CN109814157A - 一种相对姿态的识别方法、装置及计算机存储介质 - Google Patents

一种相对姿态的识别方法、装置及计算机存储介质 Download PDF

Info

Publication number
CN109814157A
CN109814157A CN201910095686.XA CN201910095686A CN109814157A CN 109814157 A CN109814157 A CN 109814157A CN 201910095686 A CN201910095686 A CN 201910095686A CN 109814157 A CN109814157 A CN 109814157A
Authority
CN
China
Prior art keywords
receiving coil
coil
receiving
consistent
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910095686.XA
Other languages
English (en)
Other versions
CN109814157B (zh
Inventor
党博
张�雄
许林康
刘长赞
杨玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201910095686.XA priority Critical patent/CN109814157B/zh
Publication of CN109814157A publication Critical patent/CN109814157A/zh
Application granted granted Critical
Publication of CN109814157B publication Critical patent/CN109814157B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明实施例公开了一种相对姿态的识别方法、装置及计算机存储介质;该方法包括:以发射线圈为对称点,确定关于发射线圈对称的接收线圈的接收响应是否一致:若一致,则确定处于接收响应一致的接收线圈范围内的事故井部分与救援井平行;否则,以发射线圈为中心点,将接收线圈阵列划分为两部分接收线圈;对于各部分接收线圈,确定是否存在至少一个部分接收线圈内所有接收线圈的接收响应累加值和与发射线圈共置的中心接收线圈的接收响应是否一致:若是,则确定与中心接收线圈的接收响应一致的部分接收线圈范围内的事故井部分与救援井平行;否则,则确定事故井与救援井完全不平行。

Description

一种相对姿态的识别方法、装置及计算机存储介质
技术领域
本发明涉及石油开采安全保障技术,尤其涉及一种相对姿态的识别方法、 装置及计算机存储介质。
背景技术
目前,常规的救援井探测定位方法主要包括磁扰动法、注入电流法和瞬变 电磁法等。而对于瞬变电磁法,也可以称为时域电磁法来说,属于一种基于瞬 变信号电磁感应的定位检测技术。其原理是利用不接大地的大回线产生一次脉 冲电磁场信号,促使地层中的导体产生感应电流,并且在一次脉冲磁场信号的 间隙期间,导体中感应电流所产生的二次磁场信号不会因为一次场的消失而马 上消失,也就是说会有一个瞬变的过程,探测单元利用研制的线圈测得二次磁 场信号,获得感应电动势。其中,感应电流扩散的阶段可以分为早期、中晚期 和远场、近场,产生的二次磁场具有很好的导体探测能力。所以利用瞬变电磁原理对事故井进行检测,其问题的实质是一种层状媒质中的电磁场问题。具体 而言,就是利用金属套管的电阻率比地层的电阻率低6-7个数量级这一特征, 通过探测均匀地层中的金属异常体来确定救援井与事故井套管的相对距离。
对于目前常规的利用瞬变电磁法进行探测的方案来说,在救援井的近距离 跟随阶段,由于测量范围大且事故井与救援井相距较近,瞬变电磁信号所覆盖 的事故井套管范围较大,被测事故井套管不再是点目标,由此可知,将事故井 作为点目标的传统探测模型所测得的距离和方位将存在严重偏差,无法准确得 到救援井与事故井的相对姿态信息,从而不利于救援井近距离的高精度跟随。
发明内容
有鉴于此,本发明实施例期望提供一种相对姿态的识别方法、装置及计算 机存储介质,能够提高救援井与事故井的近距离探测性能。
本发明的技术方案是这样实现的:
第一方面,本发明实施例提供了一种相对姿态的识别方法,所述方法应用 于设置于救援井的收发线圈阵列,在所述收发线圈阵列中,发射线圈处于接收 线圈阵列中心;所述方法包括:
以所述发射线圈为对称点,确定关于所述发射线圈对称的接收线圈的接收 响应是否一致:
若一致,则确定处于接收响应一致的接收线圈范围内的事故井部分与所述 救援井平行;
否则,以所述发射线圈为中心点,将接收线圈阵列划分为两部分接收线圈;
对于各部分接收线圈,确定是否存在至少一个部分接收线圈内所有接收线 圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应是否一 致:
若是,则确定与所述中心接收线圈的接收响应一致的部分接收线圈范围内 的事故井部分与所述救援井平行;
否则,则确定所述事故井与所述救援井完全不平行。
第二方面,本发明实施例提供了一种相对姿态的识别装置,所述装置设置 于救援井的收发线圈阵列,在所述收发线圈阵列中,发射线圈处于接收线圈阵 列中心;所述装置包括:第一确定部分,划分部分以及第二确定部分;其中,
所述第一确定部分,配置为以所述发射线圈为对称点,确定关于所述发射 线圈对称的接收线圈的接收响应是否一致:以及,
若一致,则确定处于接收响应一致的接收线圈范围内的事故井部分与所述 救援井平行;以及,
否则,触发所述划分部分;
所述划分部分,配置为以所述发射线圈为中心点,将接收线圈阵列划分为 两部分接收线圈;
所述第二确定部分,配置为对于各部分接收线圈,确定是否存在至少一个 部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的中心 接收线圈的接收响应是否一致:
若是,则确定与所述中心接收线圈的接收响应一致的部分接收线圈范围内 的事故井部分与所述救援井平行;
否则,则确定所述事故井与所述救援井完全不平行。
第三方面,本发明实施例提供了一种相对姿态的识别装置,所述装置设置 于救援井的收发线圈阵列,在所述收发线圈阵列中,发射线圈处于接收线圈阵 列中心;所述装置包括:存储器和处理器;其中,
所述存储器,用于存储能够在所述处理器上运行的计算机程序;
所述处理器,用于在运行所述计算机程序时,执行第一方面所述相对姿态 的识别方法的步骤。
第四方面,本发明实施例提供了一种计算机存储介质,所述计算机存储介 质存储有相对姿态的识别程序,所述相对姿态的识别程序被至少一个处理器执 行时实现第四方面所述相对姿态的识别方法的步骤。
本发明实施例提供了一种相对姿态的识别方法、装置及计算机存储介质; 根据救援井瞬变电磁探测系统模型,采用一发多收对称式阵列结构,结合井下 瞬变电磁响应的对称特性,基于Radon变换直线检测的救援井与事故井的相对 姿态判断方法。本专利提出的方法可准确识别事故井套管与救援井间的相对姿 态,对改善救援井近距离探测性能,提高救援井钻井效率具有重要意义。,能够 提高救援井与事故井的近距离探测性能。
附图说明
图1为本发明实施例提供的一种井下瞬变电磁探测模型示意图;
图2为本发明实施例提供的一种相对姿态的识别方法流程示意图;
图3(a)为本发明实施例提供的一种相对姿态示意图;
图3(b)为本发明实施例提供的另一种相对姿态示意图;
图3(c)为本发明实施例提供的又一种相对姿态示意图;
图4为本发明实施例提供的一种相对姿态的识别装置组成示意图;
图5为本发明实施例提供的另一种相对姿态的识别装置组成示意图;
图6为本发明实施例提供的一种相对姿态的识别装置的具体硬件结构示意 图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述。
参见图1,其示出了适用于本发明实施例的一种井下瞬变电磁探测模型, 该模型可以包括:事故井套管、救援井、阵列探头、仪器保护管、钻井液、冲 洗侵入带、地层。事故井管套和阵列式探头两者存在各种姿态,对于两者相对 姿态来说,各个接收线圈与事故井套管相对距离各不相同,依靠各个接收线圈 变化的电动势,从而可以分析得到事故井套管相对距离,进而分析两者之间的 相对姿态。
其中,阵列式探头优选为一发多收阵列,具体实现方式可以是由磁芯上以 一组发射线圈和多组接收线圈组成。磁芯的电参数和几何参数影响探测系统的 测量精度,分析磁芯及各接收线圈的电参数和几何参数,可以分析出两者的间 距和相对姿态,为救援井钻井的跟随阶段提供重要的信息。
具体来说,针对救援井的近距离跟随阶段,以图1所示的模型为例,第j 层介质的电参数和几何参数分别为(μjjj)和rj。将磁芯作为最内层介质,发射 线圈和接收线圈位于第二层的空气媒质中,仪器外护管位于第三层,从第四层 到第六层分别是钻井液、冲洗带与原状地层。各接收线圈的匝数相同,发射线 圈和接收线圈的匝数分别为NT和NR
在救援井与事故井连通的跟随探测过程中,由于探头与被测事故井距离较 近,而电磁信号覆盖的事故井套管范围较大,将事故井作为点目标的传统探测 模型会引入严重的测量误差。
针对这一问题,需要说明的是,当救援井与被测事故井平行时,可认为被 测介质沿井轴方向是纵向均匀的;但当救援井与事故井不平行时,事故井套管 与救援井之间的距离不尽相同,被测介质纵向非均匀。此时,需要通过多点测 量结果来判断救援井与事故井的相对姿态,而这就要求钻井过程中尽可能以较 小的斜度、更长的时间逐步接近事故井以保证钻遇连通。
而在救援井钻井的近距离跟随阶段,受误差椭球影响,救援井仅依靠救援 井和事故井井身轨迹信息很难直接中靶,其钻井过程需要通过不断地测量救援 井与事故井之间的相对距离和方位,逐步引导救援井与事故井的钻遇连通。由 于电磁信号覆盖的事故井套管范围较大,将事故井作为点目标的传统探测模型 会引入严重的测量误差。因此为了提高救援井与事故井近距离探测性能,为救 援井钻井的跟随阶段提供重要信息。参见图2,其示出了本发明实施例提供的 一种相对姿态的识别方法,该方法可以应用于设置于救援井的收发线圈阵列, 在所述收发线圈阵列中,发射线圈处于接收线圈阵列中心;所述方法可以包括:
S201:以所述发射线圈为对称点,确定关于所述发射线圈对称的接收线圈 的接收响应是否一致:
若一致,则S202:确定处于接收响应一致的接收线圈范围内的事故井部分 与所述救援井平行;
否则,S203:以所述发射线圈为中心点,将接收线圈阵列划分为两部分接 收线圈;
S204:对于各部分接收线圈,确定是否存在至少一个部分接收线圈内所有 接收线圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应 是否一致:
若是,则S205:确定与所述中心接收线圈的接收响应一致的部分接收线圈 范围内的事故井部分与所述救援井平行;
否则,S206:确定所述事故井与所述救援井完全不平行。
通过图2所示的技术方案,可以看出,通过针对对称接收线圈阵列的接收 响应的进行状态分析,从而针对分析结果确定救援井和事故井的相对姿态,从 而可以提高或改善救援井近距离探测性能。
对于图2所示的技术方案,结合图1所示的模型,在一种可能的实现方式 中,所述接收线圈的数量为2M+1,各接收间距为△z,所述发射线圈设置于接 收线圈阵列的中心接收线圈,各接收线圈与所述发射线圈之间的距离表示为zm, 其中,m为接收线圈标识且-M≤m≤M;相应地,以救援井井轴方向为Z方向, 以发射线圈(z=0)为坐标原点,存在z-m=-zm这一特性,此外,所述方法还包 括:
基于所述收发线圈阵列模型,引入矢量势A以及式1所示的无源区亥姆霍 兹方程和式2所示的有源区亥姆霍兹方程
其中IT为发射电流,t为线圈元dl处的切线方向;
通过引入变量xj和λ,使其满足则矢量势A通过计算式1以及 式2的亥姆霍兹方程求得;
根据场量与矢量磁位的关系可得式3所示的第m个接收线圈内沿所述救援 井井轴方向z方向的磁场强度为:
其中,I0(.)为零阶第一类修正贝塞尔函数,C1为待定系数,与各层介质的 电参数、几何参数以及事故井套管与第m个接收线圈之间的距离dm有关;
令f(λ,r,ω,dm)=x1C1I0(x1r),则第m个接收线圈的接收响应如式4所示:
其中,ξ=μ1NRNTIT/π,r1为磁芯半径。
需要说明的是,井下瞬变电磁探测通常假设被测区域纵向均匀,通过判断 瞬变响应的衰减速度来分析金属异常体的距离、形状等参数。需要注意的是, 本发明实施例的技术方案仅针对柱状对称多层模型,而事故井实际位于救援井 的某一侧,因此模型中的距离dm与真实距离存在一定区别,通常可以通过刻度 进行参数修正。此外,由于柱状对称模型中无法体现事故井相对于救援井的方 位信息,就需要根据已知的井眼轨迹,通过多点测量反推获得。
此外,可以理解地,由于接收线圈与发射线圈的距离zm处于式4中的余弦 项,考虑到余弦函数的对称性,若被测事故井套管距救援井距离相同,即被测 环境是均匀的,则关于z0对称的两个线圈响应相同。利用对称阵列的这一性质, 就能够根据对称阵列中接收线圈的对称性确定事故井套管与救援井之间的相对 姿态。
基于上述技术方案,在一种可能的实现方式中,所述确定关于所述发射线 圈对称的接收线圈的接收响应是否一致,包括:
以所述发射线圈为对称点,将位置对称的两个接收线圈的接收响应按照对 应元素进行除法计算;
将计算结果按照式5进行Radon变换,确定变换后的投影图像是否为位于 0度且投影值为1的一个点:
R(ρ,θ)=∫∫(S-ttanθ)δ(tcosθ+ηsinθ-ρ)dtdη (5)
其中,ρ为该直线与原点的距离,δ(.)为冲击函数,引入向量的直线方程为 S=ttanθ+η,其中tanθ和η分别是所述直线方程的斜率和截距;
若是,则关于所述发射线圈对称的接收线圈的接收响应一致;
否则关于所述发射线圈对称的接收线圈的接收响应不一致。
需要说明的是,首先,判断关于发射对称的两个接收线圈的瞬变电磁响应 值是否相同,也就是判断被测范围内的事故井套管与救援井是否平行。将位置 对称的两个接收线圈(zm和-zm)的瞬变电磁响应值做对应元素除法,如两个接 收线圈的瞬变电磁响应值一致,其结果应为每个元素值都近似为1的直线向量。 根据Radon变换,该直线向量会在0度(或180度)方向投影为一个点。利用 这一特性,本发明实施例优选采用基于Radon变换的直线检测来分析被测事故 井关于发射线圈(z=0)的对称性。设定该向量的直线方程为S=ttanθ+η,其中 tanθ和η分别是斜率和截距,则根据式5所示Radon变换,可以得知,当该直 线与X轴,即采样时间轴平行时,式5的投影图像应为位于0度且投影值为1 的一个点,即ρ≈1,θ≈0。将m从1取到M,依次通过上述实现方式的方案, 若存在第m对线圈对称,则说明从接收线圈-zm到接收线圈zm范围内的被测事 故井部分与救援井平行,具体的相对姿态参见图3(a)所示。
基于上述技术方案,在一种可能的实现方式中,所述对于各部分接收线圈, 确定是否存在至少一个部分接收线圈内所有接收线圈的接收响应累加值和与所 述发射线圈共置的中心接收线圈的接收响应是否一致,包括:
对于各部分接收线圈,采用Radon变换对式(6)左右两端数据进行处理, 通过判断对应元素相除结果是否满足0度或180度方向的直线向量,以确定各 部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的中心 接收线圈的接收响应是否一致:
其中,x(z0)为中心接收线圈的接收响应,为任一 部分接收线圈内所有接收线圈的接收响应累加值的接收响应累加值;
若满足0度或180度方向的直线向量,则所述部分接收线圈内所有接收线 圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应一致;
否则,所述部分接收线圈内所有接收线圈的接收响应累加值和与所述发射 线圈共置的中心接收线圈的接收响应不一致。
需要说明的是,若不存在任何一对接收线圈的响应关于发射线圈对称,则 说明被测事故井段与救援井不存在关于z=0对称的平行段。此时,需要判断是 否存在部分事故井套管与救援井平行,本发明实施例优选地分别判断事故井套 管与z1到zM段或-z1到-zM段是否平行。若存在部分事故井套管与救援井平行, 则应满足式6所示的对应关系,同理,采用Radon变换对式6左右两端数据进 行处理,通过判断对应元素相除结果是否为0度或180度方向的直线向量,分 别分析两段的部分阵列与事故井套管是否平行,如果存在某一段的部分阵列满 足,则部分事故井套管与救援井平行,具体的相对姿态参见图3(b)所示。
基于上述技术方案,在一种可能的实现方式中,如果两段的部分阵列中的 任一段均不与事故井套管平行,那么说明该事故井部分与救援井不平行,具体 相对姿态参见图3(c)所示。设定地层中除被测事故井套管外再无任何金属异 常体,即被测目标只有一个,那么在金属套管电导率不变的情况下,距离越近, 瞬变电磁响应所体现的导电性越好。因此,可通过逐次判断M对线圈信号大小 来判断事故井套管相对救援井的轨迹趋势。基于此,确定所述事故井与所述救 援井完全不平行之后,所述方法还包括:
按照式7确定事故井套管相对救援井的轨迹趋势:
需要说明的是,考虑到钻井狗腿度范围限制,在短距离内事故井不可能出 现2个拐点,因此,可以通过式7对多个线圈进行积累后提高信噪比再进行判 断以提高准确性。
通过上述方案可以得知,本发明实施例根据救援井瞬变电磁探测系统模型, 分析了井下瞬变电磁阵列信号处理方法。在此基础上,采用一发多收对称式阵 列结构,结合井下瞬变电磁响应的对称特性,基于Radon变换直线检测的救援 井与事故井的相对姿态判断方法。本专利提出的方法可准确识别事故井套管与 救援井间的相对姿态,对改善救援井近距离探测性能,提高救援井钻井效率具 有重要意义。
基于图2所示的技术方案相同的发明构思,参见图4,其示出了本发明实 施例提供的一种相对姿态的识别装置40,所述装置40设置于救援井的收发线 圈阵列,在所述收发线圈阵列中,发射线圈处于接收线圈阵列中心;所述装置 40包括:第一确定部分401,划分部分402以及第二确定部分403;其中,
所述第一确定部分401,配置为以所述发射线圈为对称点,确定关于所述 发射线圈对称的接收线圈的接收响应是否一致:以及,
若一致,则确定处于接收响应一致的接收线圈范围内的事故井部分与所述 救援井平行;以及,
否则,触发所述划分部分402;
所述划分部分402,配置为以所述发射线圈为中心点,将接收线圈阵列划 分为两部分接收线圈;
所述第二确定部分403,配置为对于各部分接收线圈,确定是否存在至少 一个部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的 中心接收线圈的接收响应是否一致:
若是,则确定与所述中心接收线圈的接收响应一致的部分接收线圈范围内 的事故井部分与所述救援井平行;
否则,则确定所述事故井与所述救援井完全不平行。
在上述方案中,所述接收线圈的数量为2M+1,各接收间距为△z,所述发 射线圈设置于接收线圈阵列的中心接收线圈,各接收线圈与所述发射线圈之间 的距离表示为zm,其中,m为接收线圈标识且-M≤m≤M;相应地,z-m=-zm
在上述方案中,所述第一确定部分401,配置为:
以所述发射线圈为对称点,将位置对称的两个接收线圈的接收响应按照对 应元素进行除法计算;
将计算结果按照式8进行Radon变换,确定变换后的投影图像是否为位于 0度且投影值为1的一个点:
R(ρ,θ)=∫∫(S-ttanθ)δ(tcosθ+ηsinθ-ρ)dtdη (8)
其中,ρ为该直线与原点的距离,δ(.)为冲击函数,引入向量的直线方程为 S=ttanθ+η,其中tanθ和η分别是所述直线方程的斜率和截距;
若是,则关于所述发射线圈对称的接收线圈的接收响应一致;
否则关于所述发射线圈对称的接收线圈的接收响应不一致。
在上述方案中,所述第二确定部分403,配置为 对于各部分接收线圈,采用Radon变换对式(9)左右两端数据进行处理, 通过判断对应元素相除结果是否满足0度或180度方向的直线向量,以确定各 部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的中心 接收线圈的接收响应是否一致:
其中,x(z0)为中心接收线圈的接收响应,为任一 部分接收线圈内所有接收线圈的接收响应累加值的接收响应累加值;
若满足0度或180度方向的直线向量,则所述部分接收线圈内所有接收线 圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应一致;
否则,所述部分接收线圈内所有接收线圈的接收响应累加值和与所述发射 线圈共置的中心接收线圈的接收响应不一致。
在上述方案中,参见图5,所述装置40还包括第三确定部分404,配置为:
按照式10确定事故井套管相对救援井的轨迹趋势:
其中,U(tl,zm,dm)为第m个接收线圈的接收响应,U(tl,-zm,dm)为第-m个接 收线圈的接收响应。
可以理解地,在本实施例中,“部分”可以是部分电路、部分处理器、部分 程序或软件等等,当然也可以是单元,还可以是模块也可以是非模块化的。
另外,在本实施例中的各组成部分可以集成在一个处理单元中,也可以是 各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述 集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行 销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解, 本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案 的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个 存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服 务器,或者网络设备等)或processor(处理器)执行本实施例所述方法的全部 或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟 或者光盘等各种可以存储程序代码的介质。
因此,本实施例提供了一种计算机存储介质,所述计算机存储介质存储有 相对姿态的识别程序,所述相对姿态的识别程序被至少一个处理器执行时实现 上述技术方案中所述相对姿态的识别方法的步骤。
基于上述相对姿态的识别装置40以及计算机存储介质,参见图6,其示出 了本发明实施例提供的一种相对姿态的识别装置40的具体硬件结构,可以包括:
存储器601和处理器602;各个组件通过总线系统603耦合在一起。可理 解,总线系统603用于实现这些组件之间的连接通信。总线系统603除包括数 据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明 起见,在图6中将各种总线都标为总线系统603。其中,第一网络接口601,用 于在与其他外部网元之间进行收发信息过程中,信号的接收和发送;
存储器601,用于存储能够在处理器602上运行的计算机程序;
处理器602,用于在运行所述计算机程序时,执行:
以所述发射线圈为对称点,确定关于所述发射线圈对称的接收线圈的接收 响应是否一致:
若一致,则确定处于接收响应一致的接收线圈范围内的事故井部分与所述 救援井平行;
否则,以所述发射线圈为中心点,将接收线圈阵列划分为两部分接收线圈;
对于各部分接收线圈,确定是否存在至少一个部分接收线圈内所有接收线 圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应是否一 致:
若是,则确定与所述中心接收线圈的接收响应一致的部分接收线圈范围内 的事故井部分与所述救援井平行;
否则,则确定所述事故井与所述救援井完全不平行。
可以理解,本发明实施例中的存储器601可以是易失性存储器或非易失性 存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以 是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦 除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可 以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。 通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存 储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、 同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步 动态随机存取存储器(DoubleData Rate SDRAM,DDRSDRAM)、增强型同步动 态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储 器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器601旨在包括但不限于这些 和任意其它适合类型的存储器。
而处理器602可能是一种集成电路芯片,具有信号的处理能力。在实现过 程中,上述方法的各步骤可以通过处理器602中的硬件的集成逻辑电路或者软 件形式的指令完成。上述的处理器602可以是通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或 者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实 现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可 以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例 所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处 理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、 只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域 成熟的存储介质中。该存储介质位于存储器601,处理器602读取存储器601 中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、 微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集 成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital SignalProcessing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑 设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable GateArray,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本 申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实 现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可 以在处理器中或在处理器外部实现。
具体来说,处理器602还配置为运行所述计算机程序时,执行前述技术方 案中所述的方法步骤,这里不再进行赘述。
需要说明的是:本发明实施例所记载的技术方案之间,在不冲突的情况下, 可以任意组合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到 变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应 以所述权利要求的保护范围为准。

Claims (10)

1.一种相对姿态的识别方法,其特征在于,所述方法应用于设置于救援井的收发线圈阵列,在所述收发线圈阵列中,发射线圈处于接收线圈阵列中心;所述方法包括:
以所述发射线圈为对称点,确定关于所述发射线圈对称的接收线圈的接收响应是否一致:
若一致,则确定处于接收响应一致的接收线圈范围内的事故井部分与所述救援井平行;
否则,以所述发射线圈为中心点,将接收线圈阵列划分为两部分接收线圈;
对于各部分接收线圈,确定是否存在至少一个部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应是否一致:
若是,则确定与所述中心接收线圈的接收响应一致的部分接收线圈范围内的事故井部分与所述救援井平行;
否则,则确定所述事故井与所述救援井完全不平行。
2.根据权利要求1所述的方法,其特征在于,所述接收线圈的数量为2M+1,各接收间距为△z,所述发射线圈设置于接收线圈阵列的中心接收线圈,各接收线圈与所述发射线圈之间的距离表示为zm,其中,m为接收线圈标识且-M≤m≤M;相应地,z-m=-zm;所述方法还包括:
基于所述收发线圈阵列模型,引入矢量势A以及式1所示的无源区亥姆霍兹方程和式2所示的有源区亥姆霍兹方程
其中IT为发射电流,t为线圈元dl处的切线方向;
通过引入变量xj和λ,使其满足则矢量势A通过计算式1以及式2的亥姆霍兹方程求得;
根据场量与矢量磁位的关系可得式3所示的第m个接收线圈内沿所述救援井井轴方向z方向的磁场强度为:
其中,I0(.)为零阶第一类修正贝塞尔函数,C1为待定系数,与各层介质的电参数、几何参数以及事故井套管与第m个接收线圈之间的距离dm有关;
令f(λ,r,ω,dm)=x1C1I0(x1r),则第m个接收线圈的接收响应如式4所示:
其中,ξ=μ1NRNTIT/π,r1为磁芯半径。
3.根据权利要求1或2所述的方法,其特征在于,所述确定关于所述发射线圈对称的接收线圈的接收响应是否一致,包括:
以所述发射线圈为对称点,将位置对称的两个接收线圈的接收响应按照对应元素进行除法计算;
将计算结果按照式5进行Radon变换,确定变换后的投影图像是否为位于0度且投影值为1的一个点:
R(ρ,θ)=∫∫(S-ttanθ)δ(tcosθ+ηsinθ-ρ)dtdη (5)
其中,ρ为该直线与原点的距离,δ(.)为冲击函数,引入向量的直线方程为S=ttanθ+η,其中tanθ和η分别是所述直线方程的斜率和截距;
若是,则关于所述发射线圈对称的接收线圈的接收响应一致;
否则关于所述发射线圈对称的接收线圈的接收响应不一致。
4.根据权利要求1或2所示的方法,其特征在于,所述对于各部分接收线圈,确定是否存在至少一个部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应是否一致,包括:
对于各部分接收线圈,采用Radon变换对式(6)左右两端数据进行处理,通过判断对应元素相除结果是否满足0度或180度方向的直线向量,以确定各部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应是否一致:
其中,x(z0)为中心接收线圈的接收响应,为任一部分接收线圈内所有接收线圈的接收响应累加值的接收响应累加值;
若满足0度或180度方向的直线向量,则所述部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应一致;
否则,所述部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应不一致。
5.根据权利要求1或2所述的方法,其特征在于,确定所述事故井与所述救援井完全不平行之后,所述方法还包括:
按照式7确定事故井套管相对救援井的轨迹趋势:
6.一种相对姿态的识别装置,其特征在于,所述装置设置于救援井的收发线圈阵列,在所述收发线圈阵列中,发射线圈处于接收线圈阵列中心;所述装置包括:第一确定部分,划分部分以及第二确定部分;其中,
所述第一确定部分,配置为以所述发射线圈为对称点,确定关于所述发射线圈对称的接收线圈的接收响应是否一致:以及,
若一致,则确定处于接收响应一致的接收线圈范围内的事故井部分与所述救援井平行;以及,
否则,触发所述划分部分;
所述划分部分,配置为以所述发射线圈为中心点,将接收线圈阵列划分为两部分接收线圈;
所述第二确定部分,配置为对于各部分接收线圈,确定是否存在至少一个部分接收线圈内所有接收线圈的接收响应累加值和与所述发射线圈共置的中心接收线圈的接收响应是否一致:
若是,则确定与所述中心接收线圈的接收响应一致的部分接收线圈范围内的事故井部分与所述救援井平行;
否则,则确定所述事故井与所述救援井完全不平行。
7.根据权利要求6所述的装置,其特征在于,所述接收线圈的数量为2M+1,各接收间距为△z,所述发射线圈设置于接收线圈阵列的中心接收线圈,各接收线圈与所述发射线圈之间的距离表示为zm,其中,m为接收线圈标识且-M≤m≤M;相应地,z-m=-zm
8.根据权利要求6或7所述的装置,其特征在于,所述装置还包括第三确定部分,配置为:
按照式7确定事故井套管相对救援井的轨迹趋势:
其中,U(tl,zm,dm)为第m个接收线圈的接收响应,U(tl,-zm,dm)为第-m个接收线圈的接收响应。
9.一种相对姿态的识别装置,其特征在于,所述装置设置于救援井的收发线圈阵列,在所述收发线圈阵列中,发射线圈处于接收线圈阵列中心;所述装置包括:存储器和处理器;其中,
所述存储器,用于存储能够在所述处理器上运行的计算机程序;
所述处理器,用于在运行所述计算机程序时,执行权利要求1至5任一项所述相对姿态的识别方法的步骤。
10.一种计算机存储介质,所述计算机存储介质存储有相对姿态的识别程序,所述相对姿态的识别程序被至少一个处理器执行时实现权利要求1至5中任一项所述相对姿态的识别方法的步骤。
CN201910095686.XA 2019-01-31 2019-01-31 一种相对姿态的识别方法、装置及计算机存储介质 Active CN109814157B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910095686.XA CN109814157B (zh) 2019-01-31 2019-01-31 一种相对姿态的识别方法、装置及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910095686.XA CN109814157B (zh) 2019-01-31 2019-01-31 一种相对姿态的识别方法、装置及计算机存储介质

Publications (2)

Publication Number Publication Date
CN109814157A true CN109814157A (zh) 2019-05-28
CN109814157B CN109814157B (zh) 2020-09-01

Family

ID=66606118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910095686.XA Active CN109814157B (zh) 2019-01-31 2019-01-31 一种相对姿态的识别方法、装置及计算机存储介质

Country Status (1)

Country Link
CN (1) CN109814157B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114961560A (zh) * 2022-05-30 2022-08-30 中国石油天然气集团有限公司 救援井重入轨迹控制方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130056272A1 (en) * 2008-12-22 2013-03-07 Arthur F. Kuckes Proximity detection system for deep wells
CN104131808A (zh) * 2014-07-16 2014-11-05 中国海洋石油总公司 一种基于瞬变电磁法定位探测事故井的装置
WO2016068956A1 (en) * 2014-10-30 2016-05-06 Halliburton Energy Services, Inc. Method and system for hydraulic communication with target well form relief well
CN105607137A (zh) * 2016-01-19 2016-05-25 中国海洋石油总公司 一种救援井与事故井连通探测系统及探测方法
CN103499838B (zh) * 2013-09-18 2016-08-31 安徽惠洲地质安全研究院股份有限公司 异常体方位识别的瞬变电磁测量装置及其识别方法
CN106121637A (zh) * 2016-06-07 2016-11-16 西安石油大学 一种用于探测事故井的系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130056272A1 (en) * 2008-12-22 2013-03-07 Arthur F. Kuckes Proximity detection system for deep wells
CN103499838B (zh) * 2013-09-18 2016-08-31 安徽惠洲地质安全研究院股份有限公司 异常体方位识别的瞬变电磁测量装置及其识别方法
CN104131808A (zh) * 2014-07-16 2014-11-05 中国海洋石油总公司 一种基于瞬变电磁法定位探测事故井的装置
WO2016068956A1 (en) * 2014-10-30 2016-05-06 Halliburton Energy Services, Inc. Method and system for hydraulic communication with target well form relief well
CN105607137A (zh) * 2016-01-19 2016-05-25 中国海洋石油总公司 一种救援井与事故井连通探测系统及探测方法
CN106121637A (zh) * 2016-06-07 2016-11-16 西安石油大学 一种用于探测事故井的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨玲 等: "救援井瞬变电磁探测传感器建模与仿真", 《传感器与微系统》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114961560A (zh) * 2022-05-30 2022-08-30 中国石油天然气集团有限公司 救援井重入轨迹控制方法及设备
CN114961560B (zh) * 2022-05-30 2023-08-22 中国石油天然气集团有限公司 救援井重入轨迹控制方法及设备

Also Published As

Publication number Publication date
CN109814157B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
US20070256832A1 (en) Method of analyzing a subterranean formation and method of producing a mineral hydrocarbon fluid from the formation
US20230393296A1 (en) Adjacent well detection apparatus, method and system
CN103837900B (zh) 一种基于矢量磁场探测的地下电缆定位方法及装置
CN102192772B (zh) 填充水平测量设备中的移动性检测
WO2009046193A1 (en) Method and apparatus for imaging bed boundaries using azimuthal propagation resistivity measurements
BRPI0515781B1 (pt) Method for determining the conductivity of an earth training
BRPI1007316B1 (pt) Aparelho e método para estimar uma propriedade da ressonância magnética nuclear de uma formação terrestre
CN106596715A (zh) 一种阵列式瞬变电磁法多层管柱损伤检测系统及方法
BR112016010767B1 (pt) Método e meio de armazenamento legível por computador
CN109425906A (zh) 一种磁异常探测矢量磁目标识别方法
BR112018073332B1 (pt) Aparelho de ressonância magnética nuclear para estimar propriedades de uma formação de terra
CN109814157A (zh) 一种相对姿态的识别方法、装置及计算机存储介质
Li et al. Technologies and application of pipeline centerline and bending strain of In-line inspection based on inertial navigation
BR112018068019B1 (pt) Aparelho para estimar um valor de uma propriedade de resistividade de uma formação de terra interseccionada por um furo de poço
US20030184305A1 (en) Displacement measuring system and method
CN109085651A (zh) 一种探测井下套管损伤的方法和系统
CN115014334A (zh) 基于多传感信息融合的管道缺陷检测与定位方法、系统
BR112013007669B1 (pt) método e aparelho para estimar pelo menos um parâmetro de resistividade de uma formação
WO2016123803A1 (zh) 一种用于测井的天线回路,天线系统及相应的测井方法
CN107966138A (zh) 基于单一管口地理坐标信息的地下管线精确定位方法
CN114444299B (zh) 一种基于距离加权多极展开方法的磁场重构方法
BR112012006065A2 (pt) método e aparelho para estimar um parâmetro de interesse relativo a uma formação subterrânea
CN114441832A (zh) 导线电流确定方法、装置、计算机设备和存储介质
CN108121001A (zh) 基于固定解连续性判别的准静态场景定位精度优化方法
CN113311490A (zh) 一种基于加权最小均方误差的瞬变电磁发射聚焦的探测方法、装置及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant