CN109768549A - 一种电力系统热稳定安全域构建的方法 - Google Patents

一种电力系统热稳定安全域构建的方法 Download PDF

Info

Publication number
CN109768549A
CN109768549A CN201910087249.3A CN201910087249A CN109768549A CN 109768549 A CN109768549 A CN 109768549A CN 201910087249 A CN201910087249 A CN 201910087249A CN 109768549 A CN109768549 A CN 109768549A
Authority
CN
China
Prior art keywords
hyperplane
bootstrap
residual error
thermostabilization
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910087249.3A
Other languages
English (en)
Other versions
CN109768549B (zh
Inventor
李雪
姜涛
李国庆
陈厚合
张儒峰
张嵩
王长江
李曙光
李晓辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN201910087249.3A priority Critical patent/CN109768549B/zh
Publication of CN109768549A publication Critical patent/CN109768549A/zh
Application granted granted Critical
Publication of CN109768549B publication Critical patent/CN109768549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种电力系统热稳定安全域构建的方法,包括:根据预测值集合和残差集合,获取重构值集合;基于重构值集合、原始热稳定临界点集合的子集合,计算N‑1下热稳定安全边界近似超平面的解析表达式的系数集合;根据系数集合,计算各系数的经验分布函数的初始均值和初始标准差;重复上两步骤若干次,获取基于bootstrap抽样的经验分布函数的bootstrap均值和bootstrap标准差;根据bootstrap均值和bootstrap标准差,结合概率论和统计学中的t分布、χ2分布近似得支路k所对应的经验分布函数的均值和标准差,并计算相应的置信区间,进而求取支路k所对应的近似超平面表达式。

Description

一种电力系统热稳定安全域构建的方法
技术领域
本发明涉及电力系统领域,尤其涉及一种基于Bootstrap抽样[1]的电力系统热稳定安全 域快速构建方法。
背景技术
当前,电力系统N-1热稳定校验完全基于逐点极限计算模式,该方法简单易用,已在 电网的运行规划中发挥着巨大作用。但随着电网规模不断发展、随着高渗透率可再生能源 大规模并网,该方法已暴露出越来越多的局限性,主要体现在:①在N-1热稳定极限之下, 电力系统也可能存在热稳定越限;②极限计算结果受电力系统运行方式变化而难以确定, 且某一个固定的极限值难以确保电网的N-1热稳定安全。随着电网规模不断扩大、可再生 能源大规模并网,影响电力系统支路潮流分布的因素已经越来越多、呈现了明显的多维特 性,仅仅采用过去简单的、一维的极限计算方法来监视、控制电网支路热稳定性已不能满 足大电网安全运行、精细化运行要求,亟需发展新技术手段来解决该问题,而静态热稳定 安全域(Static thermalsecurity region,STSR)就是一种最理想、最实用的新的解决方案。
STSR定义为在功率注入空间内,满足电力系统N-1热稳定的所有运行点集合。通过判断电力系统当前运行点与STSR边界的相对位置,可定性评估电力系统的N-1热稳定运 行状态,实现全面、直观地监视和控制电力系统的N-1热稳定性,可有效评估电力系统在 波动性、随机性和间歇性等诸多不确定性因素影响下的热稳定性,但STSR边界搜索是构 建STSR的关键。STSR边界呈现高维非线性拓扑特性,求取复杂度高且难以形成精确的 边界解析表达式。通过大量离线计算可获得处于STSR边界上的热稳定临界运行点集,进 而形成STSR边界,通过对比电力系统运行点相对STSR边界的位置,可定性评估电力系 统电压稳定性,但这类方法难以形成描述STSR边界的解析表达式,不能定量分析电力系 统运行点到STSR边界的距离,直观给出电力系统N-1热稳定裕度和制定合理、可行的控 制方案以改善系电力统N-1的热稳定性。
大量科学研究和工程实践发现:在工程关心的范围内,电力系统的热稳定安全域边界 可用一个或少数几个超平面来近似描述。为获得热稳定安全域边界的近似超平面,目前常 采用重复调用潮流方程,搜索大量不同功率增长方向下处于所研究支路N-1热稳定临界的 运行点,然后根据这些运行点,采用最小二乘求解对应的近似超平面的系数,进而获取超 平面的近似表达式。理论上,搜索的热稳定临界点越多,所构建的近似超平面精度越高, 可更高精度逼近支路热稳定安全域边界。但在实际应用过程中,临界点的搜索是热稳定安 全域构建最耗时的部分。高精度的近似超平面意味着高耗时的临界点搜索,这显然与热稳 定安全域的在线应用相矛盾。
为避免陷入计算精度与在线应用的矛盾中,目前工程应用时,在牺牲一定的计算精度 前提下,通过搜索有限个临界点来构建热稳定安全域边界的近似超平面。为保证所构建的 热稳定安全域内部不存在空洞,通常还需将所得的超平面进一步平移,以保证热稳定安全 域内的运行点都是安全的。显而易见,该方法在保证热稳定安全域内部不存在空洞同时, 也将部分稳定运行点排除在热稳定安全域外,带来了较高的保守性。
参考文献
[1]B.Efron,R.Tibshirani,“Bootstrap methods:another look at thejackknife,”Ann.Statist.,vol. 7,no.1,pp.1–26,1979.
发明内容
本发明提供了一种电力系统热稳定安全域快速构建方法,本发明基于Bootstrap抽样, 实现准确、快速、高精度地构建电力系统热稳定安全域,详见下文描述:
一种电力系统热稳定安全域构建的方法,所述方法基于Bootstrap抽样,所述方法包括 以下步骤:
1)根据初始近似超平面解析表达式、结合支路k在N-1下的原始热稳定临界点集合的子集合,获取近似超平面预测值集合、残差集合及残差的经验分布函数;
2)根据预测值集合和残差集合,获取重构值集合;基于重构值集合、原始热稳定临界点集合的子集合,计算N-1下热稳定安全边界近似超平面的解析表达式的系数集合;
3)根据系数集合,计算各系数的经验分布函数的初始均值和初始标准差;
4)重复执行步骤2)-3)若干次,获取基于bootstrap抽样的经验分布函数的bootstrap 均值和bootstrap标准差;
5)根据bootstrap均值和bootstrap标准差,结合概率论和统计学中的t分布、χ2分布 近似得支路k所对应的经验分布函数的均值和标准差,并计算相应的置信区间,进而求取 支路k所对应的近似超平面表达式。
所述根据初始近似超平面解析表达式、结合支路k在N-1下的原始热稳定临界点集合 的子集合,获取近似超平面预测值集合、残差集合及残差的经验分布函数具体为:
根据初始近似超平面解析表达式、原始热稳定临界点子集合计算近似超平面预测值集 合;
由列向量的实际值集合和近似超平面预测值集合的对应向量之差,获取残差集合;
由求得的残差集合,计算残差的经验分布函数,即均值μ(ξ′)和标准差σ(ξ′)。
所述近似超平面预测值集合为:
其中,
为由第j个原始热稳定临界所得的第j个预测值, β1=-βk,2k,1和βn-1=-βk,nk,1为第n个描述性参数在第j个原始热稳 定临界点处的值,βk,n为第n个描述性参数在第k条支路N-1下的热稳定安全边界近似超 平面的系数。
所述计算残差的经验分布函数,即均值μ(ξ′)和标准差σ(ξ′)为:
其中,ξ′为残差集合中的元素。
进一步地,所述根据预测值集合和残差集合,获取重构值集合具体为:
基于残差的经验分布函数,从残差集合中任意抽取一残差ξj′,与的预测值集合中任 一元素计算的重构值
重复执行上述步骤z次,获取到的重构值集合。
其中,所述bootstrap均值和bootstrap标准差具体为:
其中,均为bootstrap均值;均为bootstrap标准差;μ′i(α′)、 μ′i(β′1)、μ′i(β′n-1)为经验分布函数的均值。
本发明提供的技术方案的有益效果是:
1、本发明在原始热稳定临界点基础上,通过Bootstrap抽样生成大量的热稳定临界点, 提高了电力系统热稳定安全域边界的近似效率;
2、本发明通过估计超平面系数的经验分布函数,确定各超平面系数的值,并引入超 平面系数的置信区间和标准化,以有效评估所得超平面近似电力系统热稳定安全域边界的 效果和可靠性;
3、本发明基于统计学的方法求解电力系统热稳定安全域边界的近似超平面,可有效 计及了运行方式的不确定性对超平面计算结果的影响;
4、本发明可为电网运行调度人员提供更加快速、准确、高精度的电力系统支路N-1热稳定信息,有利于电网运行调度人员及时掌握电力系统热稳定信息,采用合理措施,改善电网运行的N-1热稳定性。
附图说明
图1为一种基于Bootstrap抽样的电力系统热稳定安全域快速构建方法的流程图;
图2为总有功功率的初始预测值图;
图3为初始预测残差图;
图4为某一单线N-1的热稳定安全域及其边界近似超平面图的示意图;
图5为d1的预测值与实际值的对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详 细描述。
为了解决背景技术中关于快速构建电力系统热稳定安全域的不足,本发明实施例提出 一种基于Bootstrap抽样的电力系统热稳定安全域快速构建新方法,以实现电力系统热稳定 安全域边界的快速、准确近似,进而提高电力系统热稳定安全域的构建效率和精度,为电 网运行调度人员提供快速、准确、可靠的N-1静态热稳定安全评估,以改善电力系统N-1 静态热稳定安全的监视和控制效果。
实施例1
一种基于Bootstrap抽样的电力系统热稳定安全域快速构建方法,参见图1,该方法包 括以下步骤:
101:根据初始近似超平面解析表达式、结合支路k在N-1下的原始热稳定临界点集合的子集合,获取近似超平面预测值集合、残差集合及残差的经验分布函数;
102:根据预测值集合和残差集合,获取重构值集合;基于重构值集合、原始热稳定临界点集合的子集合,计算N-1下热稳定安全边界近似超平面的解析表达式的系数集合;
103:根据系数集合,计算各系数的经验分布函数的初始均值和初始标准差;
104:重复执行步骤102-103若干次,获取基于bootstrap抽样的经验分布函数的bootstrap 均值和bootstrap标准差;
105:根据bootstrap均值和bootstrap标准差,近似得支路k所对应的经验分布函数的 均值和标准差,并计算相应的置信区间,进而求取支路k所对应的近似超平面表达式。
其中,上述步骤101中的根据初始近似超平面解析表达式、结合支路k在N-1下的原始热稳定临界点集合的子集合,获取近似超平面预测值集合、残差集合及残差的经验分布函数具体为:
根据初始近似超平面解析表达式、原始热稳定临界点子集合计算近似超平面预测值集 合;
由列向量的实际值集合和近似超平面预测值集合的对应向量之差,获取残差集合;
由求得的残差集合,计算残差的经验分布函数,即均值μ(ξ′)和标准差σ(ξ′)。
其中,上述步骤102中的根据预测值集合和残差集合,获取重构值集合具体为:
基于残差的经验分布函数,从残差集合中任意抽取一残差ξj′,与的预测值集合中任 一元素计算的重构值
重复执行上述步骤z次,获取到的重构值集合
综上所述,本发明实施例在原始热稳定临界点基础上,通过Bootstrap抽样生成大量的 热稳定临界点,提高了电力系统热稳定安全域边界的近似效率。
实施例2
下面结合具体的计算公式、实例对实施例1中的方案进行进一步地介绍,详见下文描 述:
201:获取电力系统热稳定安全域边界的初始近似超平面解析表达式,包括:
1)将式(1)描述的热稳定安全域边界的近似超平面,改写为式(2)所示的形式:
式中,βk,0、βk,1、…、βk,n为满足第k条支路N-1约束的热稳定安全域边界近似的超平面系数;为电力系统满足第k条支路N-1约束的热稳定安全域边界上的临界运行点,中元素为电力系统的描述性参数,可为支路电流、支路有功功率、支路 相位差、区域总负荷、断面有功功率等(具体实现时,本发明实施例对此不做限制);为 第k条支路的热稳定限值;n为安全域的空间维数。
式中,β1=-βk,2k,1和βn-1=-βk,nk,1
2)采用最优潮流或重复潮流计算得到支路k在N-1下的原始热稳定临界点集合;
其中,原始热稳定临界点集合 为列向量,该列向量中元 素数量对应于采用最优潮流或重复潮流计算所得的支路k在N-1下的原始热稳定临界点个 数,按式(3)计算式(2)所示的支路k所对应的N-1下热稳定安全边界近似超平面的解析表达 式的初始系数α0,如下:
式中,T为转置。
3)根据式(3)所求解的支路k对应的N-1下热稳定安全边界近似超平面的解析表达式 的初始系数α0,获取支路k对应的N-1下热稳定安全边界初始近似超平面表 达式为:
式中,的预测值。
202:根据所求得的支路k在N-1下的原始热稳定临界点集合的子集合 和N-1下热稳定安全边界初始近似超平面表达式(4),求由式(4)计算所得 的近似超平面预测值集合残差集合ξ′及残差的经验分布函数,包括:
1)根据式(4)和原始热稳定临界点子集合计算近似超平面预测值 集合
式中,为由第j个原始热稳定临界所得的第j个预测值。
2)由的实际值集合和预测值集合
求式(4)所示的热稳定安全域边界近似超平面的残 差集合
3)由求得的残差集合计算残差的经验分布函数的均值μ(ξ′)和 标准差σ(ξ′):
203:根据残差集合ξ′=[ξ1′ ξ2′ … ξm′]和的预测值集合计算的重构值集合包括:
1)基于残差ξ′=[ξ1′ ξ2′ … ξj′ … ξm′]的经验分布函数,从 ξ′=[ξ1′ ξ2′ …ξj′ … ξm′]中任意抽取一残差ξj′,与的预测值集合
中任一元素按式(8)计算的重构值
2)重复执行步骤1)z次(z≥m×n),获取到的重构值集合
204:基于的重构值集合及支路k的原始热稳定临界点子集 合按式(9)计算式(2)所示的支路k所对应的N-1下热稳定安全边界 近似超平面的解析表达式的系数集合α′=[α′1 α′2 … α′N]、β′1=[β′1,1 β′1,2 …β′1,N]、…及 β′n-1=[β′n-1,1 β′n-1,2 … β′n-1,N],包括:
1)基于由式(9)计算支路k所对应的 N-1下热稳定安全边界近似超平面的解析表达式的系数α′1,β′1,1,…,β′n-1,1
2)重复执行步骤203、及步骤204中的步骤1)N次,获取支路k所对应的N-1下热稳定安全边界近似超平面的解析表达式的系数集合α′=[α′1 α′2 … α′N]、 β′1=[β′1,1β′1,2 … β′1,N]、…、β′n-1=[β′n-1,1 β′n-1,2 … β′n-1,N]。
205:根据步骤204所得的超平面的解析表达式的各系数集合α′=[α′1 α′2 … α′N]、 β′1=[β′1,1β′1,2 … β′1,N]、…、β′n-1=[β′n-1,1 β′n-1,2 … β′n-1,N],计算近似超平面的解析表达式 的各系数的经验分布函数的均值μ′和标准差σ′;
即,以式(10)计算各系数的经验分布函数的均值、和以式(11)计算各系数的经验分布函 数的标准差:
206:基于bootstrap抽样,重复执行步骤203、204和205L次,获取基于bootstrap抽样的经验分布函数的均值μ*和标准差σ*;;
1)重复步骤203、204和205L次,计算每次的近似超平面的解析表达式的各系数的经验分布函数的均值μ′和标准差σ′,得式(12)所示的各系数α′1,β′1,1,…,β′n-1,1的经验分布函 数的均值集合和式(13)所示的各系数α′1,β′1,1,…,β′n-1,1的经验分布函数的标准差集合;
2)针对式(12)和式(13)所得的经验分布函数的均值集合和标准差集合,分别根据式(14) 和(15)计算bootstrap抽样的近似超平面各系数的经验分布函数的均值μ*和标准差σ*
其中,均为均值;均为标准差。
207:根据步骤206中计算的均值μ*和标准差σ*,近似得支路k所对应的经验分布函数的均值μ和标准差σ,并按式(16)和(17)计算均值μ和标准差σ的η(η通常取值为95%、90%等)的置信区间;。
式中,t为概率论和统计学中的t-分布,χ2为概率论和统计学中的χ2-分布。
208:根据步骤207近似所得的支路k所对应的经验分布函数,得式(18)所示的支路k 所对应的近似超平面表达式。
式中,
由式(18)所得在高维空间第一象限内的近似超平面及坐标轴,构建满足支路k出现 N-1后仍满足热稳定运行要求的热稳定安全域。
上述具体构建的步骤为本领域技术人员所公知,本发明实施例对此不做赘述。
综上所述,本发明实施例通过上述步骤201-步骤208实现了基于bootstrap抽样的电力 系统热稳定安全域边界的近似超平面快速估计,在不降低电力系统热稳定安全域边界近似 精度的前提下,实现了基于bootstrap抽样的热稳定安全域边界的快速近似。可为电网运行 和控制人员改善电力系统的热稳定安全性提供快速、准确、可靠的热稳定信息,有利于提 升电力系统的N-1热稳定安全监视与控制能力。
实施例3
下面结合具体的实例、图2-图5、以及表1,对实施例1和2中的方案进行可行性验证,详见下文描述:
本实例是以在三维有功功率空间中构建位于南方电网广东交流输入断面的某一单线 N-1热稳定安全域为例,验证本发明实施例1和2的有效性。
显然,三维空间中式(2)所描述的单线N-1热稳定安全域边界的近似超平面表达式应为 通过长期运行经验和研究表明:影响单线N-1热稳定的关键性发电机 功率注入节点为YX和TS。
为此,在三维有功功率空间中坐标轴分别选取为流过广东交流输入断面总有功功率, 以及发电机功率注入节点YX和TS的有功注入,即式(2)中选择为单线处于N-1热稳定临界时流过广东交流输入断面的总有功功率;分别选择为单线处于N-1热稳定临界时发电机功率注入节点YX和TS注入到电力系统中的有功功率。基于d2和d3不同的功率 增长方向,通过重复潮流计算获取到60个单线N-1的热稳定临界点,进而构成步骤201 中的单线N-1热稳定临界点集合其中为列向量,且列向量中元素 数量均为60。根据单线N-1热稳定临界点集合获取子集合
进而根据式(3)求得单线N-1的热稳定安全边界近似超平面的解析表达式的初始系数 α0、β1 0分别为9343.7499、0.3224和0.9135,即式(4)所示的单线N-1的热稳定安全域 边界初始近似超平面表达式为
由求得的单线N-1的热稳定安全域边界初始近似超平面表达式及根据 式(5)计算的预测值集合其中m=60,求得的初始预测值如图 2所示。
根据重复潮流计算所得的原始实际值集合为和预测值集合
由式(6)计算该热稳定安全域边界近似超平面的残差集合 ξ′=[ξ1′ ξ2′ … ξm′],结果如图3所示。
由图3中的残差集合ξ′=[ξ1′ ξ2′ … ξm′],根据式(7)计算残差ξ′的经验分布函数的均 值和标准差。进而根据步骤203,由残差集合ξ′=[ξ1′ ξ2′ … ξm′]和的预测值集合
按式(8)计算的重构值,重复该过程3000次,得的重构 值集合
根据步骤204,由的重构值集合按 式(9)计算式(2)所示的单线N-1的热稳定安全边界近似超平面的解析表达式的系数集合 α′=[α′1 α′2 … α′N]、β′1=[β′1,1 β′1,2 … β′1,N]和β′2=[β′2,1 β′2,2 … β′2,N],此处N取值为 1000。由求得的系数集合α′、β′1和β′2,进一步由步骤205的式(10)和(11)计算系数集合α′、 β′1和β′2的经验分布函数的均值和标准方差,其中α′的经验分布函数的均值和标准方差分别 为9343.6801和3.1703;β′1的经验分布函数的均值和标准方差分别为0.3224和0.0047;β′2经验分布函数的均值和标准方差分别为0.9135和0.0069。
表1某一单线N-1的热稳定安全域边界近似超平面系数计算结果
根据步骤206重复执行步骤203、204和205共L次(算例中L取值为200,根据实际 应用设定),获取到基于bootstrap抽样的单线N-1的均值和标准差。进一步再根据步骤207,获取到单线N-1的经验分布函数的均值和标准差,及均值和标准差获得95%置信区间,如表1所示。显然,由表1中结果可知:采用本方法计算的单线N-1的系数α、β1和β2分别 为9343.7427、0.3224和0.9135。
进而由步骤208获取单线N-1的解析表达式为d1=9343.7426+3.1171d2+0.9135d3。由该 解析表达式进而可获取到单线N-1的热稳定安全域。
图4进一步给出了通过本方法求得的近似YM单线N-1的热稳定安全边界的超平面,显然,由图4中结果可见:图4中的YM单线N-1的热稳定临界点均位于本方法所得的超 平面上,表明本方法所得的超平面具有较高的安全域边界近似精度。
图5进一步对比了在YM单线N-1的热稳定临界点处,根据本方法所得的近似超平面解析表达式预测的d1值和d1的实际值,由图5中结果可知:根据本方法所预测的d1值与d1的实际值近似相等。进一步,根据图5中的d1的预测值和实际值,计算本方法所得单线N-1 的热稳定安全域边界近似超平面的近似误差,综上由图5中的结果可知:
本方法所得的近似超平面最大相对近似误差为0.3211%,平均相对近似误差为0.0805%, 结果表明本方法所得的近似超平面对单线N-1的热稳定安全域边界具有较高的近似精度。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号 仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则 之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种电力系统热稳定安全域构建的方法,所述方法基于Bootstrap抽样,其特征在于,所述方法包括以下步骤:
1)根据初始近似超平面解析表达式、结合支路k在N-1下的原始热稳定临界点集合的子集合,获取近似超平面预测值集合、残差集合及残差的经验分布函数;
2)根据预测值集合和残差集合,获取重构值集合;基于重构值集合、原始热稳定临界点集合的子集合,计算N-1下热稳定安全边界近似超平面的解析表达式的系数集合;
3)根据系数集合,计算各系数的经验分布函数的初始均值和初始标准差;
4)重复执行步骤2)-3)若干次,获取基于bootstrap抽样的经验分布函数的bootstrap均值和bootstrap标准差;
5)根据bootstrap均值和bootstrap标准差,结合概率论和统计学中的t分布、χ2分布近似得支路k所对应的经验分布函数的均值和标准差,并计算相应的置信区间,进而求取支路k所对应的近似超平面表达式。
2.根据权利要求1所述的一种电力系统热稳定安全域构建的方法,其特征在于,所述根据初始近似超平面解析表达式、结合支路k在N-1下的原始热稳定临界点集合的子集合,获取近似超平面预测值集合、残差集合及残差的经验分布函数具体为:
根据初始近似超平面解析表达式、原始热稳定临界点子集合计算近似超平面预测值集合;
由列向量的实际值集合和近似超平面预测值集合的对应向量之差,获取残差集合;
由求得的残差集合,计算残差的经验分布函数,即均值μ(ξ′)和标准差σ(ξ′)。
3.根据权利要求1所述的一种电力系统热稳定安全域构建的方法,其特征在于,所述近似超平面预测值集合为:
其中,
为由第j个原始热稳定临界所得的第j个预测值,β1=-βk,2k,1和βn-1=-βk,nk,1为第n个描述性参数在第j个原始热稳定临界点处的值,βk,n为第n个描述性参数在第k条支路N-1下的热稳定安全边界近似超平面的系数。
4.根据权利要求1所述的一种电力系统热稳定安全域构建的方法,其特征在于,所述计算残差的经验分布函数,即均值μ(ξ′)和标准差σ(ξ′)为:
其中,ξ′为残差集合中的元素。
5.根据权利要求1所述的一种电力系统热稳定安全域构建的方法,其特征在于,所述根据预测值集合和残差集合,获取重构值集合具体为:
基于残差的经验分布函数,从残差集合中任意抽取一残差ξj′,与的预测值集合中任一元素计算的重构值
重复执行上述步骤z次,获取到的重构值集合。
6.根据权利要求1所述的一种电力系统热稳定安全域构建的方法,其特征在于,所述bootstrap均值和bootstrap标准差具体为:
其中,均为bootstrap均值;均为bootstrap标准差;μ′i(α′)、μ′i(β′1)、μ′i(β′n-1)为经验分布函数的均值。
CN201910087249.3A 2019-01-23 2019-01-23 一种电力系统热稳定安全域构建的方法 Active CN109768549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910087249.3A CN109768549B (zh) 2019-01-23 2019-01-23 一种电力系统热稳定安全域构建的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910087249.3A CN109768549B (zh) 2019-01-23 2019-01-23 一种电力系统热稳定安全域构建的方法

Publications (2)

Publication Number Publication Date
CN109768549A true CN109768549A (zh) 2019-05-17
CN109768549B CN109768549B (zh) 2022-05-17

Family

ID=66455624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910087249.3A Active CN109768549B (zh) 2019-01-23 2019-01-23 一种电力系统热稳定安全域构建的方法

Country Status (1)

Country Link
CN (1) CN109768549B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111614082A (zh) * 2020-05-25 2020-09-01 东北电力大学 一种基于拉格朗日乘子的电力系统安全域边界搜索方法
CN113946960A (zh) * 2021-10-19 2022-01-18 天津大学 一种基于空间划分的实用动态安全域边界生成系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007149A (ja) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd ガスタービンプラント
CN104156582A (zh) * 2014-07-31 2014-11-19 天津大学 一种多维空间中断面热稳定安全域的快速算法
CN105787265A (zh) * 2016-02-23 2016-07-20 东南大学 基于综合集成赋权法的原子自旋陀螺随机误差建模方法
CN107025349A (zh) * 2017-04-11 2017-08-08 南京航空航天大学 基于概率边界系数法的最大熵分位值函数置信区间估计模型与方法
CN107947199A (zh) * 2017-12-01 2018-04-20 东北电力大学 基于优化模型的电力系统热稳定安全域边界的搜索方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007149A (ja) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd ガスタービンプラント
CN104156582A (zh) * 2014-07-31 2014-11-19 天津大学 一种多维空间中断面热稳定安全域的快速算法
CN105787265A (zh) * 2016-02-23 2016-07-20 东南大学 基于综合集成赋权法的原子自旋陀螺随机误差建模方法
CN107025349A (zh) * 2017-04-11 2017-08-08 南京航空航天大学 基于概率边界系数法的最大熵分位值函数置信区间估计模型与方法
CN107947199A (zh) * 2017-12-01 2018-04-20 东北电力大学 基于优化模型的电力系统热稳定安全域边界的搜索方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HOUHE CHEN: "Available_transfer_capability_calculations_considering_demand_response", 《2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING》 *
LINQUAN BAI: "Partitioning Voltage Stability Critical Injection Regions via Electrical Network Response and Dynamic Relative Gain", 《2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM)》 *
姜涛: "电力系统热稳定安全域边界快速搜索的优化模型", 《中国电机工程学报》 *
姜涛: "静态电压稳定域局部边界的快速搜索新方法", 《中国电机工程学报》 *
王兴刚: "考虑静态电压稳定约束的概率最大输电能力快速计算", 《中国优秀硕士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111614082A (zh) * 2020-05-25 2020-09-01 东北电力大学 一种基于拉格朗日乘子的电力系统安全域边界搜索方法
CN111614082B (zh) * 2020-05-25 2022-06-14 东北电力大学 一种基于拉格朗日乘子的电力系统安全域边界搜索方法
CN113946960A (zh) * 2021-10-19 2022-01-18 天津大学 一种基于空间划分的实用动态安全域边界生成系统及方法

Also Published As

Publication number Publication date
CN109768549B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Wang et al. Deep learning-based interval state estimation of AC smart grids against sparse cyber attacks
Kheirkhahzadeh et al. Efficient community detection of network flows for varying Markov times and bipartite networks
Hannam et al. Samurai project: Verifying the consistency of black-hole-binary waveforms<? format?> for gravitational-wave detection
WO2019041857A1 (zh) 一种基于场景分析的含分布式电源配电网运行状态预测方法
CN102763048A (zh) 在虚拟量测中使用适应性预测算法及决定何时使用适应性预测算法的方法及设备
US11314830B2 (en) Method and apparatus for automatically discovering gas station POI, storage medium and device
CN109768549A (zh) 一种电力系统热稳定安全域构建的方法
Chen et al. A sparse representation approach to online estimation of power system distribution factors
Eliassi et al. Application of Bayesian networks in composite power system reliability assessment and reliability‐based analysis
Zhang et al. Low-voltage distribution grid topology identification with latent tree model
Qi et al. Python-based reduced order quadrature building code for fast gravitational wave inference
Jiang et al. Distribution line parameter estimation considering dynamic operating states with a probabilistic graphical model
Zhang et al. Planning of electric vehicle charging stations and distribution system with highly renewable penetrations
CN105718738A (zh) 一种分析系统可靠性的方法
Kang et al. Distributed multi‐area WLS state estimation integrating measurements weight update
CN109447512B (zh) 基于均匀设计的大电网可靠性评估方法
Kuzmin et al. Method of probability distribution fitting for statistical data with small sample size
Ahmad Khan et al. PTP‐based time synchronisation of smart meter data for state estimation in power distribution networks
Hua et al. Efficient probabilistic contingency analysis through a stability measure considering wind perturbation
de Sousa et al. Cloud computing in the smart grid context: an application to aid fault location in distribution systems concerning the multiple estimation problem
He et al. A robust spatio‐temporal prediction approach for wind power generation based on spectral temporal graph neural network
CN106451551B (zh) 风电极限穿透功率优化方法和装置
KR102081562B1 (ko) IoT 데이터 변환 장치
Kirincic et al. A two‐step hybrid power system state estimator
CN117376087A (zh) 网络质量问题定界方法、装置、设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant