CN109794851B - 一种圆锥滚子球基面磨床导轮盘角度测量调整方法 - Google Patents

一种圆锥滚子球基面磨床导轮盘角度测量调整方法 Download PDF

Info

Publication number
CN109794851B
CN109794851B CN201910167555.8A CN201910167555A CN109794851B CN 109794851 B CN109794851 B CN 109794851B CN 201910167555 A CN201910167555 A CN 201910167555A CN 109794851 B CN109794851 B CN 109794851B
Authority
CN
China
Prior art keywords
guide wheel
wheel disc
angle
theta
tapered roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910167555.8A
Other languages
English (en)
Other versions
CN109794851A (zh
Inventor
迟玉伦
黎康顺
顾佳健
沈奕锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wang Guoyong
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201910167555.8A priority Critical patent/CN109794851B/zh
Publication of CN109794851A publication Critical patent/CN109794851A/zh
Application granted granted Critical
Publication of CN109794851B publication Critical patent/CN109794851B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

本发明提出了一种圆锥滚子球基面磨床导轮盘角度测量调整方法,包括:根据圆锥滚子球基面磨床的左右圆锥滚子导轮盘建立平面点法式方程;测量圆锥滚子球基面磨床的左右圆锥滚子导轮盘中测量点位置;计算左右圆锥滚子导轮盘夹角最小位置及最小间距;根据左右圆锥滚子导轮盘间距变化趋势来判断调整导轮盘夹角范围。该圆锥滚子球基面磨床导轮盘角度测量调整方法可有效降低导轮盘夹角调整时间和提高导轮盘夹角调整精度,对提高圆锥滚子磨削加工精度具有重要意义。

Description

一种圆锥滚子球基面磨床导轮盘角度测量调整方法
技术领域
本发明涉及圆锥滚子球基面磨床导轮盘角度测量调整方法。
背景技术
圆锥滚子轴承具有能承受高径向载荷的能力,又能同时承受轴向载荷,滚子可实现纯滚动,摩擦系数低;这些优越的性能使得圆锥滚子轴承广泛用于机床、汽车、冶金、航空等行业。圆锥滚子轴承在工作时,圆锥滚子大端的球基面与内圈挡边锥面的接触状况,对润滑条件、接触应力、摩擦磨损、使用寿命等都有重要影响,必须严格控制圆锥滚球基面的加工精度。圆锥滚子球基面磨削是一种连续成形的磨削方式,与常见的平面磨和外圆切入磨有较大差别,导轮盘夹角的调整是保证球基面磨削精度的重要参数。导轮盘夹角调整的好坏直接影响球基面磨削精度。为保证圆锥滚子在球基面磨削时,两导轮盘间距最小,夹紧力最大,防止圆锥滚子在球基面磨削时不发生窜动,必须严格控制导轮盘角度调整的精度。为更好研究圆锥滚子球基面的磨削过程和提高球基面的加工精度,需要建立一种圆锥滚子球基面磨床导轮盘夹角测量方法。
发明内容
本发明专利基于球基面磨削原理,结合机床实际调试情况,建立了一种圆锥滚子球基面磨床导轮盘角度测量调整方法。该方法根据导轮盘实际调整过程,基于平面度计算方法,使用高精度千分尺测量左右导轮盘不同位置间距,利用MATLAB程序计算出两导轮盘夹角最小位置及最小间距,最后根据左右导轮盘间距变化趋势来判断调整导轮盘夹角范围,利用电机控制来实现该圆锥滚子导轮盘角度全自动调整过程。该圆锥滚子球基面磨床导轮盘角度测量调整方法可有效降低导轮盘夹角调整时间和提高导轮盘夹角调整精度,对提高圆锥滚子磨削加工精度具有重要意义。
基于上述方案,本发明提出一种圆锥滚子球基面磨床导轮盘角度测量调整方法,包括:
步骤一:根据圆锥滚子球基面磨床的左右圆锥滚子导轮盘建立平面点法式方程;
步骤二:测量圆锥滚子球基面磨床的左右圆锥滚子导轮盘中测量点位置;
步骤三:计算左右圆锥滚子导轮盘夹角最小位置及最小间距;
步骤四:根据左右圆锥滚子导轮盘间距变化趋势来判断调整导轮盘夹角范围;
本发明提出的所述圆锥滚子球基面磨床导轮盘角度测量调整方法中,所述根据圆锥滚子球基面磨床的左右圆锥滚子导轮盘建立平面点法式方程包括:
以左导轮盘右侧表面和左导轮盘回转轴线的交点为原点O;以左导轮盘回转轴线为Z 轴;垂直地面方向为Y轴,X轴平行于地面,建立坐标系;
已知平面一点M0(x0,y0,z0)和平面的一个法向量
Figure GDA0002679525840000021
对平面上任一点M(x,y,z) 有M0M垂直于
Figure GDA0002679525840000022
Figure GDA0002679525840000023
代入坐标式有: A(x-x0)+B(y-y0)+C(z-z0)=0(1);
根据定义可知,已知M1(x1,y1,z1),M2(x2,y2,z2),M3(x3,y3,z3)三点坐标求得平面法向量,平面法向量如以下式(2)表示:
Figure GDA0002679525840000024
根据平面法向量求得平面方程为:A(x-x1)+B(y-y1)+C(z-z1)=0(3)。
本发明提出的所述圆锥滚子球基面磨床导轮盘角度测量调整方法中,所述左右圆锥滚子导轮盘测量点位置包括:
测量进料口M1,位置M2,出料口M3与X轴正方向的夹角θ1,θ2,θ3,测量导轮盘的半径R;
计算进料口M1,位置M2,出料口M3的X和Y坐标值,导轮盘间距L为Z坐标值;
得到三个测量点M1、M2、M3在建立坐标系中的坐标M1(R cosθ1,R sinθ1,L1)、 M2(Rcosθ2,R sinθ2,L2)、M3(R cosθ3,R sinθ3,L3)。
本发明提出的所述圆锥滚子球基面磨床导轮盘角度测量调整方法中,所述计算左右圆锥滚子导轮盘夹角最小位置及最小间距包括:
将三个测量点M1、M2、M3的坐标,代入平面法向量求解公式(2),求出右导轮盘平面法向量,再将三点的其中一点坐标和求解得到的平面法向量代入平面方程求解公式(3),计算出右导轮盘10左侧面的平面方程;
将右导轮盘10左侧面三个测量点所在的圆分为N等份,其中任意一位置点 Mn的坐标为Mn(R cosθ,R sinθ,Ln)(n=1,2,3,...,N);
基于Matlab编写计算程序,将上述N个点的坐标计算出来,并绘制圆上N个点Z坐标变化趋势图;
根据间距变化趋势图判断左右导轮盘间距最小位置点Mm
本发明提出的所述圆锥滚子球基面磨床导轮盘角度测量调整方法中,根据间距变化趋势图判断左右导轮盘间距最小位置点Mm之后,还包括:
判断左右导轮盘间距最小位置点Mm与X轴正方向的夹角θm和θ5差值的绝对值是否小于角度调整允许误差Δθ,若|θm5|<Δθ,左右导轮盘夹角调整符合要求;
当θm<θ5-Δθ,根据实际情况适当增大β或减小γ;当θm>θ5+Δθ,根据实际情况适当增大γ或减小β;
重复步骤二到步骤三,每一次角度调整都需重新测量M1、M2、M3三个点的Z坐标,并将Z坐标输入相关公式和程序,获得新的平面方程和新的左右导轮盘间距变化趋势图,直到左右导轮盘间距最小位置点Mm与X轴正方向的夹角θm和θ5差值的绝对值小于角度调整允许误差Δθ,即满足加工要求为止。
本发明提出的所述圆锥滚子球基面磨床导轮盘角度测量调整方法中,步骤四后还包括:
步骤五:根据步骤四的结果调整圆锥滚子导轮盘。
本发明提出的所述圆锥滚子球基面磨床导轮盘角度测量调整方法中,步骤五包括:手动调整螺杆螺母导轮盘角度γ和手动调整右导轮盘机座的角度β,满足导轮盘角度满足 |θm5|<Δθ的加工要求。
本发明提出的所述圆锥滚子球基面磨床导轮盘角度测量调整方法中,步骤五包括:
安装步进电机或伺服电机来驱动控制螺杆螺母导轮盘角度γ右导轮盘机座的螺杆螺母角度β,使用电机变频器信号来控制电机驱动距离;
将变频器信号反馈到计算机进行处理;
基于Matlab编写计算程序与测量计算结果形成闭环控制,实现该圆锥滚子导轮盘角度全自动调整过程,满足|θm5|<Δθ的加工要求。
与现有技术相比,本发明的有益效果:本发明专利基于球基面磨削原理,结合机床实际调试情况,建立了一种圆锥滚子球基面磨床导轮盘角度测量调整方法。该方法根据导轮盘实际调整过程,基于平面度计算方法,使用高精度千分尺测量左右导轮盘不同位置间距,利用MATLAB程序计算出两导轮盘夹角最小位置及最小间距,最后根据左右导轮盘间距变化趋势来判断调整导轮盘夹角范围,利用电机控制来实现该圆锥滚子导轮盘角度全自动调整过程。该圆锥滚子球基面磨床导轮盘角度测量调整方法可有效降低导轮盘夹角调整时间和提高导轮盘夹角调整精度,对提高圆锥滚子磨削加工精度具有重要意义。
附图说明
图1为左右导轮盘间距测量点位置示意图。
图2为圆锥滚子球基面磨床主要结构。
图3为左右导轮盘间距测量位置示意图。
图4为左右导轮盘主视角度调整示意图。
图5为左右导轮盘俯视角度调整示意图。
图6为左右导轮盘调整后间距变化计算结果。
图7为本发明圆锥滚子球基面磨床导轮盘角度测量调整方法的流程示意图。
具体实施方式
下面将结合示意图对本发明提出的圆锥滚子球基面磨床导轮盘角度测量调整方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
如图7所示,本发明提出一种圆锥滚子3球基面磨床导轮盘角度测量调整方法,包括:
步骤一:根据圆锥滚子3球基面磨床的左右圆锥滚子3导轮盘建立平面点法式方程;
步骤二:测量圆锥滚子3球基面磨床的左右圆锥滚子3导轮盘中测量点位置;
步骤三:计算左右圆锥滚子3导轮盘夹角最小位置及最小间距;
步骤四:根据左右圆锥滚子3导轮盘间距变化趋势来判断调整导轮盘夹角范围;
步骤五:根据步骤四的结果调整圆锥滚子3导轮盘。
(圆锥滚子3球基面磨削运动原理)
圆锥滚子3球基面磨床采用连续成形原理磨削圆锥滚子3的球基面。如图1和图2所示,圆锥滚子3球基面的磨床主要由左导轮盘11、右导轮盘、隔离盘9和砂轮2四个部分组成。左、右导轮盘转向相反,且转速不同,右导轮盘转速高于左导轮盘11转速,导轮盘之间的转速差,使得圆锥滚子3自转且公转,圆锥滚子3的公转带动隔离盘9顺时针自转,砂轮2与圆锥滚子3的自转转向相同。
磨削加工过程中,由左、右导轮盘对圆锥滚子3锥面进行加紧定位,两导轮盘作反方向旋转运动,带动圆锥滚子3自转且绕导轮盘中心公转,圆锥滚子3公转带动隔离盘9自转。如图3所示,左右导轮盘对圆锥滚子3的夹紧定位是通过调整左右导轮盘的夹角α,改变左右导轮盘夹紧圆锥滚子3锥面的间距。导轮盘角度调整有三个目的:1)圆锥滚子 3运动到入料口位置开始被夹紧;2)圆锥滚子3运动到与砂轮2接触时,磨削时夹紧力最大;3)圆锥滚子3运动到出料口位置时,夹紧力消失,开始下料。因此,左右导轮盘夹角调整得是否合理是影响圆锥滚子3球基面磨削质量的重要因素。
(圆锥滚子3左右导轮盘角度调整)
如图4和图5所示,圆锥滚子3球基面磨床左右导轮盘夹角α的大小和方向主要由角度γ和角度β决定。如图4所示,在主视图方向,通过旋转螺母13,使螺母13沿拧紧方向旋转,使得右导轮盘及其机座整体,在竖直方向上逆时针旋转一个大小为γ的角度;如图5所示,在俯视图方向,通过相关调整,使得右导轮盘及其机座整体,在水平方向逆时针旋转一个大小为β的角度。调整后,圆锥滚子3处于球基面磨削状态时,圆锥滚子3处于夹紧状态;完成球基面磨削后,圆锥滚子3处于松开状态,便于下料。
目前圆锥滚子3球基面磨床左右导轮盘夹角α的大小和方向的调整主要依靠操作师傅的经验,难以判断左右导轮盘夹角α调整的大小和方向是否合理,圆锥滚子3球基面磨削质量不好时,无法排除左右导轮盘角度γ和角度β的调整因素。
(圆锥滚子3左右导轮盘角度调整测量方法)
1)建立坐标系
如图4所示,以左导轮盘11右侧表面和左导轮盘11回转轴线的交点为原点O;以左导轮盘11回转轴线为Z轴;垂直地面方向为Y轴,X轴平行于地面,建立坐标系。
如图1所示,圆锥滚子3运动到入料口位置时,X轴正方向夹角为θ1;圆锥滚子3运动到与砂轮2接触时,与X轴正方向夹角为θ5;圆锥滚子3运动到砂轮2回转轴线位置时,与X轴正方向夹角为θ4;圆锥滚子3运动到出料口位置时,与X轴正方向夹角为θ3
2)建立平面方程
平面方程求解原理—平面点法式方程。
已知平面一点M0(x0,y0,z0)和平面的一个法向量
Figure GDA0002679525840000061
对平面上任一点M(x,y,z) 有M0M垂直于
Figure GDA0002679525840000062
Figure GDA0002679525840000063
代入坐标式有:
A(x-x0)+B(y-y0)+C(z-z0)=0 (1)
根据定义可知,已知M1(x1,y1,z1),M2(x2,y2,z2),M3(x3,y3,z3)三点坐标可以求得平面法向量:
Figure GDA0002679525840000064
Figure GDA0002679525840000071
平面方程为:
A(x-x1)+B(y-y1)+C(z-z1)=0 (3)
根据上述平面方程求解理论知,已知三点坐标可以确定一个平面方程,只要测量右导轮盘10上相关的三个点的坐标就可以获得右导轮盘的平面方程。
3)左右导轮盘三个位置间距测量
根据点法式平面方程求解原理知,求解右导轮盘的平面方程,需要右导轮盘在坐标系上三个点的坐标。基于上述建立的坐标系,选择右导轮盘相应面上三个测量点,如图1所示,三个测量点分别为进料口M1,位置M2,出料口M3。进料口M1点与X轴正方向夹角为θ1,位置M2点与X轴正方向夹角为θ2=(θ31-360°)/2,出料口M3点与X轴正方向夹角为θ3。根据三个位置测点与X轴正方向的夹角θ1,θ2,θ3和导轮盘半径R,可计算出三个位置测量点的X和Y坐标值。导轮盘间距L为Z坐标值,测量使用的工具为分辨率为1μm的千分尺,三个位置点导轮盘间距Z坐标L值的测量结果如表1所示,可以得到三个测量点M1、M2、M3在建立坐标系中的坐标M1(R cosθ1,R sinθ1,L1)、 M2(Rcosθ2,R sinθ2,L2)、M3(Rcosθ3,R sinθ3,L3)。
表1右导轮盘10调整后的测量数据
测量点位置 进料口M<sub>1</sub> 位置M<sub>2</sub> 出料口M<sub>3</sub>
间距L L<sub>1</sub> L<sub>2</sub> L<sub>3</sub>
4)计算左右导轮盘间距
将三个测量点M1、M2、M3的坐标,代入平面法向量求解公式(2),求出右导轮盘平面法向量,再将三点的其中一点坐标和求解得到的平面法向量代入平面方程求解公式(3),计算出右导轮盘左侧面的平面方程。
由于三个测量点位于同一圆上,得到右导轮盘左侧平面方程后,将右导轮盘左侧面三个测量点所在的圆分为N等份,其中任意一位置点 Mn的坐标为Mn(R cosθ,R sinθ,Ln)(n=1,2,3,...,N)。
基于Matlab编写计算程序,将上述N个点的坐标计算出来,并绘制圆上N个点Z坐标变化趋势图,如图6所示左右导轮盘间距变化趋势图。根据左右导轮盘间距变化趋势图 6可以判断左右导轮盘夹角α调整的是否合理。
5)导轮盘角度测量调整过程
首先,根据间距变化趋势图6判断左右导轮盘间距最小位置点Mm与X轴正方向的夹角θm和θ5差值的绝对值是否小于角度调整允许误差Δθ,若|θm5|<Δθ,左右导轮盘夹角调整符合要求;当θm<θ5-Δθ,根据实际情况适当增大β或减小γ;当θm>θ5+Δθ,根据实际情况适当增大γ或减小β。重复步骤3)、4)、5),每一次角度调整都需重新测量M1、M2、M3三个点的Z坐标,并将Z坐标输入相关公式和程序,获得新的平面方程和新的左右导轮盘间距变化趋势图,直到左右导轮盘间距最小位置点Mm与X轴正方向的夹角θm和θ5差值的绝对值小于角度调整允许误差Δθ,满足加工要求。
上述测量调整过程可手动调整图4中的螺杆12螺母13导轮盘角度γ和手动调整图5 中右导轮盘机座的角度β,满足导轮盘角度满足|θm5|<Δθ的加工要求。此外,可以安装步进电机或伺服电机来驱动控制图4中的螺杆12螺母13导轮盘角度γ和图5中右导轮盘机座的螺杆12螺母13角度β,使用电机变频器信号来控制电机驱动距离(即螺杆 12螺母13导轮盘角度γ和右导轮盘机座的角度β);然后将变频器信号反馈到计算机进行处理;最后基于Matlab编写计算程序与图6测量计算结果形成闭环控制,来实现该圆锥滚子3导轮盘角度全自动调整过程,来满足|θm5|<Δθ的加工要求。使用该电机驱动的自动调整方法可大大减少操作工人的劳动强度,可有效提高圆锥滚子3的加工效率和加工质量。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (3)

1.一种圆锥滚子球基面磨床导轮盘角度测量调整方法,其特征在于,包括:
步骤一:根据圆锥滚子球基面磨床的左右圆锥滚子导轮盘建立平面点法式方程;
步骤二:测量圆锥滚子球基面磨床的左右圆锥滚子导轮盘中测量点位置;
步骤三:计算左右圆锥滚子导轮盘夹角最小位置及最小间距;
步骤四:根据左右圆锥滚子导轮盘间距变化趋势来判断调整导轮盘夹角范围;
所述根据圆锥滚子球基面磨床的左右圆锥滚子导轮盘建立平面点法式方程包括:
以左导轮盘右侧表面和左导轮盘回转轴线的交点为原点O;以左导轮盘回转轴线为Z轴;垂直地面方向为Y轴,X轴平行于地面,建立坐标系;
已知平面一点M0(x0,y0,z0)和平面的一个法向量
Figure FDA0002660556250000014
对平面上任一点M(x,y,z)有M0M垂直于
Figure FDA0002660556250000011
Figure FDA0002660556250000012
代入坐标式有:
A(x-x0)+B(y-y0)+C(z-z0)=0(1);
根据定义可知,已知M1(x1,y1,z1),M2(x2,y2,z2),M3(x3,y3,z3)三点坐标求得平面法向量,平面法向量如以下式(2)表示:
Figure FDA0002660556250000013
根据平面法向量求得平面方程为:
A(x-x1)+B(y-y1)+C(z-z1)=0(3);
所述左右圆锥滚子导轮盘测量点位置包括:
测量进料口M1,位置M2,出料口M3与X轴正方向的夹角θ1,θ2,θ3,测量导轮盘的半径R;
计算进料口M1,位置M2,出料口M3的X和Y坐标值,导轮盘间距L为Z坐标值;
得到三个测量点M1、M2、M3在建立坐标系中的坐标M1(R cosθ1,R sinθ1,L1)、M2(R cosθ2,R sinθ2,L2)、M3(R cosθ3,R sinθ3,L3);
所述计算左右圆锥滚子导轮盘夹角最小位置及最小间距包括:
将三个测量点M1、M2、M3的坐标,代入平面法向量求解公式(2),求出右导轮盘平面法向量,再将三点的其中一点坐标和求解得到的平面法向量代入平面方程求解公式(3),计算出右导轮盘左侧面的平面方程;
将右导轮盘左侧面三个测量点所在的圆分为N等份,其中任意一位置点Mn的坐标为Mn(Rcosθ,R sinθ,Ln)(n=1,2,3,...,N);
基于Matlab编写计算程序,将上述N个点的坐标计算出来,并绘制圆上N个点Z坐标变化趋势图;
根据间距变化趋势图判断左右导轮盘间距最小位置点Mm
根据间距变化趋势图判断左右导轮盘间距最小位置点Mm之后,还包括:
判断左右导轮盘间距最小位置点Mm与X轴正方向的夹角θm和θ5差值的绝对值是否小于角度调整允许误差Δθ,若|θm5|<Δθ,左右导轮盘夹角调整符合要求;
当θm<θ5-Δθ,根据实际情况适当增大β或减小γ;当θm>θ5+Δθ,根据实际情况适当增大γ或减小β;
重复步骤二到步骤三,每一次角度调整都需重新测量M1、M2、M3三个点的Z坐标,并将Z坐标输入相关公式和程序,获得新的平面方程和新的左右导轮盘间距变化趋势图,直到左右导轮盘间距最小位置点Mm与X轴正方向的夹角θm和θ5差值的绝对值小于角度调整允许误差Δθ,即满足加工要求为止;
步骤四后还包括:
步骤五:根据步骤四的结果调整圆锥滚子导轮盘。
2.根据权利要求1所述的圆锥滚子球基面磨床导轮盘角度测量调整方法,其特征在于,步骤五包括:手动调整螺杆螺母导轮盘角度γ和手动调整右导轮盘机座的角度β,满足导轮盘角度满足|θm5|<Δθ的加工要求。
3.根据权利要求1所述的圆锥滚子球基面磨床导轮盘角度测量调整方法,其特征在于,步骤五包括:
安装步进电机或伺服电机来驱动控制螺杆螺母导轮盘角度γ和右导轮盘机座的螺杆螺母角度β,使用电机变频器信号来控制电机驱动距离;
将变频器信号反馈到计算机进行处理;
基于Matlab编写计算程序与测量计算结果形成闭环控制,实现该圆锥滚子导轮盘角度全自动调整过程,满足|θm5|<Δθ的加工要求。
CN201910167555.8A 2019-03-06 2019-03-06 一种圆锥滚子球基面磨床导轮盘角度测量调整方法 Active CN109794851B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910167555.8A CN109794851B (zh) 2019-03-06 2019-03-06 一种圆锥滚子球基面磨床导轮盘角度测量调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910167555.8A CN109794851B (zh) 2019-03-06 2019-03-06 一种圆锥滚子球基面磨床导轮盘角度测量调整方法

Publications (2)

Publication Number Publication Date
CN109794851A CN109794851A (zh) 2019-05-24
CN109794851B true CN109794851B (zh) 2021-01-05

Family

ID=66562496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910167555.8A Active CN109794851B (zh) 2019-03-06 2019-03-06 一种圆锥滚子球基面磨床导轮盘角度测量调整方法

Country Status (1)

Country Link
CN (1) CN109794851B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111660147B (zh) * 2020-06-28 2021-10-15 上海理工大学 圆锥滚子球基面磨削工艺参数优化方法
CN114589557B (zh) * 2022-02-23 2023-01-03 江苏力星通用钢球股份有限公司 一种圆锥滚子球基面磨床用校准装置及其导轮盘角度、砂轮零位校正方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU670422A1 (ru) * 1975-03-27 1979-06-30 Всесоюзный Научно-Исследовательский Конструкторско-Технологический Институт Подшипниковой Промышленности Устройство дл шлифовани сферических торцев роликов
SU1465274A1 (ru) * 1987-02-23 1989-03-15 Всесоюзный Научно-Исследовательский Конструкторско-Технологический Институт Подшипниковой Промышленности Устройство дл шлифовани сферических торцов конических роликов
RU2010108560A (ru) * 2010-03-09 2011-09-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университе Способ шлифования сферических торцов на конических роликах
CN203092266U (zh) * 2013-02-01 2013-07-31 黎升祥 一种轴承滚子球形端面的磨削机构
CN203650180U (zh) * 2013-12-11 2014-06-18 甘肃海林中科科技股份有限公司 一种圆锥滚子球基面磨床
CN208880458U (zh) * 2018-08-24 2019-05-21 浙江辛子精工机械股份有限公司 一种圆锥滚子球形端面超精装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU670422A1 (ru) * 1975-03-27 1979-06-30 Всесоюзный Научно-Исследовательский Конструкторско-Технологический Институт Подшипниковой Промышленности Устройство дл шлифовани сферических торцев роликов
SU1465274A1 (ru) * 1987-02-23 1989-03-15 Всесоюзный Научно-Исследовательский Конструкторско-Технологический Институт Подшипниковой Промышленности Устройство дл шлифовани сферических торцов конических роликов
RU2010108560A (ru) * 2010-03-09 2011-09-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университе Способ шлифования сферических торцов на конических роликах
CN203092266U (zh) * 2013-02-01 2013-07-31 黎升祥 一种轴承滚子球形端面的磨削机构
CN203650180U (zh) * 2013-12-11 2014-06-18 甘肃海林中科科技股份有限公司 一种圆锥滚子球基面磨床
CN208880458U (zh) * 2018-08-24 2019-05-21 浙江辛子精工机械股份有限公司 一种圆锥滚子球形端面超精装置

Also Published As

Publication number Publication date
CN109794851A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
CN109794851B (zh) 一种圆锥滚子球基面磨床导轮盘角度测量调整方法
CN101460281B (zh) 用于棒形工件的磨削方法、实施该方法所需的磨床以及双磨床组成的磨削加工单元
CN209598793U (zh) 磨齿机用工件定位料盘
CN103991025A (zh) 一种偏心式变曲率沟槽加工高精度球体的方法
CN113500522B (zh) 一种数控磨床砂轮轮廓在位测量装置、方法及光路调整方法
CN104191370B (zh) 全口径抛光中抛光盘表面形状的修正方法及装置
US9592581B2 (en) Tool grinder
CN107263323B (zh) 超精密磨削异型薄壁结构件时球头砂轮在位修整方法
CN109746833B (zh) 圆锥滚子球基面磨削力的计算方法
WO2021031478A1 (zh) 一种水平滑台位移测量与保护装置
US4083151A (en) Angular feed centerless grinder
CN103991017A (zh) 一种轴偏心式变曲率沟槽加工高精度球体的装置
US4062150A (en) Centerless grinding method and device using same
JP2021531987A (ja) ベアリングローラーの転がり面の仕上げ加工用の研削ディスクセット、設備及び方法
CN103600285B (zh) 上盘偏心加压式圆柱形零件外圆加工装置
CN103231290A (zh) 一种纺织机牵伸系统用罗拉轴承外圈加工工艺
CN105904325A (zh) 数控滚子外径及球基面复合磨床
CN108908094A (zh) 一种用于圆柱滚子滚动面精加工的研磨盘、设备及方法
CN108890516A (zh) 一种用于凸圆柱滚子滚动面精加工的研磨盘、设备及方法
JP2002283196A (ja) 適合研削方法および適合研削装置
JP2015074042A (ja) 研削装置
CN209394480U (zh) 一种用于圆柱滚子滚动面精加工的研磨盘及设备
CN209394483U (zh) 用于圆柱滚子滚动表面精加工的磁性研磨盘及设备
CN209394396U (zh) 用于圆柱滚子滚动面精加工的磁性研磨盘及设备
CN102328269A (zh) 一种用于微小球面的高精度研磨机及其研磨方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231215

Address after: No. 9-20, Xinhe Village, Dongcheng Economic Development Zone, Anlu City, Xiaogan City, Hubei Province, 432600

Patentee after: Wang Guoyong

Address before: 200093 No. 516, military road, Shanghai, Yangpu District

Patentee before: University of Shanghai for Science and Technology

TR01 Transfer of patent right