CN109777429B - 腐殖酸源土壤重金属有效态调控剂及其应用 - Google Patents
腐殖酸源土壤重金属有效态调控剂及其应用 Download PDFInfo
- Publication number
- CN109777429B CN109777429B CN201910119090.9A CN201910119090A CN109777429B CN 109777429 B CN109777429 B CN 109777429B CN 201910119090 A CN201910119090 A CN 201910119090A CN 109777429 B CN109777429 B CN 109777429B
- Authority
- CN
- China
- Prior art keywords
- humic acid
- heavy metal
- soil
- soil heavy
- regulating agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Fertilizers (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明属于环保和农业技术领域,涉及一种腐殖酸源土壤重金属有效态调控剂及其应用。腐殖酸源土壤重金属有效态调控剂采用下述方法制得:将腐殖酸研磨后,加入适量水震荡,固液分离后得腐殖酸溶解液和腐殖酸滤渣,其中腐殖酸溶解液为土壤重金属活化剂组分,腐殖酸滤渣为土壤重金属钝化剂组分。本发明活化组分可用于增强超积累植物对土壤重金属的提取修复,而钝化组分可用于降低农作物对重金属的吸收。
Description
技术领域
本发明属于环保和农业技术领域,涉及一种具腐殖酸源土壤重金属有效态调控剂及其应用。
背景技术
腐殖酸是自然界中广泛存在的大分子聚合物,可通过吸附、交换和络合等作用,对重金属的生物地球化学行为产生重要影响。一般认为,腐殖酸可促使重金属从易被植物利用的交换态向难利用的有机结合态和残渣态转化,并将其作为重金属钝化剂进行大田应用。然而,也有一些研究发现施用腐殖酸对土壤重金属起到了活化作用。如此,对腐殖酸用于土壤重金属治理造成了困惑。
发明内容
本发明的目的是针对上述问题,提供一种腐殖酸源土壤重金属有效态调控剂。
本发明的另一目的是提供一种腐殖酸源土壤重金属有效态调控剂在镉污染土壤钝化中的应用。
本发明的再一目的是提供一种腐殖酸源土壤重金属有效态调控剂在镉污染土壤活化中的应用。
为达到上述目的,本发明采用了下列技术方案:
一种腐殖酸源土壤重金属有效态调控剂,采用下述方法制得:
将腐殖酸研磨后,加入适量水震荡,固液分离后得腐殖酸溶解液和腐殖酸滤渣,其中腐殖酸溶解液为土壤重金属活化剂组分,腐殖酸滤渣为土壤重金属钝化剂组分。
一种腐殖酸源土壤重金属有效态调控剂,采用下述方法制得:
将腐殖酸研磨后,加入水震荡或搅拌均匀,其中腐殖酸与水的固液比为1:25,采用离心机进行离心后固液分离,得腐殖酸溶解液和腐殖酸滤渣,其中腐殖酸溶解液为土壤重金属活化剂组分,腐殖酸滤渣为土壤重金属钝化剂组分。
在上述的腐殖酸源土壤重金属有效态调控剂中,腐殖酸用球磨机进行研磨,研磨时间为90-150min,研磨转速为250-450RPM,研磨球的直径为3-10mm。
在上述的腐殖酸源土壤重金属有效态调控剂中,所述的研磨时间为90min,研磨转速为250RPM,研磨球分为大球、中球和小球,其中大球、中球和小球的数量比为2:7:8,大球、中球和小球的直径分别为10mm、5mm和3mm。
在上述的腐殖酸源土壤重金属有效态调控剂中,所述腐殖酸为煤基腐殖酸,以干基计的总腐殖酸含量大于70wt%。
一种腐殖酸源土壤重金属有效态调控剂在镉污染土壤钝化中的应用,将土壤重金属钝化剂组分施入到镉污染土壤中,与耕层土壤翻耕混拌均匀。
在上述的腐殖酸源土壤重金属有效态调控剂在镉污染土壤钝化中的应用中,土壤重金属钝化剂组分加入量为镉污染土壤的1wt%,之后在镉污染土壤中种植水稻。
一种腐殖酸源土壤重金属有效态调控剂在镉污染土壤活化中的应用,将土壤重金属活化剂组分喷洒到镉污染土壤中,之后在镉污染土壤中种植绿化植物。
在上述的腐殖酸源土壤重金属有效态调控剂在镉污染土壤活化中的应用中,所述的绿化植物为苗木,所述的土壤重金属活化剂组分按固液比2 kg: 1250 mL喷洒到镉污染土壤中。
在上述的腐殖酸源土壤重金属有效态调控剂在镉污染土壤活化中的应用中,所述的绿化植物为红叶石楠,所述的土壤重金属活化剂组分按固液比2 kg: 1250 mL喷洒到镉污染土壤中。
与现有的技术相比,本发明的优点在于:
传统的腐殖酸组分分离提纯方法,主要是利用不同化学试剂,根据腐殖酸在不同极性和pH溶剂中(NaOH、HCl、丙酮等)的溶解性,分离得到棕腐酸、黑腐酸和黄腐酸。虽然该法可有效分离腐殖酸的可溶和不可溶组分,但其化学工艺复杂、分离成本较高。与之相比,纯水溶法可对腐殖酸可溶和非可溶组分直接分离,也更符合施用土壤后的实际作用过程。此外,腐殖酸主要成分为非可溶部分,通过物理研磨来改变腐殖酸物料粒径、提高可溶组分的占比,是进一步提高腐殖酸各组分作用的简单、有效方法。
申请人意外的发现,腐殖酸组分中含有Cd活化组分和钝化组分,将腐殖酸经过研磨后进行水溶分离,得到腐殖酸溶解液(Cd活化组分)和腐殖酸滤渣(Cd钝化组分),活化组分可用于增强修复植物对土壤重金属的提取修复,而钝化组分可用于降低农作物对重金属的吸收。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1是对比例1的两种腐殖固体对Cd2+的吸附曲线和结合率示意图。
图2是对比例2中不同腐殖酸固液两相对土壤有效态Cd含量的影响示意图。
具体实施方式
实施例1
腐殖酸,购自山东创新腐殖酸科技股份有限公司,为风化煤矿源腐殖酸,总腐殖酸含量大于70%(以干基计),溶解率为14.17%(以干基计)。腐殖酸溶解率在固液比2∶50情况下测得,以下同。
将腐殖酸放入到DM-04L变频行星式球磨机中,球磨机的大球、中球和小球直径分别为10mm、5mm和3mm,大球、中球和小球的比为1:4:5,在球磨机的球罐中按30%球罐的体积投入腐殖酸,在450RPM转速下,研磨90min,得研磨后的腐殖酸。取研磨后的腐殖酸2kg,加入50L蒸馏水,震荡或搅拌24h,用离心机在5000 RPM离心5 min后,固液分离,得腐殖酸溶解液和腐殖酸滤渣,其中腐殖酸溶解液为土壤重金属活化剂组分,腐殖酸滤渣为土壤重金属钝化剂组分。
经过上述研磨后,腐殖酸的溶解率为14.33%。
实施例2
腐殖酸,购自山东创新腐殖酸科技股份有限公司,为风化煤矿源腐殖酸,总腐殖酸含量大于70%(以干基计),溶解率为14.17%(以干基计)。
将腐殖酸放入到DM-04L变频行星式球磨机中,球磨机的大球、中球和小球直径分别为10mm、5mm和3mm。
在球磨机的球罐中按30%球罐的体积投入腐殖酸,大球、中球和小球的比为1:4:5,在250RPM转速下,研磨150min,得研磨后的腐殖酸,研磨后的腐殖酸溶解率为14.33%。
取研磨后的腐殖酸2kg,加入50L蒸馏水,震荡或搅拌24h,用离心机在5000 RPM离心5 min后,固液分离,得腐殖酸溶解液和腐殖酸滤渣,其中腐殖酸溶解液为土壤重金属活化剂组分,腐殖酸滤渣为土壤重金属钝化剂组分。
实施例3
腐殖酸,购自山东创新腐殖酸科技股份有限公司,为风化煤矿源腐殖酸,总腐殖酸含量大于70%(以干基计),溶解率为14.17%(以干基计)。
球磨机的大球、中球和小球直径分别为10mm、5mm和3mm,大球、中球和小球的比为1:4:5。
在球磨机的球罐中按10%球罐的体积投入腐殖酸,在250RPM转速下,研磨90min,得研磨后的腐殖酸,研磨后的腐殖酸溶解率为14.50%。
取研磨后的腐殖酸2kg,加入50L蒸馏水,震荡或搅拌24h,用离心机在5000 RPM离心5 min后,固液分离,得腐殖酸溶解液和腐殖酸滤渣,其中腐殖酸溶解液为土壤重金属活化剂组分,腐殖酸滤渣为土壤重金属钝化剂组分。
实施例4
腐殖酸,购自山东创新腐殖酸科技股份有限公司,为风化煤矿源腐殖酸,总腐殖酸含量大于70%(以干基计),溶解率为14.17%(以干基计)。
球磨机的大球、中球和小球直径分别为10mm、5mm和3mm,大球、中球和小球的比为2:7:8。
在球磨机的球罐中按30%球罐的体积投入腐殖酸,在250RPM转速下,研磨90min,得研磨后的腐殖酸,研磨后的腐殖酸溶解率为15.17%。
取研磨后的腐殖酸2kg,加入50L蒸馏水,震荡或搅拌24h,用离心机在5000 RPM离心5 min后,固液分离,得腐殖酸溶解液和腐殖酸滤渣,其中腐殖酸溶解液为土壤重金属活化剂组分,腐殖酸滤渣为土壤重金属钝化剂组分。
应用例1
在杭州市某矿区镉污染农田,土壤Cd含量0.78 mg·kg-1,。取六块10*10m的试验田,深耕15-25cm,按1wt%在五块试验田中分别加入未处理的腐殖酸、以及实施例1-4制得的腐殖酸滤渣,翻耕均匀,其中一块不加任何腐殖酸,作为空白对照,在六块试验田中种植水稻,成熟后收割稻穗,脱壳后检测大米(糙米)中的Cd含量。检测结果见下表。
不同腐殖酸及腐殖酸滤渣对稻米镉含量的影响
试验田 | 空白 | 腐殖酸 | 实施例2 | 实施例3 | 实施例4 | 实施例5 |
大米中Cd含量(mg/kg) | 0.52 | 0.18 | 0.15 | 0.15 | 0.12 | 0.11 |
结果显示,加入腐殖酸及腐殖酸滤渣后能明显降低大米中的Cd含量,且腐殖酸滤渣相对应腐殖酸,具有显著降低Cd含量的效果,以实施例4和5的经过研磨后的腐殖酸滤渣的钝化效果最明显。
腐殖质及腐殖酸滤渣的加入量,可以先选取1*1m的试验田,按深耕深度挖出泥土称重,之后折算整块试验田的理论深耕量及应当加入的腐殖质及腐殖酸滤渣的量。
应用例2
供试植物为红叶石楠,盆栽装土2 kg。土壤Cd含量为10.2 mg/kg。土壤风干后土壤磨碎过2 mm 筛,按4 g kg-1比例均匀混合缓释肥APEX。为防土壤中Cd随水析出,花盆内附塑料袋。盆栽试验人工气候室进行。
对照:不加任何腐殖酸
未研磨腐殖酸:取腐殖酸溶2 g,加入蒸馏水50 mL,震荡 24 h,5000 RPM离心5min后,固液分离,分别得到腐殖酸溶解液和腐殖酸滤渣样品。
G1-G4:取实施例1-4的腐殖酸溶解液和腐殖酸滤渣。
将按上述方法制备获得的5种腐殖酸溶解液分别按照固液比2 kg:1250 mL,分4次加入供试土壤中,将腐殖酸以及5种滤渣按照1wt%的量与供试土壤混匀,每个处理6次重复。培养期间土壤湿度保持60%~80%,光照12 h。试验于第80天后收获植株,测定植株地上部镉含量。结果见下表。
施用不同研磨粒径的腐殖酸固液两相对红叶石楠叶片
镉吸收的影响
由上表可以看出,将腐殖酸施入土壤后,红叶石楠叶片Cd含量与未施用处理显著下降,表明腐殖酸对土壤Cd起到了钝化作用,进而抑制了红叶石楠对Cd的吸收。分离腐殖酸水溶部分加入土壤中,红叶石楠叶片Cd含量有所增加,而与之对应,施入腐殖酸残渣部分红叶石楠叶片Cd含量显著下降。实施例1-4研磨获得不同溶解度腐殖酸,随着腐殖酸溶解度提高(G1至G4),腐殖酸水溶部分促进东红叶石楠Cd吸收能力增强,而残渣部分抑制红叶石楠Cd吸收的效果愈加显著。由此可见,通过物理研磨来改变腐殖酸物料粒径、提高可溶组分的占比,是进一步提高腐殖酸各组分作用的有效方法。
对比例1
选取腐殖酸及其实施例4的腐殖酸滤渣2种样品,开展Cd等温吸附试验。Cd浓度梯度设为500 mg·L-1、750 mg·L-1、1000 mg·L-1、1200 mg·L-1、1400 mg·L-1 5个处理,固液比1:20下恒温(25℃)震荡(220 rpm)24 h,5000 rpm离心5 min,过滤后测定上清液中Cd2+含量。
两种材料(腐殖酸和腐殖酸滤渣)对Cd的吸附量均随初始Cd浓度的加大而增加。随着Cd浓度的增加,腐殖酸滤渣对Cd的吸附量的增幅高于原腐殖酸,且在Cd浓度高于200mg·L-1时,两者差异达到显著水平。
采用Langmuir方程拟合了Cd的等温吸附曲线(表1),
表1 吸附模型拟合结果
相关系数R2达极显著水平,表明此方程可用于描述腐殖酸对Cd的吸附特征。分析表明,腐殖酸滤渣最大吸附量为18.77 g·kg-1,大于原腐殖酸18.17 g·kg-1。此外,吸附常数 QUOTE 在一定程度上反映了腐殖酸吸附Cd的能级,其值越大,说明反应在常温下能自发进行程度愈强,生成物愈稳定,对Cd的吸附能力越强。由分析结果可以看出,腐殖酸滤渣 QUOTE 值(0.2899)大于原腐殖酸 QUOTE 值(0.1519),说明腐殖酸滤渣对Cd的吸附能力高于原腐殖酸。
通过二者差异可见,腐殖酸溶解液对Cd存在一定的解吸作用。
对比例2
用腐殖酸以及实施例1-4中制备的腐殖酸滤渣开展土培试验。
对照:取腐殖酸溶2 g,加入蒸馏水50 mL,震荡 24 h,5000 RPM离心5 min后,固液分离,分别得到腐殖酸溶解液和腐殖酸滤渣样品。
G1-G4:取实施例1-4的腐殖酸溶解液和腐殖酸滤渣。
供试土壤取采自杭州市某矿区镉重度污染农田,为潜育水稻土,土壤Cd含量10.2mg·kg-1。取供试土壤10份,每份8g,分别加入上述的腐殖酸溶解液50mL及腐殖酸滤渣2g,充分混匀,培养30天后,破坏性采样,测定土壤有效态Cd含量。结果如图1所示。
如图1所示,施用滤渣显著降低了土壤有效态Cd含量,降幅为0.42 mg·kg-1-0.56mg·kg-1,而施用不同研磨处理的溶解液后土壤有效态Cd含量增加,增幅为0.06 mg·kg-1-0.33 mg·kg-1。表明经过研磨后的腐殖酸溶解液对镉的活化作用显著增强,相应的滤渣钝化作用显著增强。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神。
Claims (7)
1.一种腐殖酸源土壤重金属有效态调控剂的制备方法,其特征在于,采用下述方法制得:
腐殖酸用球磨机进行研磨,研磨时间为90min,研磨转速为250rpm ,研磨球分为大球、中球和小球,其中大球、中球和小球的数量比为2:7:8,大球、中球和小球的直径分别为10mm、5mm和3mm,将腐殖酸研磨后,加入水震荡或搅拌均匀,其中腐殖酸与水的固液比为1:25,采用离心机进行离心后固液分离,得腐殖酸溶解液和腐殖酸滤渣,其中腐殖酸溶解液为土壤重金属活化剂组分,腐殖酸滤渣为土壤重金属钝化剂组分。
2.根据权利要求1所述的腐殖酸源土壤重金属有效态调控剂的制备方法,其特征在于,所述腐殖酸为煤基腐殖酸,以干基计的总腐殖酸含量大于70wt%。
3.根据权利要求1-2任意一项所述的腐殖酸源土壤重金属有效态调控剂的制备方法制得的腐殖酸源土壤重金属有效态调控剂在镉污染土壤钝化中的应用,其特征在于,将土壤重金属钝化剂组分施入到镉污染土壤中,与耕层土壤翻耕混拌均匀。
4.根据权利要求3所述的腐殖酸源土壤重金属有效态调控剂的制备方法制得的腐殖酸源土壤重金属有效态调控剂在镉污染土壤钝化中的应用,其特征在于,土壤重金属钝化剂组分加入量为镉污染土壤的1wt%,之后在镉污染土壤中种植水稻。
5.根据权利要求1-2任意一项所述的腐殖酸源土壤重金属有效态调控剂的制备方法制得的腐殖酸源土壤重金属有效态调控剂在镉污染土壤活化中的应用,其特征在于,将土壤重金属活化剂组分喷洒到镉污染土壤中,之后在镉污染土壤中种植绿化植物。
6.根据权利要求5所述的腐殖酸源土壤重金属有效态调控剂的制备方法制得的腐殖酸源土壤重金属有效态调控剂在镉污染土壤活化中的应用,其特征在于,所述的绿化植物为苗木,所述的土壤重金属活化剂组分按固液比2 kg: 1250 mL喷洒到镉污染土壤中。
7.根据权利要求5所述的腐殖酸源土壤重金属有效态调控剂的制备方法制得的腐殖酸源土壤重金属有效态调控剂在镉污染土壤活化中的应用,其特征在于,所述的绿化植物为红叶石楠,所述的土壤重金属活化剂组分按固液比2 kg: 1250 mL喷洒到镉污染土壤中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910119090.9A CN109777429B (zh) | 2019-02-18 | 2019-02-18 | 腐殖酸源土壤重金属有效态调控剂及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910119090.9A CN109777429B (zh) | 2019-02-18 | 2019-02-18 | 腐殖酸源土壤重金属有效态调控剂及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109777429A CN109777429A (zh) | 2019-05-21 |
CN109777429B true CN109777429B (zh) | 2020-03-24 |
Family
ID=66503312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910119090.9A Active CN109777429B (zh) | 2019-02-18 | 2019-02-18 | 腐殖酸源土壤重金属有效态调控剂及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109777429B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115338249B (zh) * | 2022-08-19 | 2023-04-07 | 生态环境部南京环境科学研究所 | 基于d-最优设计的腐殖酸淋洗修复砷镉污染土壤的优化方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102925161A (zh) * | 2012-01-18 | 2013-02-13 | 云南省烟草公司昭通市公司 | 一种广谱重金属活性钝化剂的制备方法 |
CN107418587A (zh) * | 2017-05-17 | 2017-12-01 | 郭迎庆 | 一种土壤重金属复合钝化剂的制备方法 |
CN108817069A (zh) * | 2018-06-01 | 2018-11-16 | 湖南泰谷生态工程有限公司 | 一种重金属活化剂及其在土壤联合修复中的应用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103433275B (zh) * | 2013-08-23 | 2015-03-11 | 四川农业大学 | 一种富里酸与氯化钾组合淋洗剂及其制备方法及其应用 |
CN104550208B (zh) * | 2013-10-12 | 2019-05-10 | 中环循(北京)环境技术中心 | 一种耦合活化和钝化的农田土壤重金属污染修复方法 |
CN108746199A (zh) * | 2018-07-06 | 2018-11-06 | 湖南农业大学 | 肥料型土壤活化剂及修复重金属污染土壤的方法 |
-
2019
- 2019-02-18 CN CN201910119090.9A patent/CN109777429B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102925161A (zh) * | 2012-01-18 | 2013-02-13 | 云南省烟草公司昭通市公司 | 一种广谱重金属活性钝化剂的制备方法 |
CN107418587A (zh) * | 2017-05-17 | 2017-12-01 | 郭迎庆 | 一种土壤重金属复合钝化剂的制备方法 |
CN108817069A (zh) * | 2018-06-01 | 2018-11-16 | 湖南泰谷生态工程有限公司 | 一种重金属活化剂及其在土壤联合修复中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN109777429A (zh) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107488618B (zh) | 巨大芽孢杆菌h3及其在促进作物生长和减少作物吸收重金属的应用 | |
CN109852395B (zh) | 牡蛎壳粉及其制备方法、土壤重金属钝化剂和有机肥料 | |
CN109678626B (zh) | 用于汞污染农田修复的土壤调理剂及其制备方法与应用 | |
CN107286943B (zh) | 一种具有改良土壤功能的镉钝化剂及其生产方法 | |
BR112021010518A2 (pt) | Degradação biológica de carvões de baixo rank e processos, sistemas e aplicações relacionadas | |
CN107325502A (zh) | 一种保水增肥可生物降解农用地膜及其制备方法 | |
CN109777429B (zh) | 腐殖酸源土壤重金属有效态调控剂及其应用 | |
Feng et al. | Calcium alginate-biochar composite as a novel amendment for the retention and slow-release of nutrients in karst soil | |
Deng et al. | Enhancement of soil microstructural stability and alleviation of aluminium toxicity in acidic latosols via alkaline humic acid fertiliser amendment | |
Xu et al. | Feasibility of Sewage Sludge Leached by Aspergillus Niger in Land Utilization. | |
Valizadeh-rad et al. | Direct and residual effects of water deficit stress, different sources of silicon and plant-growth promoting bacteria on silicon fractions in the soil | |
CN112403444B (zh) | 一种减少稻米中甲基汞富集的改性生物炭及方法 | |
Rollon et al. | Growth and nutrient uptake of Paraserianthes falcataria (L.) as affected by carbonized rice hull and arbuscular mycorrhizal fungi grown in an artificially copper contaminated soil | |
Wongrod et al. | Recycling of nutrient-loaded biochars produced from agricultural residues as soil promoters for Gomphrena growth | |
Zein El-Abdeen | Interference between organic soil conditioners mixed with synthetic soil conditioners to improve sandy soil productivity | |
Nieweś et al. | Application of a modified method of humic acids extraction as an efficient process in the production of formulations for agricultural purposes | |
CN115594532A (zh) | 一种耐镉溶磷菌、载体及生物菌肥 | |
CN107739614A (zh) | 一种可修复重金属污染土壤的调理剂的制备及其应用 | |
Bashir et al. | Comparative Role of Compost, Press Mud and Moringa Leaf Extract to Eliminate the Stress and Growth of Maize in Cadmium Polluted Soil | |
Taha et al. | Some agricultural practices for improving the productivity of moderately sodic soil I: soil properties and wheat vegetative growth | |
Wahane et al. | Effect of phosphorus, vesicular arbuscular mycorrhizae (VAM) and phosphate solubilizing bacteria (PSB) on yield and nutrient content of groundnut and soil physical properties of alfisols | |
Jahan et al. | Chitosan Beads-Infused Biochar for Enhancing Physio-Chemical and Yield Attributes of Sunflower (Helianthus Annus L.) Grown Under Wastewater Irrigation | |
El-Zabalawy et al. | Effect of Marine Algae on Bio-accumulation of Heavy Metals from Polluted Soil by some Leafy Vegetables | |
Debnath et al. | Critical limit of available boron for rice in alluvial zone soils of West Bengal | |
Abd-Elhady | Evaluation of algae dry biomass as a biochemical soil remediation for polluted soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190521 Assignee: ZHEJIANG SINO-GEO CLEAN-SOIL Co.,Ltd. Assignor: Zhejiang Academy of Agricultural Sciences Contract record no.: X2022330000015 Denomination of invention: Effective state regulators of heavy metals in humic acid source soil and their application Granted publication date: 20200324 License type: Common License Record date: 20220111 |