CN109799424B - 基于纵向阻抗的t型线路故障测距方法 - Google Patents

基于纵向阻抗的t型线路故障测距方法 Download PDF

Info

Publication number
CN109799424B
CN109799424B CN201910048708.7A CN201910048708A CN109799424B CN 109799424 B CN109799424 B CN 109799424B CN 201910048708 A CN201910048708 A CN 201910048708A CN 109799424 B CN109799424 B CN 109799424B
Authority
CN
China
Prior art keywords
fault
branch
impedance
line
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910048708.7A
Other languages
English (en)
Other versions
CN109799424A (zh
Inventor
夏经德
刘欢庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN201910048708.7A priority Critical patent/CN109799424B/zh
Publication of CN109799424A publication Critical patent/CN109799424A/zh
Application granted granted Critical
Publication of CN109799424B publication Critical patent/CN109799424B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)

Abstract

本发明公开的基于纵向阻抗的T型线路故障测距方法,首先,在T型高压输电线路的等效单相R‑L形的电路图上,将三端的电路设置为三条双端线路,利用纵向阻抗与故障距离的线性关系得到三个判据,从而确定故障分支。继而,增加原有的第三条电流,初次确定出故障距离的表达式x10;将T型输电线路中分布电容考虑在内,并利用初测结果x10,修正故障点左右两侧的等效∏形线路,得到T型输电线路中的精确故障距离表达式x11。本发明公开的方法原理清晰,计算过程相对简明,能够适应不同运行环境以及线路结构要求,包括T节点附近测距困难的问题,而分两步进行的故障定位不仅测距精度高且使用范围广。

Description

基于纵向阻抗的T型线路故障测距方法
技术领域
本发明属于交流输电线路继电保护领域,具体涉及一种基于纵向阻抗的T型线路故障测距方法。
背景技术
T型线路以其加快工程建设、提高运行效率、节省土地资源等优点,在高压电网的建设中,越来越受青睐。同时,它也呈现输电利用率高,用户涉及面广的优势,然而一旦发生内部故障,所造成的停电影响也相对较大。
目前,T型线路的故障测距方法主要分两步:首先确定故障分支,其次利用成熟的双端故障测距方法确定故障位置。其中采用的方法包括行波法和故障分析法,行波法建立整套完善的方法需要专门的设备投资,提高了故障测距成本,并且首波难以准确捕捉。而常规的故障分析法中存在分支判别失误、计算形式复杂、受分布电容和直流分量影响大等因素。
因此,在高效的继电保护基础上辅以有效的故障测距算法,缩短检修时间并快速恢复供电具有重要的意义。
发明内容
本发明的目的是提供一种基于纵向阻抗的T型线路故障测距方法,在有效判别故障支路的同时,简化计算,提高测距的精度,解决了行波法设备投资成本高,传统方法中存在故障分支判别有误的问题。
本发明所采用的技术方案是,基于纵向阻抗的T型线路故障测距方法,具体按照以下步骤实施:
步骤1,在T型高压输电线路的等效单相R-L形的电路图上,将三端的电路设置为三条双端线路,利用纵向阻抗与故障距离的线性关系得到三个判据,从而确定故障分支;
步骤2,增加原有的第三条电流,初次确定出故障距离x10的表达式,得到故障分支上故障点距离该故障支路母线端的距离;
步骤3,在R-L单相电路模型的基础上,将T型输电线路中分布电容考虑在内,并利用初测结果x10,修正故障点左右两侧的等效∏形线路,并调整各端电流,修正步骤2得到T型输电线路故障距离,得到精确故障距离x11的表达式。
本发明的其他特点还在于,
步骤1的具体过程如下:
步骤1.1,定义M、N、P端为输电线路为三个测量端,T为三条分支线路的节点,
Figure GDA0002787122560000021
分别是解耦后的三端工频电压故障分量,
Figure GDA0002787122560000022
分别为三端的工频电流故障分量,
Figure GDA0002787122560000023
为a、b、c相;Z1M、Z1N、Z1P分别为M、N、P端解耦后的正序系统阻抗;
Figure GDA0002787122560000024
分别为MT、NT、PT支路单位长度的正序阻抗;
Figure GDA0002787122560000025
Figure GDA0002787122560000026
分别为故障点等效工频电压和故障电流;
Figure GDA0002787122560000027
为故障点线路的实际电压;RF为故障电阻;D1、D2、D3分别为线路MT、NT、PT的地理长度,
Figure GDA0002787122560000028
为T节点对应的电压故障分量;
分别设置PT分支电流不影响MT和TN组成的两端线路、NT分支电流不影响MT和TP组成的两端线路、MT分支电流不影响NT和TP组成的两端线路,根据纵向阻抗原理,得到线路两端解耦后三个故障分量的电压差
Figure GDA0002787122560000031
及与之对应的三个电流和
Figure GDA0002787122560000032
构成三个纵向阻抗的表达式如式(1)-式(3)所示:
Figure GDA0002787122560000033
Figure GDA0002787122560000034
Figure GDA0002787122560000035
式中,ΔZMN,ΔZMP,ΔZNP分别为所计算的纵向阻抗;
步骤1.2,MN两端线路故障分支分析:
线路MN两端的电压差如式(4)所示:
Figure GDA0002787122560000036
以故障点电压
Figure GDA0002787122560000037
为参考,根据电压和电流的分配关系,线路两端的电压和电流故障分量如式(5)所示:
Figure GDA0002787122560000038
式中,z1为线路单位长度阻抗,取
Figure GDA0002787122560000039
将式(5)代入式(3)中,得到以M、N两端信息量所构成的纵向阻抗与故障距离的表达式:
Figure GDA00027871225600000310
实际中,解除限定,由于PT支路电流的存在,实际线路MN两端的电压差为:
Figure GDA0002787122560000041
对比式(4)和式(7)得到:各端电流在MT和NT组成的两端线路上形成了三部分的压降:①M端电流在故障点左侧线路阻抗Z′1=z1*d′1上形成的压降;②N端电流在故障点至N端线路阻抗Z″1=z1*(D1+D2-d′1)上形成的压降;③P端电流在故障点右侧到T节点线路阻抗Z″′1=z1*(D1-d′1)上形成的压降。通常认为线路阻抗与系统阻抗都是呈感性的,结合式(6)可知,纵向阻抗ΔZMN的值、线路两端电压差
Figure GDA0002787122560000042
的值与距M端的故障距离d1成线性变化的关系,当d1增加,ΔZMN的幅值单调变化,对应为
Figure GDA0002787122560000043
的左侧量
Figure GDA0002787122560000044
增加,或者为右侧量
Figure GDA0002787122560000045
减少,则d1
Figure GDA0002787122560000046
在式(6)中呈现反比线性关系。则得到结论:在式(6)中,d1
Figure GDA0002787122560000047
呈现反比线性关系,与
Figure GDA0002787122560000048
呈现正比线性关系;
当故障位于MT支路时,对比式(4)和式(7),相当于把PT支路电流在故障支路上对应映射的压降
Figure GDA0002787122560000049
归入
Figure GDA00027871225600000415
增加了
Figure GDA00027871225600000410
的数值,使故障距离d1被缩小,则有d1<D1
当故障位于NT支路时,式(7)中相当于将
Figure GDA00027871225600000411
的数值归于
Figure GDA00027871225600000412
增加了其值,根据d1
Figure GDA00027871225600000413
呈现的正比线性关系,则有d1>D1
当故障位于PT支路时,M、N两端的电流经T节点继而注入到故障点,相当于故障的影响位置平移到T节点,因此线路MN两端故障分量电压差如式(8)所示:
Figure GDA00027871225600000414
以T节点电压
Figure GDA0002787122560000051
为参考,各端电压和电流根据式(5)的分配关系表示为式(9)所示:
Figure GDA0002787122560000052
因此,式(6)中的纵向阻抗转换为式(10):
Figure GDA0002787122560000053
由于故障所在支路的电流没有形成对应映射的压降,式(10)中纵向阻抗只与两条非故障支路的线路全长阻抗及两端系统阻抗有关,由此得到,故障位置限制在d1=D1,在实际使用中,考虑偏差问题,则选择故障判别式|d1-D1|<Δ,设定差值Δ=5km;
步骤1.3,MP两端线路故障分支判别分析:
同步骤1.2的分析,线路两端M、P的电压差为:
Figure GDA0002787122560000054
M和P两端电气量构成的纵向阻抗ΔZMP如式(12)所示:
Figure GDA0002787122560000055
受NT支路电流故障分量的影响,实际M、P两端的电压差为:
Figure GDA0002787122560000061
当故障位于MT分支时,把NT电流在故障分支上形成的压降
Figure GDA0002787122560000062
归入
Figure GDA0002787122560000063
增加了
Figure GDA0002787122560000064
的数值,相应的计算的故障距离d1同样会缩小,则d1<D1
当故障位于NT分支时,故障距离被限制在T节点处,即有d1=D1,故障判别式为|d1-D1|<Δ;
当故障位于PT分支时,则d1>D1
步骤1.4,NP两端线路故障分支判别分析:
同理,线路NP两端故障分量电压差如式(14)所示:
Figure GDA0002787122560000065
M和P两端电气量构成的纵向阻抗ΔZNP
Figure GDA0002787122560000066
以T节点电压
Figure GDA0002787122560000067
为参考,各端电压和电流量如式(16)所示:
Figure GDA0002787122560000068
则得到纵向阻抗如式(17)所示:
Figure GDA0002787122560000071
当故障位于MT支路时,同步骤1.2故障位于PT支路的判别分析,故障点的扰动位置相当于在T节点,因此判别关系同样为d1=D2,在实际使用中,考虑偏差问题,则故障判别式|d1-D2|<Δ;
当故障位于NT分支时,同步骤1.2故障位于MT分支的判别分析,比较的是所求故障距离d1与D2的关系,可知d1<D2
当故障位于PT分支时,同步骤1.2故障位于NT分支的判别分析,可知d1>D2
步骤1.5,结合步骤1.2-1.4得到的三个纵向阻抗与故障距离的关系式,将式(6)、式(12)和式(15)转换,得到故障分支判别的表达式如式(18)所示,定义d′1、d″1、d″′1分别表示MN、MP、NP线路上获得的故障定位:
Figure GDA0002787122560000072
当d′1<D1,d″1<D1,|d″′1-D2|<Δ时故障位于MT支路;
当d′1>D1,|d″1-D1|<Δ,d″′1<D2时故障位于NT支路;
当|d′1-D1|<Δ,d″1>D1,d″′1>D2时故障位于PT支路。
步骤2的具体过程如下:
确定故障分支后,解除设置,重新构建T型线路的纵向阻抗,取任意两端的电压故障分量,构成三个电压差,作为计算纵向阻抗的电压,取三端电流故障分量和作为计算纵向阻抗的电流,则纵向阻抗在T型线路中如式(19)所示:
Figure GDA0002787122560000081
以等值电路中故障点的电压
Figure GDA0002787122560000082
为参考,则三端的电压故障分量为:
Figure GDA0002787122560000083
依据Kirchhoff’s Current Law,则电流如式(21)所示:
Figure GDA0002787122560000084
式(20)中,x1是d1的对应计算值,其中,非故障支路环的等效阻抗Znop1=(Z1N+z1D2)//(Z1P+z1D3)。
由式(20)可知,MN两端线路故障分量差为:
Figure GDA0002787122560000085
三端电流和由式(21)得到:
Figure GDA0002787122560000091
将式(22)和式(23),代入式(19)中的第一个等式中,得到M、N两端电压差的纵向阻抗与故障距离的表达式如式(24)所示:
Figure GDA0002787122560000092
同理分别得到M、P和N、P间两端电压差的纵向阻抗与故障距离的表达式:
Figure GDA0002787122560000093
Figure GDA0002787122560000094
由上式(24)-(26)知,当系统阻抗与线路阻抗确知的情况下,T型线路的故障距离与纵向阻抗同样呈线性变化的关系,通过转换得到故障定位的函数表达式,如式(27)所示:
Figure GDA0002787122560000095
式中,x′1、x″1、x″′1均表示故障点离M端的距离,由三个两端电压差得到的三个纵向阻抗,则最终的故障距离取三个值的加权平均值,即
Figure GDA0002787122560000101
步骤3的具体过程如下:
步骤3.1,在步骤2中的单相R-L形集中参数线路模型基础上,将输电线路分布电容考虑在内,获得对应的等效Π形等值电路模型,定义
Figure GDA0002787122560000102
分别为各条支路修正为等效Π形线路的单位阻抗和导纳;β=1,2,D2,D3
Figure GDA0002787122560000103
Figure GDA0002787122560000104
为线路三端对地电容支路的电流;
步骤3.2,模型等效处理,将三端的并联容抗支路分别与对应的三端系统阻抗做等效处理,M侧系统阻抗Z1M与其相邻的并联支路
Figure GDA0002787122560000105
结合,记作Z1M;N侧系统阻抗Z1N与其相邻的并联支路
Figure GDA0002787122560000106
结合,记作Z′1N;P侧系统阻抗Z1P与其相邻的并联支路
Figure GDA0002787122560000107
结合,记作Z′1P;故障点处的支路与两条并联支路
Figure GDA0002787122560000108
Figure GDA0002787122560000109
组成的含源一端口,依照Thevenin’s Theorem,用电压源与电阻的串联置换,等效电压源记为
Figure GDA00027871225600001010
等效电阻记为R′F,故障点处的电压记为
Figure GDA00027871225600001011
简化后,三端的系统等效阻抗分别如式(28)所示:
Figure GDA00027871225600001012
另外两条非故障支路的等效阻抗分别如式(29)所示:
Figure GDA00027871225600001013
而两条非故障支路环的等效阻抗和其相邻的并联支路导纳
Figure GDA0002787122560000111
结合,记作Z′nop1,则有
Figure GDA0002787122560000112
调整系统三端的电流故障分量分别为:
Figure GDA0002787122560000113
其中,各并联电容支路对地的电流分别为:
Figure GDA0002787122560000114
由此得出,在考虑分布电容时,纵向阻抗的表达式如式(32)所示:
Figure GDA0002787122560000115
步骤3.3,根据步骤3.2简化的模型,推导Π形线路的测距表达式,具体如下:
以简化电路中故障点的电压
Figure GDA0002787122560000116
代替
Figure GDA0002787122560000117
将式(20)和(21)中的系统阻抗和线路阻抗做如式(33)的替换,得到等效Π型电路图中三端的电压故障分量和电流故障分量;
Figure GDA0002787122560000121
将替换的量带入式(27)中得出等效Π形线路故障测距的表达式:
Figure GDA0002787122560000122
式中,ΔZ′opmn、ΔZ′opmp、ΔZ′opnp为等效Π形线路模型补偿电流后的纵向阻抗。
步骤3.3得到的线路故障测距式(34)进行系数修正,具体过程如下:
(1)在不影响线路精度的情况下,利用线路参数修正系数法,修正线路单位阻抗和导纳,定义如下参数:
Figure GDA0002787122560000131
式中,r1/km、x1/km、b1/km分别为线路单位长度的正序电阻、正序电抗和电纳值;l为需要修正的线路的地理长度,修正后线路模型的单位正序阻抗和正序电纳如式(36)所示:
Figure GDA0002787122560000132
式中,
Figure GDA0002787122560000133
为经过集中化处理后线路的单位阻抗和导纳;
(2)以各支路的地理长度为修正对象,分别令l=D1、l=D2、l=D3,将其代入式(35)和式(36)中,得到各支路的单位阻抗和导纳
Figure GDA0002787122560000134
Figure GDA0002787122560000135
Figure GDA0002787122560000136
Figure GDA0002787122560000137
Figure GDA0002787122560000138
(3)根据同步向量测量单元获取的各端电压和电流量求出各端的电压和电流故障分量,则计算得到三端系统阻抗如下:
Figure GDA0002787122560000139
(4)根据步骤1得到故障分支,不考虑分布电容的影响,经步骤2得到故障距离x10,将故障所在支路分成两部分x10和D1-x10,分别令l=x10和l=D1-x10,代入式(26)和式(27)中,得MT支路故障点左右两侧等效Π型线路的线路参数
Figure GDA00027871225600001310
Figure GDA00027871225600001311
(5)考虑分布电容对故障测距的影响,利用上述修正的线路参数
Figure GDA00027871225600001312
带入式(30)和式(31)中补偿各端电流量,然后将各量按照式(33)的关系进行替换,将替换后的各量代入式(34)中,计算出三个故障距离,最后利用
Figure GDA0002787122560000141
得到精确故障距离x11
本发明的有益效果是,基于纵向阻抗的T型线路故障测距方法,在故障支路判别准确的同时,能够简化计算式,提高测距精度。与现有技术相比具有以下优势:
1)利用第三条支路电流对双端数据的纵向阻抗数值的影响,实现故障分支判别解决了传统方法T节点附近故障分支容易判别失误的问题。
2)考虑短线路和长线路的线路分布参数特点,选取合理的线路参数修正方案,扩大了使用范围并提高了测距精度。
3)原理清晰,计算形式相对简单,所涉及的非线性计算少,适用性广,不受故障类型、故障距离、故障电阻及运行方式的影响,仿真结果显示,测距的平均误差低于0.5%,满足工程要求,也验证了测距算法的有效性。
附图说明
图1是区内故障时T型输电线路单相等效R-L形电路图;
图2是MN线路两端等值故障示意图;
图3是MP线路两端等值故障示意图;
图4是NP线路两端等值故障示意图;
图5是区内故障时T型输电线路的等效∏形电路图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明的基于纵向阻抗的T型线路故障测距方法,具体按照以下步骤实施:
步骤1,根据纵向阻抗的解耦形式,解耦公式来源于文献《多端线路差动保护算法的研究》,发表于《电力自动化设备》;经过解耦得到三相线路的等效单相模型,如图1所示,三相线路与单相线路具有对称性,将T型高压输电线路等效为R-L单相电路,然后将R-L单相电路设置为三条双端线路,计算纵向阻抗得到故障距离的判据,从而确定故障分支;
步骤1的具体过程如下:
步骤1.1,定义M、N、P端为输电线路为三个测量端,三条分支的节点为T,
Figure GDA0002787122560000151
分别是解耦后的三端工频电压故障分量,
Figure GDA0002787122560000152
Figure GDA0002787122560000153
分别为三端的工频电流故障分量,
Figure GDA0002787122560000154
为a、b、c相;Z1M、Z1N、Z1P分别为M、N、P端解耦后的正序系统阻抗;
Figure GDA0002787122560000155
分别为MT、NT、PT支路单位长度的正序阻抗;
Figure GDA0002787122560000156
Figure GDA0002787122560000157
分别为故障点等效工频电压和故障电流;
Figure GDA0002787122560000158
为故障点线路的实际电压;RF为故障电阻;D1、D2、D3分别为线路MT、NT、PT的地理长度,
Figure GDA0002787122560000159
为T节点对应的电压故障分量;
如图2-图4所示,分别为设置的PT、NT、MT分支电流不影响MN、MP、NP两端线路的等效单相R-L形电路,根据纵向阻抗原理,得到线路两端解耦后三个故障分量的电压差
Figure GDA00027871225600001510
及与之对应的三个电流和
Figure GDA00027871225600001511
构成三个纵向阻抗的表达式如式(1)-式(3)所示:
Figure GDA00027871225600001512
Figure GDA00027871225600001513
Figure GDA00027871225600001514
式中,ΔZMN,ΔZMP,ΔZNP分别为所计算的纵向阻抗;
步骤1.2,MN两端线路故障分支分析:
由图2可知,线路MN两端的电压差如式(4)所示:
Figure GDA0002787122560000161
以故障点电压
Figure GDA0002787122560000162
为参考,根据电压和电流的分配关系,线路两端的电压和电流故障分量如式(5)所示:
Figure GDA0002787122560000163
式中,z1为线路单位长度阻抗,,取
Figure GDA0002787122560000164
将式(5)代入式(3)中,得到以M、N两端信息量所构成的纵向阻抗与故障距离的表达式:
Figure GDA0002787122560000165
实际中,解除限定,由于PT支路电流的存在,实际线路MN两端的电压差为:
Figure GDA0002787122560000166
对比式(4)和式(7)得到:各端电流在MT和NT组成的两端线路上形成了三部分的压降:①M端电流在故障点左侧线路阻抗Z′1=z1*d′1上形成的压降;②N端电流在故障点至N端线路阻抗Z″1=z1*(D1+D2-d′1)上形成的压降;③P端电流在故障点右侧到T节点线路阻抗Z″′1=z1*(D1-d′1)上形成的压降。通常认为线路阻抗与系统阻抗都是呈感性的,结合式(6)可知,纵向阻抗ΔZMN的值、线路两端电压差
Figure GDA0002787122560000171
的值与距M端的故障距离d1成线性变化的关系,当d1增加,ΔZMN的幅值单调变化,对应为
Figure GDA0002787122560000172
的左侧量
Figure GDA0002787122560000173
增加,或者为右侧量
Figure GDA0002787122560000174
减少,则d1
Figure GDA0002787122560000175
在式(6)中呈现反比线性关系。则得到结论:在式(6)中,d1
Figure GDA0002787122560000176
呈现反比线性关系,与
Figure GDA0002787122560000177
呈现正比线性关系;
当故障位于MT支路时,对比式(4)和式(7),相当于把PT支路电流在故障支路上对应映射的压降
Figure GDA0002787122560000178
归入
Figure GDA0002787122560000179
增加了
Figure GDA00027871225600001710
的数值,使故障距离d1被缩小,则有d1<D1
当故障位于NT支路时,式(7)中相当于将
Figure GDA00027871225600001711
的数值归于
Figure GDA00027871225600001712
增加了其值,根据d1
Figure GDA00027871225600001713
呈现的正比线性关系,则有d1>D1
当故障位于PT支路时,M、N两端的电流经T节点继而注入到故障点,相当于故障的影响位置平移到T节点,因此线路MN两端故障分量电压差如式(8)所示:
Figure GDA00027871225600001714
以T节点电压
Figure GDA00027871225600001715
为参考,各端电压和电流根据式(5)的分配关系表示为式(9)所示:
Figure GDA00027871225600001716
因此,式(6)中的纵向阻抗转换为式(10):
Figure GDA0002787122560000181
由于故障所在支路的电流没有形成对应映射的压降,式(10)中纵向阻抗只与两条非故障支路的线路全长阻抗及两端系统阻抗有关,由此得到,故障位置限制在d1=D1,在实际使用中,考虑偏差问题,则选择故障判别式|d1-D1|<Δ,设定差值Δ=5km;
步骤1.3,MP两端线路故障分支判别分析:
如图3所示,同步骤1.2的分析,线路两端M、P的电压差为:
Figure GDA0002787122560000182
M和P两端电气量构成的纵向阻抗ΔZMP如式(12)所示:
Figure GDA0002787122560000183
受NT支路电流故障分量的影响,实际M、P两端的电压差为:
Figure GDA0002787122560000184
当故障位于MT分支时,把NT电流在故障分支上形成的压降
Figure GDA0002787122560000185
归入
Figure GDA0002787122560000186
增加了
Figure GDA0002787122560000187
的数值,相应的计算的故障距离d1同样会缩小,则d1<D1;由此可看出,当故障位于MT支路时,由MP两端数据所得的测距结果d1也不会超越D1,由此再次确定出故障发生的分支;
当故障位于NT分支时,故障距离被限制在T节点处,即有d1=D1,故障判别式为|d1-D1|<Δ;
当故障位于PT分支时,同样有d1>D1
步骤1.4,NP两端线路故障分支判别分析:
同理,如图4所示,线路NP两端故障分量电压差如式(14)所示:
Figure GDA0002787122560000191
M和P两端电气量构成的纵向阻抗ΔZNP
Figure GDA0002787122560000192
以T节点电压
Figure GDA0002787122560000193
为参考,各端电压和电流量如式(16)所示:
Figure GDA0002787122560000194
则得到纵向阻抗如式(17)所示:
Figure GDA0002787122560000195
当故障位于MT支路时,同步骤1.2中故障位于PT支路的判别分析,故障点的扰动位置相当于在T节点,因此判别关系同样为d1=D2,在实际使用中,考虑偏差问题,则故障判别式|d1-D2|<Δ;
当故障位于NT分支时,同步骤1.2故障位于MT分支的判别分析,比较的是所求故障距离d1与D2的关系,可知d1<D2
当故障位于PT分支时,同步骤1.2故障位于NT分支的判别分析,可知d1>D2
步骤1.5,结合步骤1.2-1.4得到的三个纵向阻抗与故障距离的关系式,将式(6)、式(12)和式(15)转换,得到故障分支判别的表达式如式(18)所示,定义d′1、d″1、d″′1分别表示MN、MP、NP线路上获得的故障定位:
Figure GDA0002787122560000201
当d′1<D1,d″1<D1,|d″′1-D2|<Δ时故障位于MT支路;
当d′1>D1,|d″1-D1|<Δ,d″′1<D2时故障位于NT支路;
当|d′1-D1|<Δ,d″1>D1,d″′1>D2时故障位于PT支路。
步骤2,增加原有的第三条电流,初次确定出故障距离x10的表达式,得到故障分支上故障点距离该故障支路母线端的距离;
步骤2的具体过程如下:
以MT分支为例,确定故障分支后,解除设置,重新构建T型线路的纵向阻抗,如图1所示,取任意两端的电压故障分量,构成三个电压差,作为计算纵向阻抗的电压,取三端的电流故障分量和作为计算纵向阻抗的电流,则纵向阻抗在T型线路中如式(19)所示:
Figure GDA0002787122560000202
以等值电路中故障点的电压
Figure GDA0002787122560000211
为参考,则三端的电压故障分量为:
Figure GDA0002787122560000212
依据Kirchhoff’s Current Law,则电流如式(21)所示:
Figure GDA0002787122560000213
式(20)中,x1是d1的对应计算值,其中,非故障支路环的等效阻抗Znop1=(Z1N+z1D2)//(Z1P+z1D3)。
由式(20)可知,MN两端线路故障分量差为:
Figure GDA0002787122560000214
三端电流和由式(12)得到:
Figure GDA0002787122560000215
将式(22)和式(23),代入式(19)中的第一个等式中,得到M、N两端电压差的纵向阻抗与故障距离的表达式如式(24)所示:
Figure GDA0002787122560000216
同理分别得到M、P和N、P间两端电压差的纵向阻抗与故障距离的表达式:
Figure GDA0002787122560000221
Figure GDA0002787122560000222
由上式(24)-(26)知,当系统阻抗与线路阻抗确知的情况下,T型线路的故障距离与纵向阻抗同样呈线性变化的关系,通过转换得到故障定位的函数表达式,如式(27)所示:
Figure GDA0002787122560000223
式中,x′1、x″1、x″′1均表示故障点离M端的距离,由三个两端电压差得到的三个纵向阻抗,则最终的故障距离取三个值的加权平均值,即
Figure GDA0002787122560000224
步骤3在R-L单相电路模型的基础上,将T型输电线路中分布电容考虑在内,并利用初测结果x10,修正故障点左右两侧的等效∏形线路,并调整各端电流,修正步骤2得到T型输电线路故障距离,得到精确故障距离x11的表达式;
步骤3的具体过程如下:
步骤3.1,在步骤1中单相等效故障分量R-L形集中参数线路模型基础上,将输电线路分布电容考虑在内,获得在故障点两侧采用Π形等值电路的等效故障分量线路模型,定义
Figure GDA0002787122560000231
分别为各条支路修正为等效Π形线路的单位阻抗和导纳;β=1,2,D2,D3
Figure GDA0002787122560000232
为线路三端对地电容支路的电流;
步骤3.2,简化Π形等值电路的等效故障分量线路模型,将三端的并联容抗支路分别与对应的三端系统阻抗做等效处理,M侧系统阻抗Z1M与其相邻的并联支路
Figure GDA0002787122560000233
结合,记作Z′1M;N侧系统阻抗Z1N与其相邻的并联支路
Figure GDA0002787122560000234
结合,记作Z′1N;P侧系统阻抗Z1P与其相邻的并联支路
Figure GDA0002787122560000235
结合,记作Z′1P;故障点处的支路与两条并联支路
Figure GDA0002787122560000236
Figure GDA0002787122560000237
组成的含源一端口,依照Thevenin’s Theorem,用电压源与电阻的串联置换,等效电压源记为
Figure GDA0002787122560000238
等效电阻记为R′F,故障点处的电压记为
Figure GDA0002787122560000239
简化后,三端的系统等效阻抗分别如式(28)所示:
Figure GDA00027871225600002310
另外两条非故障支路的等效阻抗分别如式(29)所示:
Figure GDA00027871225600002311
而两条非故障支路环的等效阻抗和其相邻的并联支路导纳
Figure GDA00027871225600002312
结合,记作Z′nop1,则有
Figure GDA00027871225600002313
如图2所示,调整系统三端的电流故障分量分别为:
Figure GDA0002787122560000241
其中,各并联电容支路对地的电流分别为:
Figure GDA0002787122560000242
由此得出,在考虑分布电容时,纵向阻抗的表达式如式(32)所示:
Figure GDA0002787122560000243
步骤3.3,根据步骤3.2简化的模型,推导Π形线路的测距表达式,具体如下:
以简化电路中故障点的电压
Figure GDA0002787122560000244
代替
Figure GDA0002787122560000245
将式(20)和(21)中的系统阻抗和线路阻抗做如式(33)的替换,得到等效Π型电路图中三端的电压故障分量和电流故障分量;
Figure GDA0002787122560000251
将替换的量带入式(27)中得出等效Π形线路故障测距的表达式:
Figure GDA0002787122560000252
式中,ΔZ′opmn、ΔZ′opmp、ΔZ′opnp为等效Π形线路模型补偿电流后的纵向阻抗;
对步骤3.3得到的线路故障测距式(34)进行系数修正,具体过程如下:
(1)在不影响线路精度的情况下,利用线路参数修正系数法,修正线路单位阻抗和导纳,定义如下参数:
Figure GDA0002787122560000261
式中,r1/km、x1/km、b1/km分别为线路单位长度的正序电阻、正序电抗和电纳值;l为需要修正的线路的地理长度,修正后线路模型的单位正序阻抗和正序电纳如式(36)所示:
Figure GDA0002787122560000262
式中,
Figure GDA0002787122560000263
为经过集中化处理后线路的单位阻抗和导纳;
(2)以各支路的地理长度为修正对象,分别令l=D1、l=D2、l=D3,将其代入式(35)和式(36)中,得到各支路的单位阻抗和导纳
Figure GDA0002787122560000264
Figure GDA0002787122560000265
Figure GDA0002787122560000266
Figure GDA0002787122560000267
Figure GDA0002787122560000268
(3)根据同步向量测量单元(PMU)获取的各端电压量和电流量,计算出各端的电压和电流故障分量,则计算得到三端系统阻抗如下:
Figure GDA0002787122560000269
(4)根据步骤1得到故障分支,不考虑分布电容的影响,经步骤2得到故障距离x10,将故障所在支路分成两部分x10和D1-x10,分别令l=x10和l=D1-x10,代入式(26)和式(27)中,得到MT支路故障点左右两侧等效Π型线路的线路参数
Figure GDA00027871225600002610
Figure GDA00027871225600002612
(5)考虑分布电容对故障测距的影响,利用上述修正的线路参数
Figure GDA00027871225600002611
带入式(30)和式(31)中补偿各端电流量,然后将各量按照式(33)的关系进行替换,将替换后的各量代入式(34)中,计算出三个故障距离,最后利用
Figure GDA0002787122560000271
得到精确故障距离x11
实施例
利用PSCAD和MATLAB仿真验证算法的有效性,各参数如下:线路长度D1,D2,D3分别为200,150,120km,线路的单位正序和零序电阻、电感、电容为:R1=0.02083Ω/km,L1=0.8948mH/km,C1=0.0129μF/km;R0=0.1148Ω/km,L0=2.2886mH/km,C0=0.00523μF/km。M侧系统参数为:RM1=1.0515Ω,LM1=80.154mH,RM0=0.6Ω,LM0=63.4mH。N侧系统参数为:RN1=8.76Ω,LN1=102.54mH,RN0=2.53Ω,LN0=78.823mH。P侧系统参数为:RP1=3.672Ω,LP1=138.46mH,RP0=5.7Ω,LP0=90.8mH。系统三端电势EM,EN,EP分别为550∠0°kV,500∠-35°kV,520∠-22°kV。
表1A相经不同过渡电阻接地时的故障分支判别和定位结果
Figure GDA0002787122560000272
首先通过运行步骤1的过程,确定故障所在的分支,然后通过步骤2确定出初次测距结果,最后通过步骤3的修正最终得到A相经过不同过渡电阻接地时的故障分支判别和定位结果如表1所示,不同类型故障下的测距结果如表2所示,T节点附件A相经300Ω接地时故障支路检测结果如表3所示,其中,表1、表2和表3中的d′1,d″1,d″′1分别表示故障分支判别式计算所得的故障距离,由式(18)计算所得;x10为初次测距结果,由式(27)所得;x11为二次测距结果,由式(34)所得;表2中相对误差由式
Figure GDA0002787122560000281
计算得到;
表2不同类型故障下的测距结果
Figure GDA0002787122560000282
表1、表2和表3中,d′1,d″1,d″′1分别表示由故障分支判别式计算所得的故障距离。由表1中数据可知,在不同的过渡电阻和故障距离的影响下,算法都可以有效判别出故障分支,并可以得出有效的故障点。由表2数据可知,在不同的故障类型下,本发明的算法可以得到有效的故障距离,平均误差在0.5%以下,其中,个别点误差较大,但是也均可保持在1%以下,满足工程要求。表3是在T节点附近发生故障,故障分支的判别结果,可知本发明的方法能够正确判断出故障分支。
表3 T节点附近A相经300Ω接地时的故障支路检测结果
Figure GDA0002787122560000291

Claims (1)

1.基于纵向阻抗的T型线路故障测距方法,其特征在于,具体按照以下步骤实施:
步骤1,在T型高压输电线路的等效单相R-L形的电路图上,将三端的电路设置为三条双端线路,利用纵向阻抗与故障距离的线性关系得到三个判据,从而确定故障分支;
所述步骤1的具体过程如下:
步骤1.1,定义M、N、P端为输电线路为三个测量端,T为三条分支线路的节点,
Figure FDA0002787122550000011
分别是解耦后的三端工频电压故障分量,
Figure FDA0002787122550000012
分别为三端的工频电流故障分量,
Figure FDA0002787122550000013
为a、b、c相;Z1M、Z1N、Z1P分别为M、N、P端解耦后的正序系统阻抗;
Figure FDA0002787122550000014
分别为MT、NT、PT支路单位长度的正序阻抗;
Figure FDA0002787122550000015
Figure FDA0002787122550000016
分别为故障点等效工频电压和故障电流;
Figure FDA0002787122550000017
为故障点线路的实际电压;RF为故障电阻;D1、D2、D3分别为线路MT、NT、PT的地理长度,
Figure FDA0002787122550000018
为T节点对应的电压故障分量;
分别设置PT分支电流不影响MT和TN组成的两端线路、NT分支电流不影响MT和TP组成的两端线路、MT分支电流不影响NT和TP组成的两端线路,根据纵向阻抗原理,得到线路两端解耦后三个故障分量的电压差
Figure FDA0002787122550000019
及与之对应的三个电流和
Figure FDA00027871225500000110
构成三个纵向阻抗的表达式如式(1)-式(3)所示:
Figure FDA00027871225500000111
Figure FDA0002787122550000021
Figure FDA0002787122550000022
式中,ΔZMN,ΔZMP,ΔZNP分别为所计算的纵向阻抗;
步骤1.2,MN两端线路故障分支分析:
线路MN两端的电压差如式(4)所示:
Figure FDA0002787122550000023
以故障点电压
Figure FDA0002787122550000024
为参考,根据电压和电流的分配关系,线路两端的电压和电流故障分量如式(5)所示:
Figure FDA0002787122550000025
式中,z1为线路单位长度阻抗,取
Figure FDA0002787122550000026
将式(5)代入式(3)中,得到以M、N两端信息量所构成的纵向阻抗与故障距离的表达式:
Figure FDA0002787122550000027
实际中,解除限定,由于PT支路电流的存在,实际线路MN两端的电压差为:
Figure FDA0002787122550000028
对比式(4)和式(7)得到:各端电流在MT和NT组成的两端线路上形成了三部分的压降:①M端电流在故障点左侧线路阻抗Z′1=z1*d′1上形成的压降;②N端电流在故障点至N端线路阻抗Z″1=z1*(D1+D2-d′1)上形成的压降;③P端电流在故障点右侧到T节点线路阻抗Z″′1=z1*(D1-d′1)上形成的压降,通常认为线路阻抗与系统阻抗都是呈感性的,结合式(6)可知,纵向阻抗ΔZMN的值、线路两端电压差
Figure FDA0002787122550000031
的值与距M端的故障距离d1成线性变化的关系,当d1增加,ΔZMN的幅值单调变化,对应为
Figure FDA0002787122550000032
的左侧量
Figure FDA0002787122550000033
增加,或者为右侧量
Figure FDA0002787122550000034
减少,则d1
Figure FDA0002787122550000035
在式(6)中呈现反比线性关系,则得到结论:在式(6)中,d1
Figure FDA0002787122550000036
呈现反比线性关系,与
Figure FDA0002787122550000037
呈现正比线性关系;
当故障位于MT支路时,对比式(4)和式(7),相当于把PT支路电流在故障支路上对应映射的压降
Figure FDA0002787122550000038
归入
Figure FDA0002787122550000039
增加了
Figure FDA00027871225500000310
的数值,使故障距离d1被缩小,则有d1<D1
当故障位于NT支路时,式(7)中相当于将
Figure FDA00027871225500000311
的数值归于
Figure FDA00027871225500000312
增加了其值,根据d1
Figure FDA00027871225500000313
呈现的正比线性关系,则有d1>D1
当故障位于PT支路时,M、N两端的电流经T节点继而注入到故障点,相当于故障的影响位置平移到T节点,因此线路MN两端故障分量电压差如式(8)所示:
Figure FDA00027871225500000314
以T节点电压
Figure FDA00027871225500000315
为参考,各端电压和电流根据式(5)的分配关系表示为式(9)所示:
Figure FDA0002787122550000041
因此,式(6)中的纵向阻抗转换为式(10):
Figure FDA0002787122550000042
由于故障所在支路的电流没有形成对应映射的压降,式(10)中纵向阻抗只与两条非故障支路的线路全长阻抗及两端系统阻抗有关,由此得到,故障位置限制在d1=D1,在实际使用中,考虑偏差问题,则选择故障判别式|d1-D1|<Δ,设定差值Δ=5km;
步骤1.3,MP两端线路故障分支判别分析:
同步骤1.2的分析,线路两端M、P的电压差为:
Figure FDA0002787122550000043
M和P两端电气量构成的纵向阻抗ΔZMP如式(12)所示:
Figure FDA0002787122550000044
受NT支路电流故障分量的影响,实际M、P两端的电压差为:
Figure FDA0002787122550000045
当故障位于MT分支时,把NT电流在故障分支上形成的压降
Figure FDA0002787122550000051
归入
Figure FDA0002787122550000052
增加了
Figure FDA0002787122550000053
的数值,相应的计算的故障距离d1同样会缩小,则d1<D1
当故障位于NT分支时,故障距离被限制在T节点处,即有d1=D1,故障判别式为|d1-D1|<Δ;
当故障位于PT分支时,则d1>D1
步骤1.4,NP两端线路故障分支判别分析:
同理,线路NP两端故障分量电压差如式(14)所示:
Figure FDA0002787122550000054
M和P两端电气量构成的纵向阻抗ΔZNP
Figure FDA0002787122550000055
以T节点电压
Figure FDA0002787122550000056
为参考,各端电压和电流量如式(16)所示:
Figure FDA0002787122550000057
则得到纵向阻抗如式(17)所示:
Figure FDA0002787122550000058
当故障位于MT支路时,同步骤1.2故障位于PT支路的判别分析,故障点的扰动位置相当于在T节点,因此判别关系同样为d1=D2,在实际使用中,考虑偏差问题,则故障判别式|d1-D2|<Δ;
当故障位于NT分支时,同步骤1.2故障位于MT分支的判别分析,比较的是所求故障距离d1与D2的关系,可知d1<D2
当故障位于PT分支时,同步骤1.2故障位于NT分支的判别分析,可知d1>D2
步骤1.5,结合步骤1.2-1.4得到的三个纵向阻抗与故障距离的关系式,将式(6)、式(12)和式(15)转换,得到故障分支判别的表达式如式(18)所示,定义d′1、d″1、d″′1分别表示MN、MP、NP线路上获得的故障定位:
Figure FDA0002787122550000061
当d′1<D1,d″1<D1,|d″′1-D2|<Δ时故障位于MT支路;
当d′1>D1,|d″1-D1|<Δ,d″′1<D2时故障位于NT支路;
当|d′1-D1|<Δ,d″1>D1,d″′1>D2时故障位于PT支路;
步骤2,增加原有的第三条电流,初次确定出故障距离x10的表达式,得到故障分支上故障点距离该故障支路母线端的距离;
所述步骤2的具体过程如下:
确定故障分支后,解除设置,重新构建T型线路的纵向阻抗,取任意两端的电压故障分量,构成三个电压差,作为计算纵向阻抗的电压,取三端电流故障分量和作为计算纵向阻抗的电流,则纵向阻抗在T型线路中如式(19)所示:
Figure FDA0002787122550000071
以等值电路中故障点的电压
Figure FDA0002787122550000072
为参考,则三端的电压故障分量为:
Figure FDA0002787122550000073
依据Kirchhoff’s Current Law,则电流如式(21)所示:
Figure FDA0002787122550000074
式(20)中,x1是d1的对应计算值,其中,非故障支路环的等效阻抗Znop1=(Z1N+z1D2)//(Z1P+z1D3);
由式(20)可知,MN两端线路故障分量差为:
Figure FDA0002787122550000075
三端电流和由式(21)得到:
Figure FDA0002787122550000076
将式(22)和式(23),代入式(19)中的第一个等式中,得到M、N两端电压差的纵向阻抗与故障距离的表达式如式(24)所示:
Figure FDA0002787122550000081
同理分别得到M、P和N、P间两端电压差的纵向阻抗与故障距离的表达式:
Figure FDA0002787122550000082
Figure FDA0002787122550000083
由上式(24)-(26)知,当系统阻抗与线路阻抗确知的情况下,T型线路的故障距离与纵向阻抗同样呈线性变化的关系,通过转换得到故障定位的函数表达式,如式(27)所示:
Figure FDA0002787122550000084
式中,x′1、x″1、x″′1均表示故障点离M端的距离,由三个两端电压差得到的三个纵向阻抗,则最终的故障距离取三个值的加权平均值,即
Figure FDA0002787122550000085
步骤3,在R-L单相电路模型的基础上,将T型输电线路中分布电容考虑在内,并利用初测结果x10,修正故障点左右两侧的等效∏形线路,并调整各端电流,修正步骤2得到T型输电线路故障距离,得到精确故障距离x11的表达式;
所述步骤3的具体过程如下:
步骤3.1,在步骤2中的单相R-L形集中参数线路模型基础上,将输电线路分布电容考虑在内,获得对应的等效Π形等值电路模型,定义
Figure FDA0002787122550000091
分别为各条支路修正为等效Π形线路的单位阻抗和导纳;β=1,2,D2,D3
Figure FDA0002787122550000092
Figure FDA0002787122550000093
为线路三端对地电容支路的电流;
步骤3.2,模型等效处理,将三端的并联容抗支路分别与对应的三端系统阻抗做等效处理,M侧系统阻抗Z1M与其相邻的并联支路
Figure FDA0002787122550000094
结合,记作Z′1M;N侧系统阻抗Z1N与其相邻的并联支路
Figure FDA0002787122550000095
结合,记作Z′1N;P侧系统阻抗Z1P与其相邻的并联支路
Figure FDA0002787122550000096
结合,记作Z′1P;故障点处的支路与两条并联支路
Figure FDA0002787122550000097
Figure FDA0002787122550000098
组成的含源一端口,依照Thevenin’s Theorem,用电压源与电阻的串联置换,等效电压源记为
Figure FDA00027871225500000911
等效电阻记为R′F,故障点处的电压记为
Figure FDA00027871225500000910
简化后,三端的系统等效阻抗分别如式(28)所示:
Figure FDA0002787122550000099
另外两条非故障支路的等效阻抗分别如式(29)所示:
Figure FDA0002787122550000101
而两条非故障支路环的等效阻抗和其相邻的并联支路导纳
Figure FDA0002787122550000102
结合,记作Z′nop1,则有
Figure FDA0002787122550000103
调整系统三端的电流故障分量分别为:
Figure FDA0002787122550000104
其中,各并联电容支路对地的电流分别为:
Figure FDA0002787122550000105
由此得出,在考虑分布电容时,纵向阻抗的表达式如式(32)所示:
Figure FDA0002787122550000106
步骤3.3,根据步骤3.2简化的模型,推导Π形线路的测距表达式,具体如下:
以简化电路中故障点的电压
Figure FDA0002787122550000107
代替
Figure FDA0002787122550000108
将式(20)和(21)中的系统阻抗和线路阻抗做如式(33)的替换,得到等效Π型电路图中三端的电压故障分量和电流故障分量;
Figure FDA0002787122550000111
将替换的量带入式(27)中得出等效Π形线路故障测距的表达式:
Figure FDA0002787122550000112
式中,ΔZ′opmn、ΔZ′opmp、ΔZ′opnp为等效Π形线路模型补偿电流后的纵向阻抗;
所述步骤3.3得到的线路故障测距式(34)进行系数修正,具体过程如下:
(1)在不影响线路精度的情况下,利用线路参数修正系数法,修正线路单位阻抗和导纳,定义如下参数:
Figure FDA0002787122550000121
式中,r1/km、x1/km、b1/km分别为线路单位长度的正序电阻、正序电抗和电纳值;l为需要修正的线路的地理长度,修正后线路模型的单位正序阻抗和正序电纳如式(36)所示:
Figure FDA0002787122550000122
式中,
Figure FDA0002787122550000123
为经过集中化处理后线路的单位阻抗和导纳;
(2)以各支路的地理长度为修正对象,分别令l=D1、l=D2、l=D3,将其代入式(35)和式(36)中,得到各支路的单位阻抗和导纳
Figure FDA0002787122550000124
Figure FDA0002787122550000125
Figure FDA0002787122550000126
Figure FDA0002787122550000127
Figure FDA0002787122550000128
Figure FDA0002787122550000129
(3)根据同步向量测量单元获取的各端电压和电流量求出各端的电压和电流故障分量,则计算得到三端系统阻抗如下:
Figure FDA00027871225500001210
(4)根据步骤1得到故障分支,不考虑分布电容的影响,经步骤2得到故障距离x10,将故障所在支路分成两部分x10和D1-x10,分别令l=x10和l=D1-x10,代入式(26)和式(27)中,得MT支路故障点左右两侧等效Π型线路的线路参数
Figure FDA00027871225500001211
Figure FDA00027871225500001212
(5)考虑分布电容对故障测距的影响,利用上述修正的线路参数
Figure FDA00027871225500001213
带入式(30)和式(31)中补偿各端电流量,然后将各量按照式(33)的关系进行替换,将替换后的各量代入式(34)中,计算出三个故障距离,最后利用
Figure FDA0002787122550000131
得到精确故障距离x11
CN201910048708.7A 2019-01-18 2019-01-18 基于纵向阻抗的t型线路故障测距方法 Expired - Fee Related CN109799424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910048708.7A CN109799424B (zh) 2019-01-18 2019-01-18 基于纵向阻抗的t型线路故障测距方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910048708.7A CN109799424B (zh) 2019-01-18 2019-01-18 基于纵向阻抗的t型线路故障测距方法

Publications (2)

Publication Number Publication Date
CN109799424A CN109799424A (zh) 2019-05-24
CN109799424B true CN109799424B (zh) 2021-02-05

Family

ID=66559656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910048708.7A Expired - Fee Related CN109799424B (zh) 2019-01-18 2019-01-18 基于纵向阻抗的t型线路故障测距方法

Country Status (1)

Country Link
CN (1) CN109799424B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703837B (zh) * 2019-10-29 2021-02-23 北京东方计量测试研究所 一种地电流补偿电路及方法
CN110739669B (zh) * 2019-10-30 2021-06-29 三峡大学 一种基于阻抗修正的反时限过流保护方法
CN113419133B (zh) * 2021-04-02 2023-07-07 国网浙江省电力有限公司经济技术研究院 一种基于动态等值模型的输电线路故障定位方法和装置
CN113835000B (zh) * 2021-09-23 2024-04-12 南方电网科学研究院有限责任公司 一种配电网故障定位方法、装置、终端及存储介质
CN114089099B (zh) * 2021-11-10 2024-08-16 许昌许继软件技术有限公司 一种适用于多端线路的故障支路定位方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0007835D0 (en) * 2000-03-31 2000-05-17 British Telecomm Fault location on a telecommunications network
DE10257330A1 (de) * 2002-12-06 2004-06-17 Lothar Goehlich Messverfahren zur Früherkennung von eingedrungener Flüssigkeit in lang gestreckten Betriebsmitteln
CN101666847B (zh) * 2009-10-16 2011-12-14 国电南京自动化股份有限公司 一种适用于三端t接输电线路的故障测距方法
CN103278744B (zh) * 2013-05-30 2015-09-30 昆明理工大学 一种基于t型线路等效及测后模拟思想的同塔双回输电线路纵联保护的方法
CN104362600B (zh) * 2014-10-31 2018-03-02 国家电网公司 一种基于新能源的交流输电线路单元保护综合配置方法
CN105067950B (zh) * 2015-07-23 2018-05-15 西安工程大学 基于纵向阻抗的双端量故障测距方法
RU2608889C1 (ru) * 2015-09-15 2017-01-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Способ определения мест повреждения многоцепных воздушных линий электропередачи с учётом наведённого напряжения (варианты)
CN105896485A (zh) * 2016-02-05 2016-08-24 国网甘肃省电力公司 基于新能源并网的特高压长距离直流线路的保护算法
CN106066451B (zh) * 2016-08-01 2019-01-18 西安工程大学 一种基于纵向阻抗的t型线路保护计算方法
CN106291256A (zh) * 2016-09-30 2017-01-04 四川中光防雷科技股份有限公司 一种t型线路故障测距系统及方法
CN107202936B (zh) * 2017-05-04 2020-02-21 许继集团有限公司 一种t接线路故障测距方法
CN107271841B (zh) * 2017-05-27 2019-12-10 天津大学 基于正序电流差的同塔双回t型输电线路故障测距方法
CN107102241A (zh) * 2017-06-08 2017-08-29 国网江苏省电力公司无锡供电公司 一种基于r‑l线路参数未知的故障测距方法及装置
CN109193586A (zh) * 2018-09-30 2019-01-11 西安工程大学 一种双端高压直流输电线路差动保护算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A new fault loaction technique for two- and three-terminal lines;Girgis A. A,et al;《Transactions on Power Delivery IEEE 》;19920131;98-107 *

Also Published As

Publication number Publication date
CN109799424A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
CN109799424B (zh) 基于纵向阻抗的t型线路故障测距方法
CN105067950B (zh) 基于纵向阻抗的双端量故障测距方法
CN106383296B (zh) 一种基于相量分析的改进阻抗型有源配电网故障测距算法
CN108957225B (zh) 一种计及电缆分布电容的直流配电线路单端故障测距方法
CN107271842B (zh) 一种基于同向正序分量的同塔并架双回线路故障定位方法
CN110361632A (zh) 一种部分耦合同杆双回线非同步故障测距方法
CN113589099B (zh) 一种在具有多支路传输线的配电系统中实现故障定位的方法
CN112415273B (zh) 一种双回非全线平行输电线路零序参数精确测量方法
CN113671314A (zh) 一种配电网环网单相接地故障区段定位及测距方法
CN112039108A (zh) 高压直流输电系统单端暂态响应快速估计模型及计算方法
CN112098888A (zh) 一种基于小电流接地选线装置的配电网系统电容电流计算方法
CN111208449A (zh) 一种混联线路单相接地故障测距方法及系统
Yang et al. A novel fault location method for HVDC transmission lines
CN112731053B (zh) 一种谐振接地配电网的高阻接地故障区段定位方法
CN107832959B (zh) 一种考虑负荷特性和电源约束的电压稳定评估方法
CN110967597B (zh) 一种对地电容电流检测方法
CN112230101A (zh) 基于有源注入法的配电网单相接地故障的故障相辨识方法
CN109635374B (zh) 一种基于动态相量时域法的短路电流计算方法及装置
CN110569576B (zh) 含直流馈入的交流系统故障稳态分析方法
CN105610156B (zh) 一种多线路并发合环方法
CN113447803A (zh) 断路器开断能力校核的短路电流计算电压系数取值方法
CN114113901A (zh) 一种含分布式电源的配电网的故障定位方法
CN113009275A (zh) 一种柔性直流接入的交流混合线路双端故障测距方法
CN115469194B (zh) 基于π型等效线路模型单端量的单相接地故障测距方法
Ramar et al. New fault location algorithms for transmission lines in interconnected power systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210205

Termination date: 20220118