CN109816208A - 一种基于Bayes方法的半导体光电探测器可靠度评估方法 - Google Patents

一种基于Bayes方法的半导体光电探测器可靠度评估方法 Download PDF

Info

Publication number
CN109816208A
CN109816208A CN201811621651.7A CN201811621651A CN109816208A CN 109816208 A CN109816208 A CN 109816208A CN 201811621651 A CN201811621651 A CN 201811621651A CN 109816208 A CN109816208 A CN 109816208A
Authority
CN
China
Prior art keywords
photo detector
semiconductor photo
data
component part
test data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811621651.7A
Other languages
English (en)
Inventor
梁晨宇
周小燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South West Institute of Technical Physics
Original Assignee
South West Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South West Institute of Technical Physics filed Critical South West Institute of Technical Physics
Priority to CN201811621651.7A priority Critical patent/CN109816208A/zh
Publication of CN109816208A publication Critical patent/CN109816208A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明属于半导体光电探测器领域,具体涉及一种基于Bayes方法的半导体光电探测器可靠性评估方法,将半导体光电探测器的结构分解成n个组成部分,收集n个组成部分的地面试验数据;将n个组成部分中的连续型数据转换为成败型数据,得到先验数据;对完整的半导体光电探测器进行试验,得到试验数据;对半导体光电探测器进行可靠性评估。本发明可靠性评估方法基于半导体光电探测器结构特点,对其进行拆分,大量的应用半导体光电探测器的地面试验数据,大大减少半导体光电探测器的飞行试验样本量,有效降低可靠性评估的成本。

Description

一种基于Bayes方法的半导体光电探测器可靠度评估方法
技术领域
本发明属于半导体光电探测器领域,具体涉及一种基于Bayes方法的半导体光电探测器可靠性评估方法。
背景技术
一般来说,系统级试验往往成本很高,一次系统级试验成本能够达到几十甚至上百万,当半导体光电探测器应用于成败型系统时,按照二项分布可靠度评估计算方法,计算需要的样本量,例如置信度0.9,可靠度0.9的可靠度指标,需要样本量22只,0只失效,当1只样本失效时,需要样本量38只,这对于系统级试验来说,试验成本很难承受。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:系统级试验所需要的样本量很大,试验成本很高。
(二)技术方案
为解决上述技术问题,本发明提供一种基于Bayes方法的半导体光电探测器可靠性评估方法,包括:
S1,将半导体光电探测器的结构分解成n个组成部分,半导体光电探测器n 个组成部分中任一个组成部分均能单独正常工作;
收集n个组成部分的地面试验数据,地面试验数据包括成败型数据和连续型数据;
S2,将半导体光电探测器n个组成部分中的连续型数据转换为成败型数据,得到先验数据,先验数据的二项分布记为B(x,y);
S3,对完整的半导体光电探测器进行试验,得到试验数据,试验数据的二项分布记为B(m,n);
S4,对半导体光电探测器进行可靠性评估:
半导体光电探测器可靠性P的评估公式为
(三)有益效果
与现有技术相比较,本发明具备如下有益效果:
本发明可靠性评估方法基于半导体光电探测器结构特点,对其进行拆分,大量的应用半导体光电探测器的地面试验数据,大大减少半导体光电探测器的飞行试验样本量,有效降低可靠性评估的成本。
附图说明
图1是本发明基于Bayes方法的半导体光电探测器可靠性评估方法示意图。
具体实施方式
一种基于Bayes方法的半导体光电探测器可靠性评估方法,如图1所示,包括:
S1,将半导体光电探测器的结构分解成n个组成部分,半导体光电探测器n 个组成部分中任一个组成部分均能单独正常工作;
收集n个组成部分的地面试验数据,地面试验数据包括成败型数据和连续型数据;
S2,将半导体光电探测器n个组成部分中的连续型数据转换为成败型数据,得到先验数据,先验数据的二项分布记为B(x,y);
S3,对完整的半导体光电探测器进行试验,得到试验数据,试验数据的二项分布记为B(m,n);
S4,对半导体光电探测器进行可靠性评估:
S41,计算半导体光电探测器的后验的后验数据,半导体光电探测器的后验数据=试验数据+先验数据,后验数据的二项分布记为B(a,b),B(a,b) =B(x+m,y+n);
S42,半导体光电探测器可靠性P的评估公式为

Claims (1)

1.一种基于Bayes方法的半导体光电探测器可靠性评估方法,其特征在于,包括:
S1,将半导体光电探测器的结构分解成n个组成部分,半导体光电探测器n个组成部分中任一个组成部分均能单独正常工作;
收集n个组成部分的地面试验数据,地面试验数据包括成败型数据和连续型数据;
S2,将半导体光电探测器n个组成部分中的连续型数据转换为成败型数据,得到先验数据,先验数据的二项分布记为B(x,y);
S3,对完整的半导体光电探测器进行试验,得到试验数据,试验数据的二项分布记为B(m,n);
S4,对半导体光电探测器进行可靠性评估:
半导体光电探测器可靠性P的评估公式为
CN201811621651.7A 2018-12-28 2018-12-28 一种基于Bayes方法的半导体光电探测器可靠度评估方法 Pending CN109816208A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811621651.7A CN109816208A (zh) 2018-12-28 2018-12-28 一种基于Bayes方法的半导体光电探测器可靠度评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811621651.7A CN109816208A (zh) 2018-12-28 2018-12-28 一种基于Bayes方法的半导体光电探测器可靠度评估方法

Publications (1)

Publication Number Publication Date
CN109816208A true CN109816208A (zh) 2019-05-28

Family

ID=66602805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811621651.7A Pending CN109816208A (zh) 2018-12-28 2018-12-28 一种基于Bayes方法的半导体光电探测器可靠度评估方法

Country Status (1)

Country Link
CN (1) CN109816208A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133994A (zh) * 2014-07-24 2014-11-05 北京航空航天大学 融合多源成败型数据的可靠度评估方法
CN104634447A (zh) * 2014-12-31 2015-05-20 西南技术物理研究所 光电探测器寿命评估试验系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133994A (zh) * 2014-07-24 2014-11-05 北京航空航天大学 融合多源成败型数据的可靠度评估方法
CN104634447A (zh) * 2014-12-31 2015-05-20 西南技术物理研究所 光电探测器寿命评估试验系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王军波;王玮;常悦;时景峰;: "高价值弹药引信小子样贝叶斯可靠性评估方法" *

Similar Documents

Publication Publication Date Title
Chang Estimation of wind energy potential using different probability density functions
Gandhi et al. Review of power system impacts at high PV penetration Part I: Factors limiting PV penetration
Gutiérrez Galeano et al. Shading ratio impact on photovoltaic modules and correlation with shading patterns
Zhu et al. Effect of phasor measurements on the choice of reference bus for state estimation
Dehghan et al. Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein–Gordon–Schrödinger (KGS) equations
Thornton et al. Ancient Maya turkey husbandry: Testing theories through stable isotope analysis
CN106056070A (zh) 基于低秩矩阵恢复和稀疏表示的sar目标识别方法
Dausse et al. Hydraulic characterization and identification of flow-bearing structures based on multi-scale investigations applied to the Lez karst aquifer
CN103886337A (zh) 基于多稀疏描述的最近邻子空间sar目标识别方法
Zuo et al. 21 cm signal recovery via robust principal component analysis
CN109816208A (zh) 一种基于Bayes方法的半导体光电探测器可靠度评估方法
EP2439549A3 (en) Non-destructive determination of functionality of an unknown semiconductor device
CN103558078A (zh) 变压器标准油样的制备方法
Lu et al. Exact recovery of tensor robust principal component analysis under linear transforms
Johnson et al. Comparing X-ray and dynamical mass profiles in the early-type Galaxy NGC 4636
Qian et al. A semantic segmentation method for remote sensing images based on DeepLab V3
Mahmuddin et al. Analysis of ocean wind energy density around Sulawesi and Maluku Islands with scatterometer data
Benvenuti et al. Measurement of the Structure Functions in Neutrino and Antineutrino Inelastic Interactions
Tay et al. PV parameter identification using reduced IV data
CN103323339B (zh) 一种尺寸效应试验装置组的分级方法
Salem et al. Estimation for the parameters of the exponentiated Weibull distribution based on progressive hybrid censored samples
CN106253846A (zh) 一种大型地面光伏电站发电性能现场检测系统
Lin et al. Simulation-based inference with scattering representations: scattering is all you need
Wu et al. Comparing different feature extraction methods of pump dynamograph based on support vector machine
Castro et al. Chemical improvement of acidic soils through the use of combined liming materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190528