WO2019041857A1 - 一种基于场景分析的含分布式电源配电网运行状态预测方法 - Google Patents

一种基于场景分析的含分布式电源配电网运行状态预测方法 Download PDF

Info

Publication number
WO2019041857A1
WO2019041857A1 PCT/CN2018/084936 CN2018084936W WO2019041857A1 WO 2019041857 A1 WO2019041857 A1 WO 2019041857A1 CN 2018084936 W CN2018084936 W CN 2018084936W WO 2019041857 A1 WO2019041857 A1 WO 2019041857A1
Authority
WO
WIPO (PCT)
Prior art keywords
scene
sequence
distributed power
distribution network
time
Prior art date
Application number
PCT/CN2018/084936
Other languages
English (en)
French (fr)
Inventor
顾伟
宋杉
周苏洋
吴志
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US16/639,744 priority Critical patent/US20200212710A1/en
Publication of WO2019041857A1 publication Critical patent/WO2019041857A1/zh
Priority to US17/978,149 priority patent/US20230052730A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/0012Contingency detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the invention belongs to the field situation sensing field of distribution network, and relates to a method for predicting the operating state of a distribution network, and more particularly to a method for predicting the running state of a distributed power distribution network based on scene analysis.
  • Scene analysis is an effective method to solve random problems. By modeling the possible scenes, the uncertainty factors in the model are transformed into multiple deterministic scene problems, which reduces the difficulty of modeling and solving.
  • the construction of the scene tree can provide a variety of expected scenarios compared to the single prediction results obtained by time series prediction.
  • the scene analysis method can reflect the uncertainty of the system operation. At the same time, it can reflect the timing characteristics of the system operation, and apply the scenario analysis to the operational status prediction of the distributed power distribution network. It can be used and effective, and can fully utilize the distributed power history operation information and real-time operation information to the distribution network. Situational forecasting provides new ideas.
  • the present invention provides a method for predicting the operating state of a distributed power distribution network based on scene analysis, and performs multi-scenario multi-scenario prediction of distributed power output information to give a distribution network operation for the next two hours. State change trend.
  • the method for predicting the running state of a distributed power distribution network based on scenario analysis of the present invention comprises the following steps:
  • Step 10) Obtain a power distribution system network architecture and historical operation information, where the historical operation information includes a distributed power history output sequence and historical demand information of each load point;
  • Step 20 extracting a representative scene sequence segment of the distributed power source according to the distributed power history output sequence
  • Step 30 performing historical similar scene matching by calculating a dynamic bending time distance between the real-time output sequence segment of the distributed power source and the representative scene sequence segment, and obtaining a multi-scene prediction result of the future single time section T 0 ;
  • Step 40 establishing a future multi-time cross-section running scene tree according to the future single-time cross-section multi-scene prediction result
  • Step 50 Deeply traverse the scenes in the multi-time cross-section operation scene tree in the future, separately perform distribution flow analysis for each scene, calculate the risk of over-limit of the line current of the distribution network, and the risk of exceeding the bus voltage, and obtain the continuous time section.
  • the trend of the line current and bus voltage over-limit risk is the trend of the future operation state of the distributed power distribution network.
  • step 10 the node number is traversed through the network, and each node type is acquired, and the distributed power access location is obtained, that is, the power distribution system network architecture is obtained.
  • step 20 is as follows:
  • Step 201) determining, according to the operating state prediction range of the distribution network, a distributed power source historical output sequence segment that needs to extract a representative scene sequence segment, the length of which is denoted as L; determining the required number of representative scene sequence segments M;
  • Step 202) intercepting, in a distributed power history history output sequence, a time series segment whose length is L to be extracted from a representative scene sequence segment, and recording the number N as a scene set;
  • Step 203) Calculate the probability of occurrence p(c i ) of each scene sequence segment in the scene set according to the following formula:
  • c i represents the i-th scene sequence segment in the scene set, and i is the scene sequence segment number
  • Step 204) For each scene sequence segment c i , calculate Kantorovich distance between it and other scene sequence segments according to the following formula, find the scene sequence segment closest to it and mark it in the scene set to form a minimum scene distance matrix KD, KD
  • KD The matrix element KD(i) of the corresponding scene sequence segment c i is calculated according to the following formula:
  • KD(i) min ⁇
  • c j represents the jth scene sequence segment in the scene set, and j is the scene sequence segment number
  • Step 205) For each scene sequence segment c i , multiply the corresponding minimum scene distance by the probability of the scene sequence segment, obtain the minimum scene probability distance corresponding to the scene sequence segment c i , and find the minimum probability in the scene set.
  • the smallest scene sequence segment is taken as the culled scene sequence segment c*, and is removed from the scene set, and the scene sequence segment c* is culled as:
  • Step 206) were excluded from the scene to find a sequence fragment c * latest scene sequence fragment c n, c n updated according to the probability p (c n):
  • step 30 is as follows:
  • Step 301) Step distributed power output based on the extracted sequence representative scene sequence fragment 20), calculation for distributed real-time dynamic bending output time series and the k-th representative scene sequence fragments from the DTW k;
  • Step 302 taking the reciprocal of the dynamic bending time distance and normalizing the same, and obtaining the similarity between the real-time output sequence of the distributed power source and the representative scene sequence segment, and using the similarity as the probability of occurrence of the corresponding predicted scene,
  • the k representative scene sequences and the corresponding dynamic bending time distance DTW k are used to calculate the future predicted value F k of the distributed power output sequence, and the M future predicted values constitute the multi-scene prediction result of the future single time section T 0 .
  • step 40 is as follows:
  • Step 402 Performing scene reduction on the multi-scene prediction result of the time section T′, setting the number of scene sequences M′ after the time section T′ is reduced, and calculating the Kantorovich distance between the U scene sequences to form a minimum scene distance matrix.
  • the matrix element KD'(s) of the corresponding scene sequence c s in KD', KD' is calculated according to the following formula:
  • KD'(s) min ⁇
  • c s and c t respectively represent the sth and tth scene sequences of the distributed power source real-time output sequence set including the time section T predicted value F, and s and t are scene sequence numbers;
  • Step 403 For each scene sequence c s , multiply the corresponding minimum scene distance by the probability of the scene sequence, obtain the minimum scene probability distance corresponding to the scene sequence c s , and find the minimum probability distance in the scene set is the smallest
  • the scene sequence is taken as the culled scene sequence c ⁇ , which is removed from the scene set, and the scene sequence c ⁇ is culled as:
  • c m is updated according to the probability p (c m):
  • step 50 the specific process in step 50) is as follows:
  • Step 501 Deeply traversing each scene in the future multi-time section running scene tree, that is, in each scene, the distributed power source predicted output value is regarded as a negative value load, and the distribution network power flow is calculated by using the forward pushback generation to obtain each line.
  • Step 502 Based on the power flow calculation result, calculate the line overload value L OL , the line overload severity S OL (C/E), the voltage limit value L OV , and the bus over-voltage severity S OV according to the following formulas respectively ( C/E), get the risk of over-limit of the line current of the distribution network, OLR, bus voltage over-limit risk OVR:
  • the line overload value L OL is:
  • L represents the ratio of the current flowing through the line to its rated current
  • the line overload severity is:
  • NL is the number of lines in the whole network.
  • the voltage limit L OV is:
  • V is the node voltage standard value.
  • the busbar overvoltage severity is:
  • NP is the number of nodes in the whole network
  • Step 503) Arranging the calculation result of step 502) from the time section T 0 to the nnth time section sequentially, and obtaining the trend of the line current and the bus voltage over-limit risk under the continuous time section, that is, the distributed power distribution network The trend of future operational status changes.
  • the scene analysis method proposed by the invention makes full use of the distributed power supply historical output information and the real-time output information, and gives the ultra-short-term multi-scene prediction result of the distributed power supply in the next two hours, and builds a future multi-time section running scene tree.
  • the trend analysis of each single scene provides various development trends of the distribution network operation status.
  • the method proposed in this aspect pays attention to the possibility of occurrence of small probability scenes, and the trend of distribution network operation status after occurrence, which is conducive to more comprehensively carrying out situational awareness and risk warning of distribution network. .
  • FIG. 1 is a schematic flow chart of a method according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of an IEEE-33 node power distribution system with distributed power.
  • FIG. 1 a scenario analysis method for distributed power distribution network operation state based on scene analysis
  • FIG. 2 is an IEEE-33 node power distribution system with distributed power supply, given a balance in the network.
  • the voltage amplitude and phase angle of the node, the load level of the PQ node, the voltage amplitude of the PV node, and the historical output information of the distributed power source connected to the system are known (the output data is recorded once every five minutes).
  • Step 10) Obtain the power distribution system network structure, traverse the network to number the nodes, obtain each node type, and distribute the power access location, as shown in Figure 2; obtain the historical power output sequence of the distributed power supply and the historical demand information of each load point.
  • Step 20 Extract a representative sequence of the distributed power supply output according to the distributed power history output sequence, and the specific steps are as follows:
  • Step 203) Calculate the probability of occurrence p(c i ) of each scene sequence segment in the scene set according to the following formula:
  • c i represents the ith scene sequence in the scene set, and i is the scene sequence number.
  • Step 204) For each scene sequence segment c i , calculate Kantorovich distance between it and other scene sequence segments according to the following formula, find the scene sequence segment closest to it and mark it in the scene set to form a minimum scene distance matrix KD, KD The matrix element KD(i) corresponding to the scene sequence segment c i :
  • KD(i) min ⁇
  • c j represents the jth scene sequence segment in the scene set, and j is the scene sequence segment number.
  • Step 205) For each scene sequence segment c i , multiply the corresponding minimum scene distance by the probability of the scene sequence segment, obtain the minimum scene probability distance corresponding to the scene sequence segment c i , and find the minimum probability in the scene set.
  • the smallest scene sequence segment is taken as the culled scene sequence segment c*, and is removed from the scene set, and the scene sequence segment c* is culled as:
  • Step 206) were excluded from the scene to find a sequence fragment c * latest scene sequence fragment c n, c n updated according to the probability p (c n):
  • Step 30 Performing a historical similar scene matching by calculating a dynamic bending time distance between the real-time output sequence of the distributed power source and the representative scene, and obtaining a multi-scenario prediction result in the future single time section, the specific steps are as follows:
  • Step 301) Calculate the dynamic bending time distance DTW k of the distributed power real-time output sequence R and the k-th representative scene sequence segment Q based on the representative scene sequence segments of the five distributed power output sequences extracted in step 20). Methods as below:
  • Step 302 taking the reciprocal of the dynamic bending time distance and normalizing the same, and obtaining the similarity between the real-time output sequence of the distributed power source and the representative scene sequence segment, and using the similarity as the probability of occurrence of the corresponding predicted scene, k representative scene sequences and corresponding dynamic bending time distance DTW k calculate the output predicted value F k at 12:15 in the distributed power output sequence, and M future predicted values form the future single time section (June 1, 2017) 12:15) Multi-scene prediction results.
  • step 40 according to the multi-scene prediction result, a future multi-time cross-section running scene tree is established, and the specific steps are as follows:
  • the Kantorovich distance between the 25 scene sequences is calculated separately to form a minimum scene distance matrix KD', and the matrix element KD'(s) of the corresponding scene sequence c s in KD' is calculated according to the following formula:
  • KD'(s) min ⁇
  • c s and c t respectively represent the s and t scene sequences of the distributed power real-time output sequence set containing the multi-scene prediction result of the time section at 12:30 on June 1, 2017, and s and t are scene sequences. Numbering;.
  • Step 403 For each scene sequence c s , multiply the corresponding minimum scene distance by the probability of the scene sequence, obtain the minimum scene probability distance corresponding to the scene sequence c s , and find the minimum probability distance in the scene set is the smallest
  • the scene sequence is taken as the culled scene sequence c ⁇ , which is removed from the scene set, and the scene sequence c ⁇ is culled as:
  • c m is updated according to the probability p (c m):
  • step 50 the traversal of each scene in the multi-time section operation scenario tree is performed in depth, and the power flow analysis of the distribution network is sequentially performed for each scene, and the risk of over-limit of the line current of the distribution network and the risk of exceeding the bus voltage are obtained, and a continuous time section is obtained.
  • the trend of the line current and the bus voltage over-limit risk is the trend of the future operation state of the distributed power distribution network.
  • Step 501) Deeply traversing each scene in the multi-time section running scene tree in the future, and the single-time section multi-scene prediction value generated by the last prediction of the future multi-time section running scene tree is the starting point, and sequentially searches for the parent node, that is, the previous moment.
  • the predicted value, up to the root node, generates a continuous time section in reverse.
  • the predicted power output value of the distributed power supply is regarded as a negative value load
  • the power flow of the distribution network is calculated by using the forward pushback generation to obtain the current and bus voltage conditions of each line;
  • Initialization give the balanced node voltage and assign the initial value to other PQ nodes in the whole network.
  • the PV node is reactively injected with initial power Q i (0) .
  • Step 502 Calculate the line overload value L OL , the line overload severity S OL (C/E), the voltage limit value L OV , and the bus over-voltage severity S OV (C/E) in each scenario based on the power flow calculation result. , get the distribution line current over-limit risk OLR, bus voltage over-limit risk OVR:
  • the line overload value L OL is:
  • L is the ratio of the current flowing through the line to its rated current.
  • the above formula reflects the overload value of a single line, and on this basis, defines the line overload risk.
  • the line overload severity is:
  • NL is the number of lines in the whole network.
  • the voltage limit L OV is:
  • V is the node voltage standard value.
  • the above formula reflects the voltage limit of a single busbar, and on this basis, defines the voltage overload risk and evaluates the overall busbar overvoltage risk level of the area. Define the voltage across the bus.
  • the risk severity function is S OV (C/E). When the bus voltage is 1.05 pu, the severity function takes 0; as the voltage exceeds the limit, the node voltage exceeds the risk severity.
  • the busbar overvoltage severity is:
  • NP is the number of nodes in the whole network.
  • Step 503) Arranging the calculation result of step 502) from the time section T 0 to the nnth time section sequentially, and obtaining the trend of the line current and the bus voltage over-limit risk under the continuous time section, that is, the distributed power distribution network The trend of future operational status changes.

Abstract

一种基于场景分析的配电网运行状态预测方法,包括如下步骤:步骤10)获取配电系统网络架构、历史运行信息;步骤20)根据分布式电源历史出力序列,提取分布式电源出力代表性场景序列片段;步骤30)通过历史相似场景匹配,得到未来单时间断面T0多场景预测结果;步骤40)建立未来多时间断面运行场景树;步骤50)深度遍历未来多时间断面运行场景树中的各场景,针对各场景分别进行配电网潮流分析,计算配电网线路电流越限风险、母线电压越限风险,得到含分布式电源配电网未来运行状态变化趋势。按照该方法进行含分布式电源配电网运行状态预测,通过多场景分析,可以实时预测配电网运行状态的发展态势,及时做出风险预判。

Description

一种基于场景分析的含分布式电源配电网运行状态预测方法 技术领域
本发明属于配电网态势感知领域,涉及一种配电网运行状态预测方法,更具体地,涉及一种基于场景分析的含分布式电源配电网运行状态预测方法。
背景技术
含分布式电源配电网态势感知是配电系统可靠、经济和安全运行的重要基础。对含分布式电源配电网进行运行状态预测是主动配电网态势感知工作中的核心环节。与传统配电网相比,含分布式电源配电网的典型特征之一是分布式电源的加入使电力系统的不确定性提高,因而计及不确定性的分布式电源出力预测技术是其中的关键。现有的分布式电源出力预测技术,无论是点值预测还是概率预测,其结果均未对分布式电源输出功率的时空关联特征进行描述,此外,概率法需要知道概率分布信息,当概率分布未知或难以用确定的概率分布描述时,概率预测结果会产生偏差。
场景分析是解决随机问题的一种有效方法,通过对可能出现的场景进行模拟将模型中的不确定性因素转变成多个确定性场景问题,降低建模及求解难度。与传统的分布式电源出力预测相比,相较时间序列预测得到的单一预测结果,构建场景树能够提供了多种预想场景;此外,采用场景分析法既可体现系统运行中的不确定性,同时可以反映系统运行的时序特性,将场景分析应用到含分布式电源配电网运行状态预测具有可实施性与有效性,能够充分利用分布式电源历史运行信息和实时运行信息,给配电网态势预测提供新的思路。
发明内容
技术问题:本发明提供一种基于场景分析的含分布式电源配电网运行状态预测方法,通过对分布式电源出力信息进行多时间断面的多场景预测,给出配电网未来两小时的运行状态变化趋势。
技术方案:本发明的基于场景分析的含分布式电源配电网运行状态预测方法,包括如下步骤:
步骤10)获取配电系统网络架构、历史运行信息,所述历史运行信息包括分布式 电源历史出力序列、各负荷点历史需求信息;
步骤20)根据分布式电源历史出力序列,提取分布式电源出力代表性场景序列片段;
步骤30)通过计算分布式电源实时出力序列片段与代表性场景序列片段的动态弯曲时间距离进行历史相似场景匹配,得到未来单时间断面T 0的多场景预测结果;
步骤40)根据所述未来单时间断面多场景预测结果,建立未来多时间断面运行场景树;
步骤50)深度遍历未来多时间断面运行场景树中的各场景,针对各场景分别进行配电网潮流分析,计算配电网线路电流越限风险、母线电压越限风险,得到连续时间断面下的线路电流和母线电压越限风险的变化趋势,即为含分布式电源配电网未来运行状态变化趋势。
进一步的,本发明方法中,步骤10)中通过遍历网络进行节点编号,获取各节点类型,分布式电源接入位置,即得到配电系统网络架构。
进一步的,本发明方法中,步骤20)的具体流程如下:
步骤201)根据配电网运行状态预测范围确定需要提取代表性场景序列片段的分布式电源历史出力序列片段,其长度记作L;确定需要的代表性场景序列片段个数M;
步骤202)在分布式电源历史出力序列中截取拟提取代表性场景序列片段的长度为L的时间序列片段,记其数量为N,构成场景集;
步骤203)根据下式计算场景集中每个场景序列片段的出现概率p(c i):
Figure PCTCN2018084936-appb-000001
式中,c i表示场景集中的第i个场景序列片段,i为场景序列片段编号;
步骤204)对于每个场景序列片段c i,根据下式计算其与其他场景序列片段之间的Kantorovich距离,找到距离其最近的场景序列片段并在场景集中标记,形成最小场景距离矩阵KD,KD中对应场景序列片段c i的矩阵元素KD(i)根据下式计算:
KD(i)=min{||c i-c j|| 2,j∈[1,2,3,...N],j≠i},i∈[1,2,3,...N]
其中,c j表示场景集中的第j个场景序列片段,j为场景序列片段编号;
步骤205)对于每个场景序列片段c i,将其对应的最小场景距离与该场景序列片段的概率相乘,求得场景序列片段c i对应的最小场景概率距离,并找出场景集中最小概 率距离最小的场景序列片段作为被剔除场景序列片段c*,将其从场景集中剔除,被剔除场景序列片段c*为:
c*=min{KD(i)*p(i)|i∈[1,2,3,...N]}
步骤206)寻找到距离被剔除场景序列片段c*最近的场景序列片段c n,根据下式更新c n的概率p(c n):
p(c n)=p(c*)+p(c n)
步骤207)令场景序列片段总数N=N-1,如果更新后的场景序列片段总数N=M,则结束步骤20),否则返回步骤204)。
进一步的,本发明方法中,步骤30)的具体流程如下:
步骤301)基于步骤20)提取的分布式电源出力序列代表性场景序列片段,计算分布式电源实时出力序列与第k个代表性场景序列片段的动态弯曲时间距离DTW k
步骤302)取动态弯曲时间距离的倒数并对其进行归一化处理,得到分布式电源实时出力序列与代表性场景序列片段的相似度,将该相似度作为对应预测场景出现的概率,由第k个代表性场景序列及对应的动态弯曲时间距离DTW k计算分布式电源出力序列的未来预测值F k,M个未来预测值组成未来单时间断面T 0的多场景预测结果。
进一步的,本发明方法中,步骤40)的具体流程如下:
步骤401)将步骤30)产生的未来单时间断面T 0的多场景预测结果纳入分布式电源实时出力序列,按照与步骤30)相同的方式得到下一时间断面T’=T 0+Δt的多场景预测结果,共U=M 2个,Δt为预测间隔;
步骤402)针对时间断面T’的多场景预测结果,进行场景削减,设定时间断面T’削减后的场景序列数M’,分别计算U个场景序列之间的Kantorovich距离,形成最小场景距离矩阵KD’,KD’中对应场景序列c s的矩阵元素KD’(s)根据下式计算:
KD'(s)=min{||c s-c t|| 2,t∈[1,2,3,...M 2],t≠s},s∈[1,2,3,...M 2]
其中,c s和c t分别表示包含时间断面T预测值F的分布式电源实时出力序列集中的第s和第t个场景序列,s和t为场景序列编号;
步骤403)对于每个场景序列c s,将其对应的最小场景距离与该场景序列的概率相乘,求得场景序列c s对应的最小场景概率距离,并找出场景集中最小概率距离最小的场景序列作为被剔除场景序列c^,将其从场景集中剔除,被剔除场景序列c^为:
c^=min{KD'(s)*p(s)|s∈[1,2,3,...M 2]}
寻找到距离被剔除场景序列c^最近的场景序列c m,根据下式更新c m的概率p(c m):
p(c m)=p(c^)+p(c m)
步骤404)令场景总数U=U-1,如果更新后的场景总数U=M’,则进入步骤405),否则返回步骤402);
步骤405)如果T’=T 0+n*Δt,则将各时间断面预测结果依时间先后排列,生成未来多时间断面运行场景树,并结束步骤40),否则令T=T’,T’=T+Δt,M=M’,返回步骤401),其中n为需要预测的时间断面个数。
进一步的,本发明方法中,步骤50)中的具体流程如下:
步骤501)深度遍历未来多时间断面运行场景树中的各场景,即在各场景下,将分布式电源预测出力值视为负值负荷,利用前推回代计算配电网潮流,得到各线路电流和母线电压情况;
步骤502)基于潮流计算结果,分别根据以下公式计算各场景下的线路过载值L OL、线路过载严重度S OL(C/E)、电压越限值L OV、母线过压严重度S OV(C/E),得到配电网线路电流越限风险OLR、母线电压越限风险OVR:
线路过载值L OL为:
L OL=L-0.8
其中,L表示流过线路的电流占其额定电流的比例;
线路过载严重度为:
Figure PCTCN2018084936-appb-000002
线路电流越限风险OLR:
Figure PCTCN2018084936-appb-000003
其中,NL为全网线路数。
电压越限值L OV为:
L OV=|1.05-V|
其中,V为节点电压标幺值。
母线过压严重度为:
Figure PCTCN2018084936-appb-000004
母线电压越限风险OVR:
Figure PCTCN2018084936-appb-000005
其中,NP为全网节点数;
步骤503)将步骤502)计算结果自时间断面T 0至第nn个时间断面依次排列,得到连续时间断面下的线路电流和母线电压越限风险的变化趋势,即为含分布式电源配电网未来运行状态变化趋势。
有益效果:本发明与现有技术相比,具有以下优点:
本发明提出的场景分析方法,充分利用了分布式电源历史出力信息和实时出力信息,给出了未来两小时内的分布式电源出力超短期多场景预测结果,通过构建未来多时间断面运行场景树并对各单一场景进行潮流分析,提供了配电网运行状态的多种发展趋势。与时间序列单场景预测结果相比,本方面提出的方法关注了小概率场景发生的可能性以发生后的配电网运行状态变化趋势,有利于更全面地开展配电网态势感知与风险预警。
附图说明
图1是本发明实施例的方法流程示意图;
图2是接有分布式电源的IEEE-33节点配电系统结构图。
具体实施方式
如图1所示,本发明的一种基于场景分析的含分布式电源配电网运行状态预测方法,图2是接有分布式电源的IEEE-33节点配电系统,给定了网络中平衡节点的电压幅值及相角大小、PQ节点负荷大小、PV节点的电压幅值大小,接入该系统的分布式电源的历史出力信息已知(出力数据五分钟记录一次)。为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行深入地详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定发明。
步骤10)获取配电系统网架结构,遍历网络将节点编号,获取各节点类型,分布式电源接入位置,如图2所示;获取分布式电源历史出力序列、各负荷点历史需求信息。
步骤20)根据分布式电源历史出力序列,提取分布式电源出力代表性场景序列,具体步骤如下:
步骤201)现需预测未来两个小时的配电网运行状态,预测间隔为十五分钟。假设当前时刻为2017年6月1日上午12:00,需要提取代表性场景片段的分布式电源出力序列片段包括历史三年5月15日至6月18日上午10:05-下午14:00的出力信息,每个时间序列片段长度为48;确定需要的代表性场景片段为M=5个;
步骤202)在分布式电源历史出力序列中截取拟提取代表性场景片段的长度为48的时间序列片段,记其数量N=105,构成场景集;
步骤203)根据下式计算场景集中每个场景序列片段的出现概率p(c i):
Figure PCTCN2018084936-appb-000006
式中,c i表示场景集中的第i个场景序列,i为场景序列编号。
步骤204)对于每个场景序列片段c i,根据下式计算其与其他场景序列片段之间的Kantorovich距离,找到距离其最近的场景序列片段并在场景集中标记,形成最小场景距离矩阵KD,KD中对应场景序列片段c i的矩阵元素KD(i):
KD(i)=min{||c i-c j|| 2,j∈[1,2,3,...N],j≠i},i∈[1,2,3,...N]
其中,c j表示场景集中的第j个场景序列片段,j为场景序列片段编号。
步骤205)对于每个场景序列片段c i,将其对应的最小场景距离与该场景序列片段的概率相乘,求得场景序列片段c i对应的最小场景概率距离,并找出场景集中最小概率距离最小的场景序列片段作为被剔除场景序列片段c*,将其从场景集中剔除,被剔除场景序列片段c*为:
c*=min{KD(i)*p(i)|i∈[1,2,3,...N]}
步骤206)寻找到距离被剔除场景序列片段c*最近的场景序列片段c n,根据下式更新c n的概率p(c n):
p(c n)=p(c*)+p(c n)
步骤207)令场景序列片段总数N=N-1,如果更新后的场景序列片段总数N=M,则结束步骤20),否则返回步骤204)。
步骤30),通过计算分布式电源实时出力序列与代表性场景的动态弯曲时间距离进行历史相似场景匹配,得到未来单时间断面多场景预测结果,具体步骤如下:
步骤301)基于步骤20)提取的5个分布式电源出力序列代表性场景序列片段,计算分布式电源实时出力序列R与第k个代表性场景序列片段Q的动态弯曲时间距离DTW k,具体计算方法如下:
第k个代表性场景序列片段Q长度l=24(只计算前10:05-12:00的时间序列片段),分布式电源实时出力序列R长度p=24,即T={t 1,t 2,…,t l},R={r 1,r 2,…,r p}。
构造24行24列的距离矩阵A,即
Figure PCTCN2018084936-appb-000007
Figure PCTCN2018084936-appb-000008
Figure PCTCN2018084936-appb-000009
其中,f=2,3,…,24;g=2,3,…,24;D(24,24)为距离矩阵A的最小累加值,即为分布式电源实时出力序列R和第k个代表性场景序列片段Q的最短距离DTW k
步骤302)取动态弯曲时间距离的倒数并对其进行归一化处理,得到分布式电源实时出力序列与代表性场景序列片段的相似度,将该相似度作为对应预测场景出现的概率,由第k个代表性场景序列及对应的动态弯曲时间距离DTW k计算分布式电源出力序列中12:15时刻的出力预测值F k,M个未来预测值组成未来单时间断面(2017年6月1日12:15)多场景预测结果。
步骤40)中,根据多场景预测结果,建立未来多时间断面运行场景树,具体步骤如下:
步骤401)将步骤30)产生的未来单时间断面T=T 0=2017年6月1日12:15的多场景预测结果(共5个场景)纳入分布式电源出力序列,重复步骤30)进行下一时间断面T’=2017年6月1日12:30的多场景预测工作,预测间隔Δt=15min;
步骤402)针对时间断面2017年6月1日12:30的多场景预测结果,进行场景削减,削减前共有U=M 2=25个场景,设定削减后场景数为M’=5。分别计算25个场景序列之间的Kantorovich距离,形成最小场景距离矩阵KD’,KD’中对应场景序列 c s的矩阵元素KD’(s)根据下式计算:
KD'(s)=min{||c s-c t|| 2,t∈[1,2,3,...25],t≠s},s∈[1,2,3,...25]
其中,c s和c t分别表示包含时间断面2017年6月1日12:30的多场景预测结果的分布式电源实时出力序列集中的第s和第t个场景序列,s和t为场景序列编号;。
步骤403)对于每个场景序列c s,将其对应的最小场景距离与该场景序列的概率相乘,求得场景序列c s对应的最小场景概率距离,并找出场景集中最小概率距离最小的场景序列作为被剔除场景序列c^,将其从场景集中剔除,被剔除场景序列c^为:
c^=min{KD'(s)*p(s)|s∈[1,2,3,...M 2]}
寻找到距离被剔除场景序列c^最近的场景序列c m,根据下式更新c m的概率p(c m):
p(c m)=p(c^)+p(c m)
步骤404)令场景总数U=U-1,如果更新后的场景总数U=M’,则进入步骤405),否则返回步骤402);
步骤405)如果T’=T 0+8*Δt,则将各时间断面预测结果依时间先后排列,生成未来多时间断面运行场景树,并结束步骤40),否则令T=T’,T’=T+Δt,M=M’,返回步骤401)。
步骤50)中,深度遍历未来多时间断面运行场景树中的各场景,针对各场景依次进行配电网潮流分析,计算配电网线路电流越限风险、母线电压越限风险,得到连续时间断面下的线路电流和母线电压越限风险的变化趋势,即为含分布式电源配电网未来运行状态变化趋势,具体步骤如下:
步骤501)深度遍历未来多时间断面运行场景树中的各场景,由未来多时间断面运行场景树最后一次预测生成的单时间断面多场景预测值为起点,依次寻找其父节点,即上一时刻的预测值,直至根节点,以此路径反向生成连续时间断面。
在各场景下,将分布式电源预测出力值视为负值负荷,利用前推回代计算配电网潮流,得到各线路电流和母线电压情况;
初始化:给定平衡节点电压,并为全网其他PQ节点赋电压初始值
Figure PCTCN2018084936-appb-000010
PV节点赋无功注入初始功率Q i (0)
计算各节点运算功率:
Figure PCTCN2018084936-appb-000011
从网络末端开始逐步前推,由节点电压
Figure PCTCN2018084936-appb-000012
求全网各支路功率分布,前推过程:
Figure PCTCN2018084936-appb-000013
从始端出发,逐段回推,由支路功率求各节点电压
Figure PCTCN2018084936-appb-000014
Figure PCTCN2018084936-appb-000015
利用求得的各节点电压修正PV节点电压和无功功率:
Figure PCTCN2018084936-appb-000016
根据收敛判据检查是否收敛,若不满足收敛条件,将各节点电压计算值作为新的初始值错误!未找到引用源。开始进入下一次迭代。
Figure PCTCN2018084936-appb-000017
Figure PCTCN2018084936-appb-000018
步骤502)基于潮流计算结果,计算各场景下的线路过载值L OL、线路过载严重度S OL(C/E)、电压越限值L OV、母线过压严重度S OV(C/E),得到配电网线路电流越限风险OLR、母线电压越限风险OVR:
线路过载值L OL为:
L OL=L-0.8
其中,L表示流过线路的电流占其额定电流的比例。
上式反应了单一线路的过载值,在此基础上定义线路过载风险。定义设备过载风险严重度函数S OL(C/E)。设定流经线路的电流决定线路过载风险严重度。当线路电流 小于或者等于额定电流的80%时,S OL(C/E)取为0;随着流过线路电流的增加,S OL(C/E)增大,且增加速率变快。
线路过载严重度为:
Figure PCTCN2018084936-appb-000019
线路电流越限风险OLR:
Figure PCTCN2018084936-appb-000020
其中,NL为全网线路数。
电压越限值L OV为:
L OV=|1.05-V|
其中,V为节点电压标幺值。
上式反应了单一母线的电压越限值,在此基础上定义电压过载风险,评估区域整体的母线过压风险水平。定义母线的电压越限风险严重度函数为S OV(C/E)。设定当母线电压为1.05p.u.时,严重度函数取值为0;随着电压越限值的增加,节点电压越限风险严重度也增加。
母线过压严重度为:
Figure PCTCN2018084936-appb-000021
母线电压越限风险OVR:
Figure PCTCN2018084936-appb-000022
其中,NP为全网节点数。
步骤503)将步骤502)计算结果自时间断面T 0至第nn个时间断面依次排列,得到连续时间断面下的线路电流和母线电压越限风险的变化趋势,即为含分布式电源配电网未来运行状态变化趋势。
上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (6)

  1. 一种基于场景分析的含分布式电源配电网运行状态预测方法,其特征在于,该方法包括如下步骤:
    步骤10)获取配电系统网络架构、历史运行信息,所述历史运行信息包括分布式电源历史出力序列、各负荷点历史需求信息;
    步骤20)根据分布式电源历史出力序列,提取分布式电源出力代表性场景序列片段;
    步骤30)通过计算分布式电源实时出力序列片段与代表性场景序列片段的动态弯曲时间距离进行历史相似场景匹配,得到未来单时间断面T 0的多场景预测结果;
    步骤40)根据所述未来单时间断面多场景预测结果,建立未来多时间断面运行场景树;
    步骤50)深度遍历未来多时间断面运行场景树中的各场景,针对各场景分别进行配电网潮流分析,计算配电网线路电流越限风险、母线电压越限风险,得到连续时间断面下的线路电流和母线电压越限风险的变化趋势,即为含分布式电源配电网未来运行状态变化趋势。
  2. 根据权利要求1所述的基于场景分析的含分布式电源配电网运行状态预测方法,其特征在于,所述步骤10)中通过遍历网络进行节点编号,获取各节点类型,分布式电源接入位置,即得到配电系统网络架构。
  3. 根据权利要求1所述的基于场景分析的含分布式电源配电网运行状态预测方法,其特征在于,所述步骤20)的具体流程如下:
    步骤201)根据配电网运行状态预测范围确定需要提取代表性场景序列片段的分布式电源历史出力序列片段,其长度记作L;确定需要的代表性场景序列片段个数M;
    步骤202)在分布式电源历史出力序列中截取拟提取代表性场景序列片段的长度为L的时间序列片段,记其数量为N,构成场景集;
    步骤203)根据下式计算场景集中每个场景序列片段的出现概率p(c i):
    Figure PCTCN2018084936-appb-100001
    式中,c i表示场景集中的第i个场景序列片段,i为场景序列片段编号;
    步骤204)对于每个场景序列片段c i,根据下式计算其与其他场景序列片段之间的Kantorovich距离,找到距离其最近的场景序列片段并在场景集中标记,形成最小场景距离矩阵KD,KD中对应场景序列片段c i的矩阵元素KD(i)根据下式计算:
    KD(i)=min{||c i-c j|| 2,j∈[1,2,3,...N],j≠i},i∈[1,2,3,...N]
    其中,c j表示场景集中的第j个场景序列片段,j为场景序列片段编号;
    步骤205)对于每个场景序列片段c i,将其对应的最小场景距离与该场景序列片段的概率相乘,求得场景序列片段c i对应的最小场景概率距离,并找出场景集中最小概率距离最小的场景序列片段作为被剔除场景序列片段c*,将其从场景集中剔除,被剔除场景序列片段c*为:
    c*=min{KD(i)*p(i)|i∈[1,2,3,...N]}
    步骤206)寻找到距离被剔除场景序列片段c*最近的场景序列片段c n,根据下式更新c n的概率p(c n):
    p(c n)=p(c*)+p(c n)
    步骤207)令场景序列片段总数N=N-1,如果更新后的场景序列片段总数N=M,则结束步骤20),否则返回步骤204)。
  4. 根据权利要求1、2或3所述的基于场景分析的含分布式电源配电网运行状态预测方法,其特征在于,所述步骤30)的具体流程如下:
    步骤301)基于步骤20)提取的分布式电源出力序列代表性场景序列片段,计算分布式电源实时出力序列与第k个代表性场景序列片段的动态弯曲时间距离DTW k
    步骤302)取动态弯曲时间距离的倒数并对其进行归一化处理,得到分布式电源实时出力序列与代表性场景序列片段的相似度,将该相似度作为对应预测场景出现的概率,由第k个代表性场景序列及对应的动态弯曲时间距离DTW k计算分布式电源出力序列的未来预测值F k,M个未来预测值组成未来单时间断面T 0的多场景预测结果。
  5. 根据权利要求1、2或3所述的基于场景分析的含分布式电源配电网运行状态预测方法,其特征在于,所述步骤40)的具体流程如下:
    步骤401)将步骤30)产生的未来单时间断面T 0的多场景预测结果纳入分布式电源实时出力序列,按照与步骤30)相同的方式得到下一时间断面T’=T 0+Δt的多场景预测结果,共U=M 2个,Δt为预测间隔;
    步骤402)针对时间断面T’的多场景预测结果,进行场景削减,设定时间断面T’削减后的场景序列数M’,分别计算U个场景序列之间的Kantorovich距离,形成最小场景距离矩阵KD’,KD’中对应场景序列c s的矩阵元素KD’(s)根据下式计算:
    KD'(s)=min{||c s-c t|| 2,t∈[1,2,3,...M 2],t≠s},s∈[1,2,3,...M 2]
    其中,c s和c t分别表示包含时间断面T预测值F的分布式电源实时出力序列集中的第s和第t个场景序列,s和t为场景序列编号;
    步骤403)对于每个场景序列c s,将其对应的最小场景距离与该场景序列的概率相乘,求得场景序列c s对应的最小场景概率距离,并找出场景集中最小概率距离最小的场景序列作为被剔除场景序列c^,将其从场景集中剔除,被剔除场景序列c^为:
    c^=min{KD'(s)*p(s)|s∈[1,2,3,...M 2]}
    寻找到距离被剔除场景序列c^最近的场景序列c m,根据下式更新c m的概率p(c m):
    p(c m)=p(c ^)+p(c m)
    步骤404)令场景总数U=U-1,如果更新后的场景总数U=M’,则进入步骤405),否则返回步骤402);
    步骤405)如果T’=T 0+n*Δt,则将各时间断面预测结果依时间先后排列,生成未来多时间断面运行场景树,并结束步骤40),否则令T=T’,T’=T+Δt,M=M’,返回步骤401),其中n为需要预测的时间断面个数。
  6. 根据权利要求1、2或3所述的基于场景分析的含分布式电源配电网运行状态预测方法,其特征在于,所述步骤50)中的具体流程如下:
    步骤501)深度遍历未来多时间断面运行场景树中的各场景,即在各场景下,将分布式电源预测出力值视为负值负荷,利用前推回代计算配电网潮流,得到各线路电流和母线电压情况;
    步骤502)基于潮流计算结果,分别根据以下公式计算各场景下的线路过载值L OL、线路过载严重度S OL(C/E)、电压越限值L OV、母线过压严重度S OV(C/E),得到配电网线路电流越限风险OLR、母线电压越限风险OVR:
    线路过载值L OL为:
    L OL=L-0.8
    其中,L表示流过线路的电流占其额定电流的比例;
    线路过载严重度为:
    Figure PCTCN2018084936-appb-100002
    线路电流越限风险OLR:
    Figure PCTCN2018084936-appb-100003
    其中,NL为全网线路数。
    电压越限值L OV为:
    L OV=|1.05-V|
    其中,V为节点电压标幺值。
    母线过压严重度为:
    Figure PCTCN2018084936-appb-100004
    母线电压越限风险OVR:
    Figure PCTCN2018084936-appb-100005
    其中,NP为全网节点数;
    步骤503)将步骤502)计算结果自时间断面T 0至第nn个时间断面依次排列,得到连续时间断面下的线路电流和母线电压越限风险的变化趋势,即为含分布式电源配电网未来运行状态变化趋势。
PCT/CN2018/084936 2017-09-04 2018-04-27 一种基于场景分析的含分布式电源配电网运行状态预测方法 WO2019041857A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/639,744 US20200212710A1 (en) 2017-09-04 2018-04-27 Method for predicting operation state of power distribution network with distributed generations based on scene analysis
US17/978,149 US20230052730A1 (en) 2017-09-04 2022-10-31 Method for predicting operation state of power distribution network with distributed generations based on scene analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710790471.0A CN107591800B (zh) 2017-09-04 2017-09-04 基于场景分析的含分布式电源配电网运行状态预测方法
CN201710790471.0 2017-09-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/639,744 A-371-Of-International US20200212710A1 (en) 2017-09-04 2018-04-27 Method for predicting operation state of power distribution network with distributed generations based on scene analysis
US17/978,149 Continuation-In-Part US20230052730A1 (en) 2017-09-04 2022-10-31 Method for predicting operation state of power distribution network with distributed generations based on scene analysis

Publications (1)

Publication Number Publication Date
WO2019041857A1 true WO2019041857A1 (zh) 2019-03-07

Family

ID=61051770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084936 WO2019041857A1 (zh) 2017-09-04 2018-04-27 一种基于场景分析的含分布式电源配电网运行状态预测方法

Country Status (3)

Country Link
US (1) US20200212710A1 (zh)
CN (1) CN107591800B (zh)
WO (1) WO2019041857A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266000A (zh) * 2019-06-17 2019-09-20 国网江苏省电力有限公司 一种配电网电压越限原因分析方法、系统及存储介质
CN110599006A (zh) * 2019-08-25 2019-12-20 南京理工大学 基于场景分析的配电网运行风险评估方法
CN112307677A (zh) * 2020-11-05 2021-02-02 浙江大学 基于深度学习的电网振荡模态评估与安全主动预警方法
CN112488367A (zh) * 2020-11-18 2021-03-12 国网山西省电力公司晋城供电公司 一种基于量子遗传的用户相序降损方法及其系统
CN113241793A (zh) * 2021-05-27 2021-08-10 国网江苏省电力有限公司经济技术研究院 一种计及风电场景的含ipfc电力系统预防控制方法
CN114237183A (zh) * 2021-12-20 2022-03-25 东北大学 考虑成品油随机需求的多周期生产计划方案的制定方法
CN114336608A (zh) * 2021-12-30 2022-04-12 国网浙江省电力有限公司电力科学研究院 一种考虑动态增容和重构的机组阻塞优化方法及系统
CN116455766A (zh) * 2023-06-13 2023-07-18 山东大学 基于信号序列分解的架空导线载流容量预测方法及系统
CN117409529A (zh) * 2023-10-13 2024-01-16 国网江苏省电力有限公司南通供电分公司 一种多场景电气火灾在线监测方法及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591800B (zh) * 2017-09-04 2020-01-17 国网江苏省电力公司南京供电公司 基于场景分析的含分布式电源配电网运行状态预测方法
CN108376316B (zh) * 2018-02-12 2020-10-27 国家电网公司 一种风电功率预测方法和系统
CN109301877B (zh) * 2018-09-13 2021-08-17 国网江苏省电力有限公司 一种分布式电源及节点负荷典型运行场景集生成方法
CN110110815A (zh) * 2019-05-22 2019-08-09 国网河北省电力有限公司 相似类型时间断面的确定方法、装置以及电子设备
EP3751699B1 (de) * 2019-06-13 2021-09-15 Siemens Aktiengesellschaft Verfahren und anordnung zur schätzung eines netzzustands eines energieverteilungsnetzes
CN110601204B (zh) * 2019-10-14 2024-02-02 国网辽宁省电力有限公司盘锦供电公司 基于随机变量状态时序模拟的光伏并网系统概率潮流分析方法
CN112736909B (zh) * 2020-12-28 2023-07-18 智光研究院(广州)有限公司 储能系统实时控制方法、装置、电子设备和存储介质
CN113326897A (zh) * 2021-06-25 2021-08-31 国网冀北电力有限公司承德供电公司 一种架空输电线路的测温计划生成方法、装置和电子设备
CN113536206B (zh) * 2021-07-19 2023-12-01 国网陕西省电力公司 一种配电网区域预警方法、系统、终端设备及可读存储介质
CN114077921B (zh) * 2021-10-15 2023-03-31 国电南瑞科技股份有限公司 变压器感知量趋势预测及状态逐级预警方法、装置及系统
CN114336792B (zh) * 2022-02-14 2022-10-28 华北电力大学(保定) 一种电网运行状态预测方法与系统
CN117614132A (zh) * 2023-11-27 2024-02-27 广州航海学院 用于配电网的配电变压器电压越限画像方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105741193A (zh) * 2016-04-20 2016-07-06 河海大学 计及分布式电源和负荷不确定性的多目标配网重构方法
CN106230020A (zh) * 2016-08-11 2016-12-14 浙江工业大学 一种微电网下考虑分布式电源消纳的电动汽车互动响应控制方法
CN106355511A (zh) * 2015-07-22 2017-01-25 国网浙江省电力公司台州供电公司 考虑新能源与电动汽车接入的主动配电网重构方法
CN107591800A (zh) * 2017-09-04 2018-01-16 国网江苏省电力公司南京供电公司 基于场景分析的含分布式电源配电网运行状态预测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901428B (zh) * 2010-07-21 2016-01-20 中国电力科学研究院 一种采用soa技术的电力市场仿真系统
CN103972985B (zh) * 2014-05-26 2015-12-02 湖南大学 一种配电网的在线安全预警与预防控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106355511A (zh) * 2015-07-22 2017-01-25 国网浙江省电力公司台州供电公司 考虑新能源与电动汽车接入的主动配电网重构方法
CN105741193A (zh) * 2016-04-20 2016-07-06 河海大学 计及分布式电源和负荷不确定性的多目标配网重构方法
CN106230020A (zh) * 2016-08-11 2016-12-14 浙江工业大学 一种微电网下考虑分布式电源消纳的电动汽车互动响应控制方法
CN107591800A (zh) * 2017-09-04 2018-01-16 国网江苏省电力公司南京供电公司 基于场景分析的含分布式电源配电网运行状态预测方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266000A (zh) * 2019-06-17 2019-09-20 国网江苏省电力有限公司 一种配电网电压越限原因分析方法、系统及存储介质
CN110266000B (zh) * 2019-06-17 2022-07-19 国网江苏省电力有限公司 一种配电网电压越限原因分析方法、系统及存储介质
CN110599006A (zh) * 2019-08-25 2019-12-20 南京理工大学 基于场景分析的配电网运行风险评估方法
CN110599006B (zh) * 2019-08-25 2022-08-12 南京理工大学 基于场景分析的配电网运行风险评估方法
CN112307677A (zh) * 2020-11-05 2021-02-02 浙江大学 基于深度学习的电网振荡模态评估与安全主动预警方法
CN112488367A (zh) * 2020-11-18 2021-03-12 国网山西省电力公司晋城供电公司 一种基于量子遗传的用户相序降损方法及其系统
CN113241793A (zh) * 2021-05-27 2021-08-10 国网江苏省电力有限公司经济技术研究院 一种计及风电场景的含ipfc电力系统预防控制方法
CN114237183B (zh) * 2021-12-20 2024-04-30 东北大学 考虑成品油随机需求的多周期生产计划方案的制定方法
CN114237183A (zh) * 2021-12-20 2022-03-25 东北大学 考虑成品油随机需求的多周期生产计划方案的制定方法
CN114336608A (zh) * 2021-12-30 2022-04-12 国网浙江省电力有限公司电力科学研究院 一种考虑动态增容和重构的机组阻塞优化方法及系统
CN116455766B (zh) * 2023-06-13 2023-09-08 山东大学 基于信号序列分解的架空导线载流容量预测方法及系统
CN116455766A (zh) * 2023-06-13 2023-07-18 山东大学 基于信号序列分解的架空导线载流容量预测方法及系统
CN117409529A (zh) * 2023-10-13 2024-01-16 国网江苏省电力有限公司南通供电分公司 一种多场景电气火灾在线监测方法及系统

Also Published As

Publication number Publication date
CN107591800A (zh) 2018-01-16
CN107591800B (zh) 2020-01-17
US20200212710A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2019041857A1 (zh) 一种基于场景分析的含分布式电源配电网运行状态预测方法
US20230052730A1 (en) Method for predicting operation state of power distribution network with distributed generations based on scene analysis
CN113935562A (zh) 一种电力设备健康状况智能评级与自动预警方法
CN110969290A (zh) 一种基于深度学习的径流概率预测方法及系统
CN109002781B (zh) 一种储能变流器故障预测方法
CN111178585A (zh) 基于多算法模型融合的故障接报量预测方法
CN110807508B (zh) 计及复杂气象影响的母线峰值负荷预测方法
CN109066651A (zh) 风电-负荷场景的极限传输功率的计算方法
CN103347028A (zh) 云架构下基于贝叶斯的对等网络信任度量模型
CN104680010B (zh) 一种汽轮机组稳态运行数据筛选方法
CN112001531B (zh) 基于有效载荷能力的风电短期运行容量可信度评估方法
CN113835947B (zh) 一种基于异常识别结果确定异常原因的方法和系统
CN104834816A (zh) 一种短期风速预测方法
CN112232570A (zh) 一种正向有功总电量预测方法、装置及可读存储介质
CN113627655B (zh) 一种配电网灾前故障场景模拟预测方法及装置
CN116298670A (zh) 适用于多分支配电线路的智能故障定位方法及系统
CN110048428A (zh) 基于概率守恒原理的电力系统概率潮流计算方法
CN107609194A (zh) 一种面向云计算的时间冗余电力负荷数据的存储方法
Hou et al. A novel algorithm for multi-node load forecasting based on big data of distribution network
CN112347655A (zh) 一种基于机组运行性能评估的风电场理论功率计算方法
CN107546742B (zh) 一种日前计划潮流有功及电压计算误差分析方法
CN114336793B (zh) 交直流混合配电网灵活性确定方法
CN111460005B (zh) 一种基于jsd的时序数据的离群点检测方法
Zhao et al. Evaluation Method of Communication Network Based on Reliability Index
CN116632826A (zh) 一种配电网的问题处理方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852064

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18852064

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18852064

Country of ref document: EP

Kind code of ref document: A1