CN109815511B - 一种满足异形井眼清洁的钻井液密度确定方法 - Google Patents

一种满足异形井眼清洁的钻井液密度确定方法 Download PDF

Info

Publication number
CN109815511B
CN109815511B CN201711170736.3A CN201711170736A CN109815511B CN 109815511 B CN109815511 B CN 109815511B CN 201711170736 A CN201711170736 A CN 201711170736A CN 109815511 B CN109815511 B CN 109815511B
Authority
CN
China
Prior art keywords
drilling fluid
density
rock debris
drilling
fluid density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711170736.3A
Other languages
English (en)
Other versions
CN109815511A (zh
Inventor
路保平
陈曾伟
林永学
刘四海
张凤英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering
Original Assignee
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Research Institute of Petroleum Engineering filed Critical China Petroleum and Chemical Corp
Priority to CN201711170736.3A priority Critical patent/CN109815511B/zh
Publication of CN109815511A publication Critical patent/CN109815511A/zh
Application granted granted Critical
Publication of CN109815511B publication Critical patent/CN109815511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)

Abstract

本发明提供了一种满足异形井眼清洁的钻井液密度确定方法,属于石油天然气勘探开发钻井领域。该方法首先基于钻井基础参数建立异形井眼几何模型,设定初始的钻井液密度,然后通过数值计算得到稳定状态下井眼各个位置的岩屑浓度分布,通过岩屑浓度分布判断是否满足井眼清洁效果,并判断钻井液密度是否在施工现场能够配置的密度范围内,如果有一个为否,则调整钻井液的密度,然后重复上述过程,直到钻井液密度满足井眼清洁效果且在施工现场能够配置的密度范围内,此时的钻井液密度即为最终确定的钻井液密度。利用本发明可以克服现有经验法或环空流体力学法的不足,解决钻井现场仅凭经验或基于规则井眼的调整钻井液密度精度不足的问题。

Description

一种满足异形井眼清洁的钻井液密度确定方法
技术领域
本发明属于石油天然气勘探开发钻井领域,具体涉及一种满足异形井眼清洁的钻井液密度确定方法。
背景技术
钻井液是钻井过程中的循环携带岩屑的流体介质。井眼清洁程度是指钻井时井筒中岩屑携带的状态。钻井中的岩屑携带状况直接关系到钻井速度及井下安全等多个方面,是十分重要的钻井参数。钻井过程中,如果岩屑不能及时携带出井眼,可能造成下钻困难、下钻不到位以及卡钻等井下复杂情况。因此井眼清洁成为能否安全、快速钻进的首要问题。
实践表明,井眼的形状和钻井液的密度等参数对钻井中的岩屑携带有着显著的影响。在实际钻井过程中,井眼常常出现扩径的异形现象,在异形井眼的扩径位置附近,钻井液的流动状态和岩屑携带情况变得更加复杂,容易产生岩屑堆积的现象。根据异形井眼中井眼清洁指标的要求,可以对钻井液密度调整做出合理判断,有效增强钻井安全并降低钻井成本。
目前,现场采用的满足井眼清洁的钻井液密度合理范围的选取方法主要有:(1)仅凭经验调整排量;(2)在井眼规则的假设下,基于环空水力学法计算不同钻井液密度下的岩屑携带效果,根据岩屑携带效果是否在合理范围确定是否调整钻井液密度。目前的方法存在着一些不足,主要体现在:(1)仅凭经验调整钻井液密度的盲目性较大;(2)假定的规则井眼形状可能与实际井眼形状偏差较大,未采用最符合实际井眼形状计算岩屑携带效果,计算精度低,无法准确判断岩屑在井眼中的堆积位置。以上的不足可能导致钻井液密度调控不当,浪费钻井液材料,增加钻井成本,极易引起井下复杂情况的发生。
发明内容
本发明的目的在于解决上述现有技术中存在的难题,提供一种满足异形井眼清洁的钻井液密度确定方法,解决钻井现场仅凭经验或基于规则井眼的调整钻井液密度的问题。在满足异形井眼清洁要求的前提下,实现现场钻井液密度的合理调控,确定钻井液维护处理措施,满足安全高效钻井的要求并降低钻井成本。
本发明是通过以下技术方案实现的:
一种满足异形井眼清洁的钻井液密度确定方法,首先基于钻井基础参数建立异形井眼几何模型,设定初始的钻井液密度,然后通过数值计算得到稳定状态下井眼各个位置的岩屑浓度分布,通过岩屑浓度分布判断是否满足井眼清洁效果,并判断钻井液密度是否在施工现场能够配置的密度范围内,如果有一个为否,则调整钻井液的密度,然后重复上述过程,直到钻井液密度满足井眼清洁效果且在施工现场能够配置的密度范围内,此时的钻井液密度即为最终确定的钻井液密度。
所述方法包括:
(1)基于钻井基础参数,建立异形井眼几何模型,以N倍钻具直径的长度为纵向范围,以井眼扩大的最大值为横向范围,确定xy二维计算区域;
(2)对异形井眼几何模型进行网格划分;
(3)设定初始的钻井液密度ρ1,单位为kg/m3
(4)取钻井液,用旋转粘度计测量钻井液在不同转速Φ下的读数θ,将旋转粘度计的读数转变为相应的一组剪切速率γ和切力τ;根据剪切速率和切力,回归拟合四种流变模型;
(5)计算各流变模型拟合的相关系数,确定相关系数最大的流变模型为拟合效果最佳的流变模型;
(6)设定边界条件:设定钻井液的排量Q,设置流变模型的入口和出口的边界条件;
(7)设定初始条件:按照循环开始前环空可能出现的最高岩屑浓度设定初始岩屑浓度α2,0
(8)基于连续方程、动量方程和能量方程计算得到的每个网格的两相混合流速
Figure BDA0001477187440000031
值绘制钻井液异形井眼处的流速分布图,根据每个网格的固相流动速度差计算得到的每个网格的岩屑浓度α2的值绘制钻井液异形井眼处的岩屑浓度分布图;α2=α2,原+v2,流进-v2,流出,其中,α2,原是迭代上一步的岩屑浓度,α2为岩屑的浓度;v2,流进是每个网格岩屑的流进速度,v2,流出是每个网格岩屑的流出速度;
(9)在岩屑浓度分布图中找到岩屑浓度的最高值,判断步骤(8)计算得到的每个网格的岩屑浓度值α2值是否都小于预设的岩屑浓度最大允许值α2,max,如果是,则转入步骤(10),如果不是,则调整钻井液的密度ρ1,将其增加50kg/cm3,然后返回步骤(4);
(10)判断钻井液密度ρ1是否在施工现场能够配置的密度范围内,如果否,则通过添加改变钻井液流变性的钻井液助剂,调整钻井液流变性,然后返回步骤(4);如果是,则确定ρ1为钻井液密度。
所述步骤(1)中的N取5-20。
所述步骤(1)中的钻井基础参数包括:
钻头直径Db,单位为m;钻杆外径Dp,单位为m;钻井液密度ρm,单位为kg/m3;岩屑密度ρd,单位为kg/m3;岩屑等效直径Dd,单位为m;异形井眼井径扩大率、井径扩大处初始岩屑浓度,单位为%。
所述步骤(2)中划分网格时将井眼的轴对称问题简化为2维平面计算问题,并对异形井眼位置处的网格进行加密。
所述步骤(5)中的4种流变模型为:
宾汉流型:τ=τYPPV×γ;
幂律流型:τ=K×γn
卡森模式:τ1/2=τc1/2 1/2×γ1/2
赫-巴流型:τ=τHB+K×γn
其中,τYP、μPV、K、n、τc、η、τHB分别通过数据拟合计算得到,K为稠度系数,单位是Pa·sn,n为流性指数,γ为剪切速率,单位是s-1,η是卡森粘度,单位是mPa·s,τ是剪切应力,单位是Pa,τc是卡森屈服值,单位是Pa,τYP是屈服值,单位是Pa,μPV是塑性粘度,单位是mPa·s,τHB是赫巴切力。
所述步骤(6)是这样实现的:
将入口的边界条件取为流入速度边界条件;
将出口的边界条件取为流出速度边界条件;
井壁和钻具外壁处采用无滑移边界条件,设定边界处的流动速度为0。
所述步骤(8)中的流速分布图的绘制区域为步骤(1)中设置的xy二维计算区域,流速为z值,用颜色深度表示;
所述步骤(8)中的岩屑浓度分布图的绘制区域为步骤(1)设置的xy二维计算区域,岩屑浓度为z值,用颜色深度表示。
所述步骤(10)中的施工现场能够配置的密度范围为:1000kg/m3-3000kg/m3
与现有技术相比,本发明的有益效果是:利用本发明可以克服现有经验法或环空流体力学法的不足,解决钻井现场仅凭经验或基于规则井眼的调整钻井液密度精度不足的问题。本发明可以在满足异形井眼清洁要求的前提下,实现现场钻井液密度的合理调控,达到安全高效钻井的目的。
附图说明
图1本发明方法的步骤框图
图2实施例1中的异形井眼计算网格图
图3实施例1中的钻井液赫巴流变模型拟合结果图
图4实施例1中的钻井液密度1.3g/cm3时的流速分布图
图5实施例1中的钻井液密度1.3g/cm3时的岩屑浓度分布图
图6实施例1中的钻井液密度1.9g/cm3时的流速分布图
图7实施例1中的钻井液密度1.9g/cm3时的的岩屑浓度分布图
图8实施例1中的钻井液密度1.5g/cm3时的的岩屑浓度分布图。
具体实施方式
下面结合附图对本发明作进一步详细描述:
如图1所示,本发明的一种满足异形井眼清洁的钻井液密度确定方法步骤如下:
(1)基于钻井基础参数(包括钻头直径Db(m)、钻杆外径Dp(m)、钻井液密度ρm(kg/m3)、岩屑密度ρd(kg/m3)、岩屑等效直径Dd(m)、异形井眼井径扩大率、井径扩大处初始岩屑浓度(%)),利用现有的Fluent软件建立异形井眼的几何模型,以10倍钻具直径的长度为纵向范围,以井眼扩大的最大值为横向范围,确定计算区域;
(2)根据井眼几何模型划分网格,为提高计算精度并节约计算时间,将井眼的轴对称问题简化为2维平面计算问题,并对异形井眼位置加密网格;
(3)设定初始的钻井液密度ρ1(kg/m3),例如1500kg/m3
(4)从振动筛前的高架槽内取钻井液样,用旋转粘度计测量钻井液在不同转速Φ下的读数θ,即θ3,θ6,θ100,θ200,θ300,θ600(角标对应旋转粘度计转速)。将旋转粘度计读数转变为相应的一组剪切速率数组γ([5.11,10.22,170.33,511,340.67,1022])和一组切力τ数组([θ3×0.511,θ6×0.511,θ100×0.511,θ200×0.511,θ300×0.511,θ600×0.511]);
(5)根据剪切速率和切力,回归拟合4种流变模式,并计算各模型拟合的相关系数:宾汉流型(τ=τYPPV×γ)、幂律流型(τ=K×γn)、卡森模式(τ1/2=τc1/2 1/2×γ1/2))和赫-巴流型(τ=τHB+K×γn),这4个公式中,除开剪切速率γ和切力τ是已知一组数据,τYP、μPV、K、n、τc、η、τHB分别通过数据拟合计算得到。式中:K—稠度系数,Pa·sn,n—流性指数,γ—剪切速率,s-1;;η—卡森粘度(接近钻头喷嘴粘度),mPa·s;τ—剪切应力,Pa;τc—卡森屈服值,Pa,τYP-屈服值(动切力),Pa;μPV—塑性粘度,mPa·s;τHB—赫巴切力;根据数值回归拟合的方法计算流变模型的相关系数大小,确定相关系数最大的流变模式为拟合效果最佳的钻井液流型;该钻井液流型用在步骤7中固液两相混合物粘度的计算中;获得的钻井液粘度参数(τYP、μPV;K、n;τc、η;τHB、K、n)用于计算步骤(8)中的混合物流体粘度;
(6)设定边界条件:设定钻井液的排量Q(例如40L/s),设置模型的入口和出口的边界条件。将入口的边界条件取为流入速度边界条件,计算方法为:4Q/π/(Db 2-Dp 2),其中,Db是井眼直径,Dp是钻杆直径,出口边界条件设为流出速度边界条件(outflow),计算方法为:4Q/π/(Db 2-Dp 2);井壁和钻具外壁处常采用无滑移边界条件,设定边界处的流动速度为0;
(7)设定初始条件:按照循环开始前环空可能出现的最高岩屑浓度设定初始岩屑浓度α2,0,以这个浓度值作为岩屑浓度初始值进行后续迭代计算,每迭代计算一次更新一次环空中的岩屑浓度分布,分析岩屑沉降堆积情况;
(8)基于计算流体力学的固液两相流的数值方法(即下面的连续方程、动量方程和能量方程)(其中,
Figure BDA0001477187440000061
为两相混合流速,αk从第k相的浓度,α2为岩屑的浓度),根据数值计算得到的每个网格的
Figure BDA0001477187440000062
值绘制钻井液异形井眼处的流速分布图(绘制区域为步骤(1)中设置的xy二维计算区域,流速为z值,用颜色深度表示),根据数值计算中每个网格的固相流动速度差计算得到的每个网格的α2值(α2=α2,原+v2,流进-v2,流出,α2,原是迭代上一步的岩屑浓度,v2,流进是每个网格岩屑的流进速度,v2,流出是每个网格岩屑的流出速度)绘制钻井液异形井眼处的岩屑浓度分布图(绘制区域为步骤(1)设置的xy二维计算区域,岩屑浓度为z值,用颜色深度表示)。
固液两相流数值计算的控制方程如下:
①连续方程:
Figure BDA0001477187440000071
其中:
Figure BDA0001477187440000072
Figure BDA0001477187440000073
ρk为第k相的密度,αk为第k相的密度体积分数,
Figure BDA0001477187440000074
为第k相的速度;
②动量方程,由固液两相的动量叠加而成:
Figure BDA0001477187440000075
其中μm是固液两相混合物粘度,
Figure BDA0001477187440000076
Figure BDA0001477187440000077
是两相流中的第k相(固相)的漂移速度:
Figure BDA0001477187440000078
③能量方程:
Figure BDA0001477187440000079
其中:
Figure BDA0001477187440000081
Ek为第k相的机械能,hk为第k的重力势能,p为压力,ρk为第k相的密度,vk是第k相的速度;
(9)基于(8)中方程,通过计算流体力学数值计算得到的每个网格中的就是稳定循环状态下的浓度分布图,并在图中找到岩屑浓度最高值,判断步骤(7)计算得到的每个网格的岩屑浓度值α2值都小于预设的岩屑浓度最大允许值α2,max(例如3%),如果是,则转入步骤(10),如果不是,调整钻井液的密度ρ1,增加50kg/cm3,再进行(4)到(8)的计算,直至最高岩屑浓度小于3%为止,最终得到满足井眼清洁的钻井液密度ρ1
(10)检查钻井液密度ρ1是否在施工现场可以配置的密度范围内(1000kg/m3-3000kg/m3),如果不在合理范围,则通过添加改变钻井液流变性的钻井液助剂,调整钻井液流变性。如果ρ1>3000kg/m3,在钻井液中加入增粘的聚合物添加剂,以提高旋转粘度计测量读数θ(即θ3,θ6,θ100,θ200,θ300,θ600);如果ρ1<1000kg/m3,在钻井液中加入降粘的添加剂,以降低旋转粘度计测量读数θ(即θ3,θ6,θ100,θ200,θ300,θ600);然后返回步骤(3);如果在这个范围内,则ρ1确定为钻井液密度。
本发明的实施例如下:
实施例1:
(1)获取钻井基础参数如表1所示。
钻头直径D<sub>b</sub>,m 0.216
钻杆外径Dp,m 0.127
岩屑密度ρ<sub>d</sub>,kg/m<sup>3</sup> 2900
岩屑等效直径Dd,m 0.005
井径扩大率 100%
井径扩大处初始岩屑浓度 10%
表1
(2)建立异形井眼的几何模型,划分网格,并在异形井眼处加密网格,如图2所示;
(3)在高架槽处取钻井液样,用旋转粘度计测量一组剪切速率和切力,如表2所示:
旋转粘度计转速,r/min 600 300 200 100 6 3
剪切速率,/s 1022 511 340.7 170.3 10.2 5.11
旋转粘度计读数θ 172 128 99 71 36 27
切力τ,Pa 87.9 65.4 50.6 36.3 18.4 13.8
表2
根据剪切速率和切力,回归拟合4种流变模式,确定相关系数最大的赫-巴模型作为计算用的流变类型,如表3和图3所示。
流变模式类型 拟合的公式 相关系数
宾汉流型 τ=20.74+0.072*γ 0.949
幂律流型 τ=8.01*γ^0.32 0.956
卡森模式 τ<sup>1/2</sup>=12.55<sup>1/2</sup>+0.036<sup>1/2</sup>*γ<sup>1/2</sup> 0.989
赫-巴流型 τ=10.35+1.73*γ^0.547 0.994
表3
(5)根据设定的排量(10L/s),设置模型的入口边界的速度条件为10L/s,入口边界的岩屑浓度为1%,出口边界条件为流出边界条件。
(6)根据钻井设计,钻井液密度范围在1.3-1.9g/cm3之间。计算钻井液密度为1.3g/cm3时钻井液流动和岩屑分布情况,分析得到稳定循环状态下流速图(如图4所示)可知在异形井眼的扩径处,钻井液的流动在排量10L/s下为向上的层流;分析岩屑浓度的分布图(如图5所示)可知异形井眼扩径处岩屑浓度较高,平均岩屑浓度在5%,最高岩屑浓度值25.1%,判断容易产生岩屑堆积的位置为井径扩大处的下边沿;岩屑携带效果不理想。
(7)其他条件不变,计算钻井液密度为1.9g/cm3时钻井液流动(如图6所示)和岩屑分布情况(如图7所示),分析可知异形井眼扩径处流动同样为向上的层流,岩屑浓度较高,平均岩屑浓度在1%,最高岩屑浓度值2.44%,岩屑携带效果理想。
(8)其他条件不变,计算钻井液密度为1.5g/cm3时钻井液流动和岩屑分布情况(如图8所示),分析可知异形井眼扩径处流动同样为向上的层流,岩屑浓度较高,平均岩屑浓度在1.1%,最高岩屑浓度值3.1%,岩屑携带效果较理想。
(9)正常维护钻井液,保持(3)中稳定的流变参数,并确定钻井液密度在1.5g/cm3以上。
本发明主要用于石油天然气勘探开发领域,在复杂井眼条件下满足井眼清洁的要求对钻井液密度参数进行优化。在钻井中,井眼清洁效果直接关系到井眼净化、钻井速度及井下安全等多个方面,是十分重要的钻井参数。井眼的形状和钻井液的密度等性能对井眼清洁有很大的影响。在实际钻井过程中,井眼形状常常出现扩径的异形现象。在异形井眼的位置附近,钻井液的流动状态和岩屑携带情况变得更加复杂,岩屑不容易被携带出井眼,容易产生岩屑堆积的现象,可能造成下钻困难、下钻不到位以及卡钻等井下复杂情况。因此异形井眼内的井眼清洁效果成为能否安全、快速钻进的重要问题。利用本发明,可以解决钻井时计算异形井眼中井眼清洁效果的问题。本发明可以克服现有经验法或环空流体力学法的不足,解决钻井现场仅凭经验或基于规则井眼的调整钻井液密度参数的问题。本发明可以在满足异形井眼清洁要求的前提下,实现现场钻井液密度参数的合理调控,达到安全高效钻井的目的。本发明可用于石油勘探开发领域,但不受该实施范围的限制,亦可用于地质勘探、水文水井、地热等领域的井眼清洁效果评价和钻井液密度调控。
上述技术方案只是本发明的一种实施方式,对于本领域内的技术人员而言,在本发明公开了应用方法和原理的基础上,很容易做出各种类型的改进或变形,而不仅限于本发明上述具体实施方式所描述的方法,因此前面描述的方式只是优选的,而并不具有限制性的意义。

Claims (8)

1.一种满足异形井眼清洁的钻井液密度确定方法,其特征在于:所述方法首先基于钻井基础参数建立异形井眼几何模型,设定初始的钻井液密度,然后通过数值计算得到稳定状态下井眼各个位置的岩屑浓度分布,通过岩屑浓度分布判断是否满足井眼清洁效果,并判断钻井液密度是否在施工现场能够配置的密度范围内,如果有一个为否,则调整钻井液的密度,然后重复上述过程,直到钻井液密度满足井眼清洁效果且在施工现场能够配置的密度范围内,此时的钻井液密度即为最终确定的钻井液密度;
所述方法包括:
步骤(1)基于钻井基础参数,建立异形井眼几何模型,以N倍钻具直径的长度为纵向范围,以井眼扩大的最大值为横向范围,确定xy二维计算区域;
步骤(2)对异形井眼几何模型进行网格划分;
步骤(3)设定初始的钻井液密度ρ1,单位为kg/m3
步骤(4)取钻井液,用旋转粘度计测量钻井液在不同转速Φ下的读数θ,将旋转粘度计的读数转变为相应的一组剪切速率γ和切力τ;根据剪切速率和切力,回归拟合四种流变模型;
步骤(5)计算各流变模型拟合的相关系数,确定相关系数最大的流变模型为拟合效果最佳的流变模型;
步骤(6)设定边界条件:设定钻井液的排量Q,设置流变模型的入口和出口的边界条件;
步骤(7)设定初始条件:按照循环开始前环空出现的最高岩屑浓度设定初始岩屑浓度α2,0
步骤(8)基于连续方程、动量方程和能量方程计算得到的每个网格的两相混合流速
Figure FDA0003135963050000011
值绘制钻井液异形井眼处的流速分布图,根据每个网格的固相流动速度差计算得到的每个网格的岩屑浓度α2的值绘制钻井液异形井眼处的岩屑浓度分布图;α2=α2,原+v2,流进-v2,流出,其中,α2,原是迭代上一步的岩屑浓度,α2为岩屑的浓度;v2,流进是每个网格岩屑的流进速度,v2,流出是每个网格岩屑的流出速度;
步骤(9)在岩屑浓度分布图中找到岩屑浓度的最高值,判断步骤(8)计算得到的每个网格的岩屑浓度值α2值是否都小于预设的岩屑浓度最大允许值α2,max,如果是,则转入步骤(10),如果不是,则调整钻井液的密度ρ1,将其增加50kg/cm3,然后返回步骤(4);
步骤(10)判断钻井液密度ρ1是否在施工现场能够配置的密度范围内,如果否,则通过添加改变钻井液流变性的钻井液助剂,调整钻井液流变性,然后返回步骤(4);如果是,则确定ρ1为钻井液密度。
2.根据权利要求1所述的满足异形井眼清洁的钻井液密度确定方法,其特征在于:所述步骤(1)中的N取5-20。
3.根据权利要求2所述的满足异形井眼清洁的钻井液密度确定方法,其特征在于:所述步骤(1)中的钻井基础参数包括:
钻头直径Db,单位为m;钻杆外径Dp,单位为m;钻井液密度ρm,单位为kg/m3;岩屑密度ρd,单位为kg/m3;岩屑等效直径Dd,单位为m;异形井眼井径扩大率、井径扩大处初始岩屑浓度,单位为%。
4.根据权利要求3所述的满足异形井眼清洁的钻井液密度确定方法,其特征在于:所述步骤(2)中划分网格时将井眼的轴对称问题简化为2维平面计算问题,并对异形井眼位置处的网格进行加密。
5.根据权利要求4所述的满足异形井眼清洁的钻井液密度确定方法,其特征在于:所述步骤(5)中的4种流变模型为:
宾汉流型:τ=τYPPV×γ;
幂律流型:τ=K×γn
卡森模式:τ1/2=τc1/2 1/2×γ1/2
赫-巴流型:τ=τHB+K×γn
其中,τYP、μPV、K、n、τc、η、τHB分别通过数据拟合计算得到,K为稠度系数,单位是Pa·sn,n为流性指数,γ为剪切速率,单位是s-1,η是卡森粘度,单位是mPa·s,τ是剪切应力,单位是Pa,τc是卡森屈服值,单位是Pa,τYP是屈服值,单位是Pa,μPV是塑性粘度,单位是mPa·s,τHB是赫巴切力。
6.根据权利要求5所述的满足异形井眼清洁的钻井液密度确定方法,其特征在于:所述步骤(6)是这样实现的:
将入口的边界条件取为流入速度边界条件;
将出口的边界条件取为流出速度边界条件;
井壁和钻具外壁处采用无滑移边界条件,设定边界处的流动速度为0。
7.根据权利要求6所述的满足异形井眼清洁的钻井液密度确定方法,其特征在于:所述步骤(8)中的流速分布图的绘制区域为步骤(1)中设置的xy二维计算区域,流速为z值,用颜色深度表示;
所述步骤(8)中的岩屑浓度分布图的绘制区域为步骤(1)设置的xy二维计算区域,岩屑浓度为z值,用颜色深度表示。
8.根据权利要求7所述的满足异形井眼清洁的钻井液密度确定方法,其特征在于:所述步骤(10)中的施工现场能够配置的密度范围为:1000kg/m3-3000kg/m3
CN201711170736.3A 2017-11-22 2017-11-22 一种满足异形井眼清洁的钻井液密度确定方法 Active CN109815511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711170736.3A CN109815511B (zh) 2017-11-22 2017-11-22 一种满足异形井眼清洁的钻井液密度确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711170736.3A CN109815511B (zh) 2017-11-22 2017-11-22 一种满足异形井眼清洁的钻井液密度确定方法

Publications (2)

Publication Number Publication Date
CN109815511A CN109815511A (zh) 2019-05-28
CN109815511B true CN109815511B (zh) 2021-08-31

Family

ID=66601172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711170736.3A Active CN109815511B (zh) 2017-11-22 2017-11-22 一种满足异形井眼清洁的钻井液密度确定方法

Country Status (1)

Country Link
CN (1) CN109815511B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115859566A (zh) * 2022-11-03 2023-03-28 中国石油天然气集团有限公司 一种钻井参数优化方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122756A (zh) * 2013-01-31 2013-05-29 中国石油大学(华东) 一种确定深水隔水管气举钻井注气量的方法
CN104153759A (zh) * 2014-07-30 2014-11-19 中国石油集团钻井工程技术研究院 控压钻井气液两相流动模拟计算方法
CN105401939A (zh) * 2015-11-30 2016-03-16 中国石油大学(北京) 一种多因素耦合作用下的煤层井壁稳定性分析方法
WO2017079154A1 (en) * 2015-11-06 2017-05-11 Baker Hughes Incorporated Apparatus and methods for determining real-time hole cleaning and drilled cuttings density quatification using nucleonic densitometers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122756A (zh) * 2013-01-31 2013-05-29 中国石油大学(华东) 一种确定深水隔水管气举钻井注气量的方法
CN104153759A (zh) * 2014-07-30 2014-11-19 中国石油集团钻井工程技术研究院 控压钻井气液两相流动模拟计算方法
WO2017079154A1 (en) * 2015-11-06 2017-05-11 Baker Hughes Incorporated Apparatus and methods for determining real-time hole cleaning and drilled cuttings density quatification using nucleonic densitometers
CN105401939A (zh) * 2015-11-30 2016-03-16 中国石油大学(北京) 一种多因素耦合作用下的煤层井壁稳定性分析方法

Also Published As

Publication number Publication date
CN109815511A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
Lichun et al. Drilling fluid loss model and loss dynamic behavior in fractured formations
CN105840187B (zh) 致密性油藏水平井分段压裂产能计算方法
Lian et al. A study on casing deformation failure during multi-stage hydraulic fracturing for the stimulated reservoir volume of horizontal shale wells
CN107545113A (zh) 非常规油气藏水力压裂复杂缝网形成过程模拟方法
Udegbunam et al. On the advection-upstream-splitting-method hybrid scheme: a simple transient-flow model for managed-pressure-drilling and underbalanced-drilling applications
CN108509703B (zh) 一种气藏状态参数随钻数值反演分析方法
Szanyi et al. Near-wellbore modeling of a horizontal well with computational fluid dynamics
CN103590824A (zh) 经过多段压裂改造后的致密气藏水平井的产能计算方法
CN108133080B (zh) 一种考虑非稳态吸附的非均质裂缝页岩气藏数值模拟方法
Luo et al. A new semi-analytical model for predicting the performance of horizontal wells completed by inflow control devices in bottom-water reservoirs
CN108518218B (zh) 一种非常规油气藏多段压裂水平井单井动态储量确定方法
CN109812236B (zh) 一种确定异形井眼中的井眼清洁效果的方法
EP3284903A1 (en) Systems and methods for simulating cement placement
CN106951641B (zh) 一种缝洞型油藏数值模拟的方法及系统
CN102425386B (zh) 一种符合幂律模式的钻井液流变参数控制方法
US11308409B1 (en) Method of determining fracture interference in a hydraulically fractured well
CN109815511B (zh) 一种满足异形井眼清洁的钻井液密度确定方法
Ferroudji et al. 3D numerical and experimental modelling of multiphase flow through an annular geometry applied for cuttings transport
CN114880962B (zh) 基于地层渗流-井筒管流耦合的致密气藏储气库单井注采能力一体化分析方法
CN108536982B (zh) 一种多裂缝油水混合交叉驱替的评价方法
CN109812237B (zh) 一种满足异形井眼清洁的钻井液排量确定方法
CN111734394A (zh) 一种确定致密油藏压裂井不定常流井底压力的方法
Kragset et al. Effect of buoyancy and inertia on viscoplastic fluid: Fluid displacement in an inclined eccentric annulus with an irregular section
Egbue Improving the Efficiency of Transportation of Cuttings in Wellbore-Experimental Investigations on Critical Rolling and Lifting Velocities
CN110593856B (zh) 一种固井安全作业密度窗口测定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant