CN109793502B - 神经元活动检测方法及探测系统 - Google Patents

神经元活动检测方法及探测系统 Download PDF

Info

Publication number
CN109793502B
CN109793502B CN201910202074.6A CN201910202074A CN109793502B CN 109793502 B CN109793502 B CN 109793502B CN 201910202074 A CN201910202074 A CN 201910202074A CN 109793502 B CN109793502 B CN 109793502B
Authority
CN
China
Prior art keywords
array
detector
light source
detection
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910202074.6A
Other languages
English (en)
Other versions
CN109793502A (zh
Inventor
裴为华
徐淮良
苏越
吴晓婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201910202074.6A priority Critical patent/CN109793502B/zh
Publication of CN109793502A publication Critical patent/CN109793502A/zh
Application granted granted Critical
Publication of CN109793502B publication Critical patent/CN109793502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于阵列光源‑探测器阵列的神经元活动检测方法及探测系统,其中检测方法步骤包括:对受试对象头部的探测区域转染钙离子指示剂;将阵列光源以及探测器阵列对称插入探测区域两侧;阵列光源发光激发对应脑组织区域具有神经活动的神经元发出荧光;探测器阵列探测出荧光强度并将所得荧光强度带入衰减公式,得到不同区域内的等效荧光强度,进而获得神经活动的空间分布。该方法属于脑科学技术领域,能够实现神经活动的高通量和高空间分辨率检测。

Description

神经元活动检测方法及探测系统
技术领域
本发明涉及脑科学技术领域,尤其涉及基于阵列光源-探测器阵列探测系统实现神经元活动检测。
背景技术
大脑是生物体内结构和功能最复杂的系统,它由上千亿个神经细胞组成,这些细胞依靠脉冲放电和神经递质释放两种模式来完成信息传递与整合功能,因此对这些神经活动加以全面,准确和同步的检测,是促进神经性重大疾病检测诊断和康复治疗的基本手段和重要途径。目前,钙离子成像作为一种直接和大范围观测神经元活动手段被广泛应用于神经科学研究,其借助钙离子浓度与神经元活动的对应关系,利用特殊的化学荧光探针或者蛋白质荧光探针,将神经元当中的钙离子浓度通过荧光强度表现出来,从而达到检测神经元活动的目的。然而,这一技术在用于活体成像时,受限于体内激发光源,如光纤的激发范围的限制,钙离子成像技术只能在光强超过一定阈值的区域进行探测,然而大脑运作需要借助许多不同脑区的相互协作,要对这些过程进行研究,需要对整个大脑的神经活动进行细致的观测。此外,由于探测方式采用光学成像,因而无法确定空间范围内的神经活动分布。
发明内容
(一)要解决的技术问题
有鉴于此,本发明的目的在于提供一种,以至少部分解决上述的技术问题。
(二)技术方案
本发明公开了一种基于阵列光源-探测器阵列的神经元活动检测方法,其步骤为:
对受试对象头部的探测区域转染钙离子指示剂;
将阵列光源以及探测器阵列分别对称放置在探测区域两侧;
阵列光源发光激发对应脑组织区域具有神经活动的神经元发出荧光;
探测器阵列探测其神经元被激发出的荧光强度;
将脑组织区域划分为多个子探测区;
建立衰减模型,得到不同区域的等效荧光强度;
获得神经活动的空间分布,完成空间探测。
在进一步的实施方案中,衰减模型公式为:
Figure BDA0001996384220000021
其中Prm为探测器组中各个探测器探测到的荧光强度;PJn为子探测区发出的荧光强度;Z为探测器因子;K为吸光系数;C为溶液浓度;Lmn为子探测区与探测器组中各个探测器之间的距离;m为探测器阵列中探测器的数量;n为划分子探测区的数量。
阵列光源与探测器阵列具有一一对应的关系,并且可探测多个脑组织区域。
阵列光源和探测器阵列利用MEMS微结构加工工艺制备,且在阵列光源工作过程中其温度升高不高于1℃。
阵列光源中各光源为独立开关控制,用于减少光源间的相互干扰。
本发明还公开了一种基于阵列光源-探测器阵列探测系统,包括:一阵列光源,包括多个光源,用于发光激发对应脑组织区域具有神经活动的神经元发出荧光;一探测器阵列,包括多个探测器组,每个探测器组包含多个探测器,用于探测神经元被激发出的荧光强度。
(三)有益效果
本发明采用阵列光源以及探测器阵列来实现对脑区神经活动的检测,所述的阵列光源可分别实现独立控制以防止光源间的相互干扰,所述的阵列光源与探测器阵列具有一一对应的关系,遍布多个脑区,可以实现高通量的探测。
本发明采用探测器组探测具有神经活动的神经元被激发出的荧光强度,进而对理想化的脑组织探测区域进行划分并结合荧光衰减公式建立衰减模型,计算出不同划分区域的等效荧光强度,通过对应划分区域荧光强度强弱定义神经元活动的强弱,最终得到神经活动的空间分布,实现神经活动的高空间分辨率检测。
附图说明
图1为本发明实施例的步骤图。
图2为本发明实施例的阵列光源-探测器阵列的探测系统示意图。
图3a为本发明实施例的封装后的阵列光源实物图。
图3b为本发明实施例的阵列光源中单光源发光实物图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
目前,钙离子成像作为一种直接和大范围观测神经元活动手段被广泛应用于神经科学研究,其借助钙离子浓度与神经元活动的对应关系,利用特殊的化学荧光探针或者蛋白质荧光探针,将神经元当中的钙离子浓度通过荧光强度表现出来,从而达到检测神经元活动的目的。然而,这一技术在用于活体成像时,受限于体内激发光源、如光纤的激发范围的限制,钙离子成像技术只能在光强超过一定阈值的区域进行探测,同时,大脑运作需要借助许多不同脑区的相互协作,要对这些过程进行研究,需要对整个大脑的神经活动进行细致的观测。此外,由于探测方式采用光学成像,所以无法确定空间范围内的神经活动分布。
本发明实施例提供了一种基于阵列光源-探测器阵列的神经元活动检测方法,如图1所示,其步骤包括:
步骤1:对受试对象头部的探测区域转染钙离子指示剂,其中由于钙离子指示剂的作用,脑区中具有神经活动的神经元可在阵列光源的激发下发出荧光;
步骤2:将阵列光源以及探测器阵列分别对称放置在探测区域两侧,其中阵列光源以及探测器阵列可以同时覆盖多个脑区,并且阵列光源与探测器阵列为一一对应关系。
步骤3:阵列光源发光激发对应脑组织区域具有神经活动的神经元发出荧光,其中阵列光源中各光源为独立开关控制,以减少光源间的相互干扰;
步骤4:探测器组探测其神经元被激发出的荧光强度,其中所述的探测器组采用规则排布的方式来减少器件体积,即矩形排布的方式,进而降低植入过程中引起的组织损伤。
步骤5:将可探测范围内的脑组织区域划分成均匀等体积的多个子探测区,理论上可划分区域数即为探测器的数量,将探测到的荧光强度带入衰减计算公式,得到划分出的不同区域的等效荧光强度,进而获得神经活动的空间分布,其空间分辨能力由探测器组中的探测器数目所决定,其中探测器组中探测器的数量越多,则受试对象头部的探测区可划分的子探测区越多,所测得的神经元活动分布的空间分辨率越高,在本发明的示例实施例中,探测区被划分为8个子探测区,请参见公式:
Figure BDA0001996384220000041
其中Prn为探测器组中各个探测器探测到的荧光强度;
PJn为子探测区发出的荧光强度;
Z为探测器因子;
K为吸光系数;
C为溶液浓度;
Lmn为子探测区与探测器组中各个探测器之间的距离;
m为探测器阵列中探测器的数量;
n为划分子探测区的数量。
在本实施例中,利用所探测到的荧光强度求得8个区域对应的等效荧光强度分别为PJ1-PJ8
在本发明的实施例中,所述的阵列光源和探测器阵列利用MEMS微结构加工工艺制备,且在阵列光源工作过程中其温度升高不高于1℃。
图2为本发明实施例的阵列光源-探测器阵列的探测示意图,阵列光源与探测器阵列为一一对应关系,探测器数量与划分区域数量相同,在本发明实施例中,如图2所示,探测器组中含8个探测器D1-D8,将阵列光源与探测器阵列对应放置在所需探测的区域两侧,光源发光激发对应脑组织区域内具有神经活动的神经元发出荧光,其对应的探测器组中的探测器D1-D8探测并接收该探测区被激发出的荧光强度,进而将探测区域划分为8个区域V1-V8,利用控制系统建立衰减模型并将探测到的荧光强度带入衰减公式,得到区域V1-V8的等效荧光强度,进而获得神经活动的空间分布。其空间分辨能力由探测器组中的探测器数目所决定。阵列光源的每一个光源为独立开关控制,以减少光源间的相互干扰。
图3a为本发明实施例的封装后的阵列光源实物图,在本发明的示例实施例中,如图3a所示,所示的光源阵列器件的长度为5.5mm,宽度为0.5mm,集成8个光源,光源间的间距为0.3um,光源可遍布多个脑区。图3b为本发明实施例的阵列光源中单光源发光实物图,如图3b所示,光源采取独立开关控制的方式用于减少光源间的相互干扰。
基于上述陈述,本发明实施例提出基于阵列光源-探测器阵列探测系统来实现神经元活动检测,采用探测器组探测具有神经活动的神经元被激发出的荧光强度,进而对理想化的脑组织探测区域进行划分并结合荧光衰减公式建立衰减模型,计算出神经活动的空间分布,从而实现神经活动的高空间分辨率检测,其空间分辨能力由探测器组中探测器的数目所决定,并且阵列光源与探测器阵列具有一一对应的关系,遍布多个脑区,可以实现高通量的探测。因此可实现神经活动的高通量高分辨率的检测。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于阵列光源-探测器阵列的神经元活动检测方法,其步骤包括:
将阵列光源以及探测器阵列分别对称放置在受试对象转染有钙离子指示剂的头部探测区域两侧,其中,所述阵列光源与探测器阵列具有一一对应的关系,并且可探测多个脑组织区域,所述探测器阵列包括多个探测器组,每个所述探测器组包含多个探测器;
阵列光源发光激发对应脑组织区域具有神经活动的神经元发出荧光;
探测器阵列探测所述荧光的强度;
将脑组织区域划分为多个子探测区,每个所述脑组织区域中的所述子探测区的数量与每个所述探测器组中的所述探测器数量相同;
建立衰减模型,得到不同子探测区的等效荧光强度;
获得神经活动的空间分布,完成空间探测。
2.根据权利要求1所述的基于阵列光源-探测器阵列的神经元活动检测方法,所述阵列光源和探测器阵列利用MEMS微结构加工工艺制备。
3.根据权利要求1所述的基于阵列光源-探测器阵列的神经元活动检测方法,所述阵列光源中各光源为独立开关控制。
4.根据权利要求1所述的基于阵列光源-探测器阵列的神经元活动检测方法,所述衰减模型的公式为:
Figure DEST_PATH_IMAGE002
其中Prm为探测器组中各个探测器探测到的荧光强度;
PJn为子探测区发出的荧光强度;
Z为探测器因子;
K为吸光系数;
C为溶液浓度;
Lmn为子探测区与探测器组中各个探测器之间的距离;
N为划分子探测区的数量,n的取值范围为1-N;
M为探测器组中探测器的数量,m的取值范围为1-M。
5.根据权利要求4所述的基于阵列光源-探测器阵列的神经元活动检测方法,其中所述衰减模型的公式中的PJn的数值大小表示神经活动的强弱。
6.一种基于阵列光源-探测器阵列的神经元活动检测系统,包括:
一阵列光源,包括多个光源,用于发光激发对应脑组织区域具有神经活动的神经元;
一探测器阵列,包括多个探测器组,每个探测器组包含多个探测器,用于探测神经元被激发出的荧光强度;
一控制系统,用于控制阵列光源开关和建立衰减模型,以及根据所述荧光强度,确定神经活动的空间分布;
其中,所述阵列光源以及所述探测器阵列分别对称放置在受试对象转染有钙离子指示剂的头部探测区域两侧,所述阵列光源与探测器阵列具有一一对应的关系,并且可探测多个脑组织区域,每个所述脑组织区域划分有多个子探测区,每个所述脑组织区域中的所述子探测区的数量与每个所述探测器组中的所述探测器数量相同。
CN201910202074.6A 2019-03-15 2019-03-15 神经元活动检测方法及探测系统 Active CN109793502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910202074.6A CN109793502B (zh) 2019-03-15 2019-03-15 神经元活动检测方法及探测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910202074.6A CN109793502B (zh) 2019-03-15 2019-03-15 神经元活动检测方法及探测系统

Publications (2)

Publication Number Publication Date
CN109793502A CN109793502A (zh) 2019-05-24
CN109793502B true CN109793502B (zh) 2021-03-05

Family

ID=66562956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910202074.6A Active CN109793502B (zh) 2019-03-15 2019-03-15 神经元活动检测方法及探测系统

Country Status (1)

Country Link
CN (1) CN109793502B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112089401B (zh) * 2020-09-18 2024-04-19 中国科学院半导体研究所 多光源钙离子荧光检测方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830138A (zh) * 2012-09-24 2012-12-19 中国科学院半导体研究所 用于神经元刺激及电信号记录的光电极阵列及制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8831739B2 (en) * 2005-06-02 2014-09-09 Huntington Medical Research Institutes Microelectrode array for chronic deep-brain microstimulation for recording
CN101181158B (zh) * 2007-12-14 2010-06-09 东南大学 单神经元及多神经元集群间神经信号传递特性探测装置
CN101884530A (zh) * 2010-07-14 2010-11-17 中国科学院半导体研究所 用于记录神经活动电信号的柔性探针电极及其植入工具
US20160150963A1 (en) * 2011-09-26 2016-06-02 Michael Lee Roukes One-photon integrated neurophotonic systems
WO2013049202A1 (en) * 2011-09-26 2013-04-04 Roukes Michael L Brain-machine interface based on photonic neural probe arrays
CN103083827B (zh) * 2012-12-26 2015-09-16 东南大学 一种植入式蓝宝石基二维神经激励芯片及其制备方法
US20190126043A1 (en) * 2016-04-14 2019-05-02 The Trustees Of The University Of Pennsylvania Implantable living electrodes and methods for use thereof
CN107229114A (zh) * 2017-04-12 2017-10-03 上海戴泽光电科技有限公司 基于光纤阵列的多通道荧光探测系统
CN108324248B (zh) * 2018-01-30 2023-07-14 千奥星科南京生物科技有限公司 双色荧光激发神经信号光纤记录系统及记录方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830138A (zh) * 2012-09-24 2012-12-19 中国科学院半导体研究所 用于神经元刺激及电信号记录的光电极阵列及制备方法

Also Published As

Publication number Publication date
CN109793502A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
Yang et al. Genetically encoded voltage indicators: opportunities and challenges
CN106030287B (zh) 用于确定物质的单个分子在试样中的地点的方法和设备
US10638933B2 (en) Brain-machine interface based on photonic neural probe arrays
Stirman et al. Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans
JP5646538B2 (ja) 所定部位発光量測定方法、所定部位発光量測定装置、発現量測定方法、および測定装置
CN112089401B (zh) 多光源钙离子荧光检测方法及系统
AU2019368519B2 (en) System and method for real-time screening and measurement of cellular specific photosensitive effect
EP3551054B1 (en) Trans-illumination imaging with an array of light sources
Trampe et al. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging
JP6346096B2 (ja) 細胞観察装置及び細胞観察方法
WO2016069142A2 (en) Contractile function measuring devices, systems, and methods of use thereof
CN109793502B (zh) 神经元活动检测方法及探测系统
US20180252909A1 (en) Microscopy system and microscopy method for quantifying a fluorescence
US10201054B2 (en) Optical detection device, its method for operating and computer program
Fazel et al. High resolution fluorescence lifetime maps from minimal photon counts
WO2021096558A1 (en) Optically excited biopotential phantom
CN110836880A (zh) 一种光刺激记录系统
EP3375367B1 (en) In vivo imaging device with fiber optic
US20090152474A1 (en) Fluorescent Imaging Device Comprising a Two-Wavelength Variable Lighting Power Light Source
Fields Imaging single photons and intrinsic optical signals for studies of vesicular and non-vesicular ATP release from axons
Onda et al. Temporally multiplexed dual-plane imaging of neural activity with four-dimensional precision
JP2010246534A (ja) 光シグナル解析方法
JP2020509391A (ja) 検出のためのシステムおよび方法
CA2782964C (en) Parallel excitation system capable of spatial encoding and method thereof
EP3791793B1 (en) Brain function measurement device and brain function measurement method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant