CN109799819B - 基于陀螺进动效应的蛇形机器人机构及运动控制方法 - Google Patents

基于陀螺进动效应的蛇形机器人机构及运动控制方法 Download PDF

Info

Publication number
CN109799819B
CN109799819B CN201910049596.7A CN201910049596A CN109799819B CN 109799819 B CN109799819 B CN 109799819B CN 201910049596 A CN201910049596 A CN 201910049596A CN 109799819 B CN109799819 B CN 109799819B
Authority
CN
China
Prior art keywords
omnidirectional wheel
omnidirectional
support
spherical support
snake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910049596.7A
Other languages
English (en)
Other versions
CN109799819A (zh
Inventor
魏世民
朱赣闽
刘博�
杨政
李高燕
董明帅
陈鹏飞
黄起能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201910049596.7A priority Critical patent/CN109799819B/zh
Publication of CN109799819A publication Critical patent/CN109799819A/zh
Application granted granted Critical
Publication of CN109799819B publication Critical patent/CN109799819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种基于陀螺进动效应的蛇形机器人机构及运动控制方法。本发明在结构上包含:模块单元、连接各模块单元的十字万向节单元,本发明的模块单元包括正方体支架以及设于正方体支架内部的陀螺转子机构和全向轮驱动单元。陀螺转子机构包括球形支架和设于球形支架内部的陀螺转子;全向轮驱动单元包括围绕球形支架布置并驱动球形支架万向转动的六个全向轮驱动组件,各全向轮驱动组件包括由全向轮电机驱动的单排全向轮和绝对式编码器,两两相对的单排全向轮为一组,三组单排全向轮分别处于正交于球形支架中心的三个相互垂直的平面上。本发明通过各模块单元产生的全向陀螺力矩使各模块单元产生航向、俯仰运动,进而实现蛇形机器人的各种运动。

Description

基于陀螺进动效应的蛇形机器人机构及运动控制方法
技术领域
本发明涉及一种蛇形机器人,具体为一种基于陀螺进动效应的蛇形机器人机构及运动控制方法。
背景技术
蛇形机器人是一种常见的机器人机构,其具有转向灵活、地面适应能力强等特点,可以用在医疗、军事、航空航天等领域当中。
蛇形机器人的结构设计主要采用模块化的设计思想,现有的蛇形机器人在结构上的主要特点有:连接蛇形机器人模块的关节转动功能以及与外界环境接触的蛇形机器人模块支撑功能。
常见的蛇形机器人按其关节结构特点可分为单自由度转动关节、双自由度转动关节、三自由度转动关节。其中,单自由度转动关节主要用于实现蛇形机器人的航向运动,双自由度转动关节主要用于实现蛇形机器人的航向和俯仰运动,三自由度转动关节不但可以实现机器人的航向和俯仰运动,还能够绕机器人模块的轴线方向进行转动,进而实现机器人的横滚运动,但三自由度转动关节对电机的输出力矩要求较高,其产生的功耗较大,同时该结构产生的机器人尺寸也较大。
模块支撑组件按其是否存在驱动可分为主动支撑组件和被动支撑组件,主动支撑组件不仅对模块产生支撑约束作用,还能对模块直接进行驱动,以提高机器人的工作效率,被动支撑组件主要是对机器人各模块进行支撑。
现有蛇形机器人的驱动方式主要是对关节直接进行驱动,从而控制蛇形机器人的运动姿态,少有对模块进行直接驱动,同时将各模块之间的关节作为被动机构,进而控制蛇形机器人的运动姿态。
发明内容
针对现有技术的不足,本发明基于陀螺的进动效应提出了一种基于陀螺进动效应的蛇形机器人机构及运动控制方法。
能够解决上述技术问题的基于陀螺进动效应的蛇形机器人机构,其技术方案包括多节模块单元以及连接各模块单元的十字万向节单元,所不同的是所述模块单元主要包括正方体支架、起支撑作用的小轮以及设于正方体支架内部的陀螺转子机构和全向轮驱动单元。
所述陀螺转子机构包括球形支架和设于球形支架内部的陀螺转子,所述陀螺转子由自带有增量式编码器的转子电机驱动并进行高速旋转;所述全向轮驱动单元包括围绕球形支架布置并驱动球形支架万向转动的六个全向轮驱动组件,所述全向轮驱动组件主要是对陀螺转子机构起支撑及驱动的作用,各全向轮驱动组件主要包括由全向轮电机驱动的单排全向轮以及检测单排全向轮转动角度的绝对式编码器,两两相对的单排全向轮为一组,三组单排全向轮分别处于正交于球形支架中心的三个相互垂直的平面上,所述全向轮电机自带有能够实时检测对应全向轮速度的增量式编码器;基于陀螺的进动效应,所述陀螺转子机构和全向轮驱动单元能够产生全向陀螺力矩。
所述十字万向节单元主要由十字轴和一对直接安装在正方体支架上的万向节叉组成,所述十字轴与一对万向节叉形成两个轴线相互垂直的旋转副。
采用上述蛇形机器人机构的运动控制方案为:
1、初始时刻,通过安装在全向轮支架上的绝对式编码器可检测出对应单排全向轮的位置。
2、当驱动安装在模块单元内部的全向轮驱动单元运动时,通过安装在全向轮支架上的绝对式编码器可检测出对应单排全向轮的转角,由于单排全向轮与球形支架之间的运动为纯滚动,进而求出球形支架的姿态矩阵。
3、当蛇形机器人模块单元需要进行航向、俯仰运动时,基于陀螺力矩的计算方法以及球形支架的姿态矩阵,通过事先设计的轨迹控制器计算出各全向轮驱动力矩和陀螺转子驱动力矩,蛇形机器人的六个全向轮和陀螺转子将按照控制器计算出的力矩进行驱动。
4、基于陀螺的进动效应,当陀螺转子受到两个不同方向的力矩时,陀螺转子会产生对球形支架的陀螺力矩;由于球形支架与全向轮存在滚动约束,同时全向轮安装在全向轮支架上,全向轮支架安装在正方体支架上,经过一系列力的相互作用,陀螺转子会产生实现各模块单元航向以及俯仰运动的全向陀螺力矩。
5、通过各模块单元航向、俯仰运动的合成,可以实现蛇形机器人的转弯、直线以及越障等运动。
本发明的有益效果:
1、本发明结构中,蛇形机器人正方体支架、全向轮驱动组件、陀螺转子机构均采用对称分布,这种对称分布的方式能够降低附加不平衡力矩的产生。
2、本发明结构中,在陀螺转子的两端都安装自带有增量式编码器的转子电机,而实际工作过程中仅需一个转子电机就能实现陀螺转子的自转运动,这样可以提升陀螺转子机构的性能。
3、本发明结构中,当陀螺转子发生自转时,驱动安装在正方体支架内部的一组三个旋转轴线两两垂直的全向轮驱动组件,可以实现蛇形机器人模块单元的航向以及俯仰运动,进一步实现蛇形机器人的转弯、直线以及越障等运动,而实际安装有两组三个旋转轴线两两垂直的全向轮驱动组件,这样就能达到冗余备份的效果,提高了系统的可靠性。
4、本发明结构中,蛇形机器人工作过程中,驱动陀螺转子以及全向轮驱动单元进行运动,可以产生提高蛇形机器人防侧翻能力的侧向陀螺力矩,进而提高蛇形机器人机构的稳定性。
5、本发明结构中,在模块单元的底部以及顶部安装有小轮,实际工作过程中,不管是顶部小轮或底部小轮支撑模块单元都可以实现蛇形机器人的各种运动轨迹。
附图说明
图1为本发明一种实施方式的立体结构示意图。
图2为图1实施方式中十字万向节单元组装结构图。
图3为图1实施方式中模块单元的组装结构图。
图4(a)为图1实施方式中模块单元的结构示意图。
图4(b)为图4(a)中的A-A剖视图。
图5为图3模块单元中全向轮的结构示意图。
图中:1-十字万向节单元;2-模块单元;3-万向节叉;4-十字轴;5-十字轴承;6-小轮;7-正方体支架;8-小轮轴;9-绝对式编码器;10-全向轮支架;11-全向轮;12-球形支架;13-陀螺转子;14-转子轴承;15-全向轮电机;16-转子电机;17-转接板;18-大节轮;19-轴套;20-小节轮;21-全向轮底板。
具体实施方式
下面结合附图所示实施方式对本发明的技术方案作进一步说明。
本发明基于陀螺进动效应的蛇形机器人机构包括多节模块单元2以及连接各模块单元2的十字万向节单元1,如图1所示。
所述模块单元2包括正方体支架7、小轮6以及安装于正方体支架7内部的陀螺转子机构、全向轮驱动单元;所述小轮6通过小轮轴8安装在正方体支架7的顶部与底部,主要是对模块单元2起支撑作用,所述陀螺转子机构包括球形支架12和设于球形支架12内部的陀螺转子13,所述陀螺转子13由自带有增量式编码器的转子电机16驱动并进行高速旋转,陀螺转子13通过转子轴承14安装在球形支架12上,转子电机16通过转接板17安装在球形支架12上,所述正方体支架7的中心、球形支架12的球心和陀螺转子13的中心同心;所述全向轮驱动单元包括围绕球形支架12布置并驱动球形支架12万向转动的六个全向轮驱动组件,所述全向轮驱动组件主要由单排全向轮11、全向轮支架10、绝对式编码器9以及自带有增量式编码器的全向轮电机15所组成,各单排全向轮11通过对应全向轮支架10安装且各支架上安装有检测对应单排全向轮11转动角度的绝对式编码器9,两两相对的单排全向轮11为一组,三组单排全向轮11分别处于正交于球形支架12中心的三个相互垂直的平面上,全向轮电机15直接安装在全向轮支架10上,所述单排全向轮11主要由全向轮底板21、大节轮18、小节轮20、轴套19所组成,大节轮18、小节轮20交错圆周均布分布,如图3、图4(a)、图4(b)、图5所示。
所述十字万向节单元1主要由十字轴4、十字轴承5以及一对直接安装在正方体支架7上的万向节叉3组成,所述十字轴4与一对万向节叉3形成两个轴线相互垂直的旋转副,如图2所示。
采用上述蛇形机器人机构的运动控制方案为:
1、初始时刻,通过安装在全向轮支架10上的绝对式编码器9可检测出对应单排全向轮11的位置。
2、当驱动安装在模块单元2内部的全向轮驱动单元运动时,通过安装在全向轮支架10上的绝对式编码器9可检测出对应单排全向轮11的转角,由于单排全向轮11与球形支架12之间的运动为纯滚动,进而求出球形支架12的姿态矩阵。
3、当蛇形机器人模块单元2需要进行航向、俯仰运动时,基于陀螺力矩的计算方法以及球形支架12的姿态矩阵,通过事先设计的轨迹控制器计算出各全向轮11驱动力矩和陀螺转子13驱动力拒,蛇形机器人的六个全向轮11和陀螺转子13将按照控制器计算出的力矩进行驱动。
4、基于陀螺的进动效应,当陀螺转子13受到两个不同方向的力矩时,陀螺转子13会产生对球形支架12的陀螺力矩;由于球形支架12与全向轮11存在滚动约束,同时全向轮11安装在全向轮支架10上,全向轮支架10安装在正方体支架7上,经过一系列力的相互作用,陀螺转子13会产生实现各模块单元2航向以及俯仰运动的全向陀螺力矩。
5、通过各模块单元2航向、俯仰运动的合成,可以实现蛇形机器人的转弯、直线以及越障等运动。

Claims (3)

1.基于陀螺进动效应的蛇形机器人机构,包括多节模块单元(2),各节模块单元(2)上安装有起支撑作用的小轮(6),相邻节的模块单元(2)之间通过十字万向节单元(1)连接,其特征在于:各节模块单元(2)包括正方体支架(7)以及设于正方体支架(7)内部的陀螺转子机构和全向轮驱动单元,所述陀螺转子机构包括球形支架(12)和设于球形支架(12)内部的陀螺转子(13),所述陀螺转子(13)由自带有增量式编码器的转子电机(16)驱动并进行高速旋转;所述全向轮驱动单元包括围绕球形支架(12)布置并驱动球形支架(12)万向转动的六个全向轮驱动组件,所述小轮(6)通过小轮轴(8)安装在正方体支架(7)的顶部与底部,所述十字万向节单元(1)由十字轴(4)、十字轴承(5)以及一对直接安装在正方体支架(7)上的万向节叉(3)组成,所示十字轴(4)与一对万向节叉(3)形成两个轴线相互垂直的旋转副。
2.根据权利要求1所述的基于陀螺进动效应的蛇形机器人机构,其特征在于:所述全向轮驱动组件主要包括由全向轮电机(15)驱动的单排全向轮(11)和检测单排全向轮(11)转动角度的绝对式编码器(9),两两相对的单排全向轮(11)为一组,三组全向轮(11)分别处于正交于球形支架(12)中心的三个相互垂直的平面上。
3.基于陀螺进动效应的蛇形机器人运动控制方法,其特征在于采用了如权利要求1~2中任意一项所述的基于陀螺进动效应的蛇形机器人机构,其运动控制方案为:
①、初始时刻,通过绝对式编码器(9)可检测出对应单排全向轮(11)的位置;
②、当驱动模块单元(2)内部的全向轮驱动单元运动时,通过绝对式编码器(9)可检测出对应单排全向轮(11)的转角,由于单排全向轮(11)与球形支架(12)之间的运动为纯滚动,进而求出球形支架(12)的姿态矩阵;
③、当蛇形机器人模块单元(2)需要进行航向、俯仰运动时,基于陀螺力矩的计算方法以及球形支架(12)的姿态矩阵,通过事先设计的轨迹控制器计算出各全向轮(11)驱动力矩和陀螺转子(13)驱动力矩,蛇形机器人的六个全向轮(11)和陀螺转子(13)将按照控制器计算出的力矩进行驱动;
④、基于陀螺的进动效应,当陀螺转子(13)受到两个不同方向的力矩时,陀螺转子(13)会产生对球形支架(12)的陀螺力矩;由于球形支架(12)与全向轮(11)存在滚动约束,同时全向轮(11)安装在全向轮支架(10)上,全向轮支架(10)安装在正方体支架(7)上,经过一系列力的相互作用,陀螺转子(13)会产生实现各模块单元(2)航向以及俯仰运动的全向陀螺力矩;
⑤、通过各模块单元(2)航向、俯仰运动的合成,可以实现蛇形机器人的转弯、直线以及越障运动。
CN201910049596.7A 2019-01-18 2019-01-18 基于陀螺进动效应的蛇形机器人机构及运动控制方法 Active CN109799819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910049596.7A CN109799819B (zh) 2019-01-18 2019-01-18 基于陀螺进动效应的蛇形机器人机构及运动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910049596.7A CN109799819B (zh) 2019-01-18 2019-01-18 基于陀螺进动效应的蛇形机器人机构及运动控制方法

Publications (2)

Publication Number Publication Date
CN109799819A CN109799819A (zh) 2019-05-24
CN109799819B true CN109799819B (zh) 2020-06-05

Family

ID=66559715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910049596.7A Active CN109799819B (zh) 2019-01-18 2019-01-18 基于陀螺进动效应的蛇形机器人机构及运动控制方法

Country Status (1)

Country Link
CN (1) CN109799819B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111528741B (zh) * 2020-05-21 2021-10-19 上海应用技术大学 一种可以进行楼梯清扫的扫地机器人
CN112054437B (zh) * 2020-09-04 2021-09-24 国网青海省电力公司检修公司 一种二次电缆敷设装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204844167U (zh) * 2015-01-06 2015-12-09 泰华宏业(天津)机器人技术研究院有限责任公司 螺旋推进蛇形机器人
CN104925159B8 (zh) * 2015-07-05 2017-06-20 北京工业大学 一种侦察型可越障机器蛇
CN205256495U (zh) * 2015-12-16 2016-05-25 安徽工业大学 带有万向关节的蜗杆传动的主动多轮蛇形机器人
KR101713120B1 (ko) * 2016-05-04 2017-03-08 충남대학교산학협력단 외바퀴로봇의 진동제어장치와 외바퀴로봇의 진동저감 필터설계방법
CN106873645B (zh) * 2017-04-13 2023-06-20 桂林电子科技大学 可全向进动的球形陀螺机构及控制方法
CN107175682B (zh) * 2017-05-24 2019-11-05 哈尔滨工业大学 一种模块化蛇形机器人关节
CN206891446U (zh) * 2017-06-23 2018-01-16 桂林电子科技大学 全封闭式球形全向陀螺机构
CN107131874B (zh) * 2017-06-23 2023-03-24 桂林电子科技大学 全封闭式球形全向陀螺机构及其运行方法
CN107139168B (zh) * 2017-06-29 2023-09-01 西安科技大学 一种煤矿救援蛇形机器人及其煤矿救援方法

Also Published As

Publication number Publication date
CN109799819A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
CN111391934B (zh) 一种轮腿复合型的机器人移动装置及轮腿复合型机器人
CN109799819B (zh) 基于陀螺进动效应的蛇形机器人机构及运动控制方法
JP4003082B2 (ja) 全方向車輪及び全方向移動装置
Yoon et al. Spherical robot with new type of two-pendulum driving mechanism
CN106873645B (zh) 可全向进动的球形陀螺机构及控制方法
CN108583182B (zh) 一种空陆两栖球形机器人
CN110065054B (zh) 多段驱动主从式蛇形机器人
CN102346482A (zh) 一种原地转向的轮式机器人底座机构
CN106142066A (zh) 一种轻量化模块化的末端直驱平面多关节机器人系统
Damoto et al. Holonomic omnidirectional vehicle with new omni-wheel mechanism
CN104742152A (zh) 一种串联式多关节机械臂
CN102700646B (zh) 具有小折叠尺寸机械手臂的全驱动磁吸附式爬壁机器人
CN108032920B (zh) 一种松软地面爬行机器人
CN108583709B (zh) 一种双足间歇式跳跃机器人
CN109702708B (zh) 基于陀螺进动效应的球形机器人机构及行走方法
CN1669745A (zh) 具有稳定平台的全向滚动球形机器人装置
JP3093580B2 (ja) 全方向移動車の駆動伝達機構
CN115256344A (zh) 舱内大纵深条件下大重量设备全向运载调姿平台
CN113525558B (zh) 一种轮式机器人及可分体的轮腿复合机器人
CN202115611U (zh) 一种全方位轮式移动机器人
CN206657246U (zh) 可全向进动的球形陀螺机构
CN110510024A (zh) 一种折展式变径球形机器人
CN211029977U (zh) 一种教育机器人的移动装置
KR20090116072A (ko) 액추에이터 타입 로봇 암
CN109808792B (zh) 基于陀螺进动效应的模块化物流分拣平台及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant