电力储能系统
CN107489467B (zh) 压缩空气抽水储能系统
CN104005802A (zh) 压缩空气储能系统
CN203175635U (zh) 压缩空气储能系统
CN103573315A (zh) 一种压缩空气和液压结合的微小型压缩空气储能系统
CN111396288B (zh) 一种基于压力恒定的发电系统
CN110578666A (zh) 一种水力恒压式双效压缩空气储能系统
CN103628932B (zh) 高效压缩空气储能发电系统
CN103644095A (zh) 一种适合变工况运行的压缩空气储能的方法及装置
WO2022041482A1 (zh) 一种可逆型多级双链路交错等温气体压缩系统
CN200949502Y (zh) 压水蓄能式风力发电场
CN208310958U (zh) 一种多级液压型风力发电机组
CN103486008A (zh) 储能设备及储能方法
CN207420643U (zh) 压缩空气抽水储能系统
CN109779819A (zh) 一种蓄能式发电系统
CN214944448U (zh) 一种压缩空气释能发电系统
CN203655362U (zh) 高效压缩空气储能发电系统
CN219472238U (zh) 一种多机串联水泵水轮机系统
CN114294165B (zh) 一种风光互补抽水蓄能发电系统和方法
CN103925164A (zh) 一种风力发电装置及方法
CN216922668U (zh) 一种利用天然气压力能发电的装置
CN215908131U (zh) 一种液体活塞式气体膨胀机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant