CN109764458A - A kind of control method of energy resource system - Google Patents

A kind of control method of energy resource system Download PDF

Info

Publication number
CN109764458A
CN109764458A CN201910018950.XA CN201910018950A CN109764458A CN 109764458 A CN109764458 A CN 109764458A CN 201910018950 A CN201910018950 A CN 201910018950A CN 109764458 A CN109764458 A CN 109764458A
Authority
CN
China
Prior art keywords
heat
humidifier
energy
storage device
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910018950.XA
Other languages
Chinese (zh)
Other versions
CN109764458B (en
Inventor
于洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN201910018950.XA priority Critical patent/CN109764458B/en
Publication of CN109764458A publication Critical patent/CN109764458A/en
Application granted granted Critical
Publication of CN109764458B publication Critical patent/CN109764458B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

The invention discloses a kind of control methods of energy resource system, belong to field of energy-saving technology.This method includes energy stores station and multiple humidifiers for controlling an energy resource system, energy resource system, and energy stores station includes heat storage device, and humidifier includes refrigerant heating tube, and heat storage device is connected to by middle heat exchanger with humidifier;It the described method comprises the following steps: obtaining the target humidity and actual humidity of each humidifier;According to the difference of the target humidity of the humidifier and actual humidity, the time that the humidifier exchanges heat with the heat storage device is controlled.Using the alternative embodiment, the collection and scheduling to discarded energy are realized, supply other equipment use, and reduce energy consumption and waste, realize energy-saving and emission-reduction.

Description

A kind of control method of energy resource system
Technical field
The present invention relates to field of energy-saving technology, in particular to a kind of control method of energy resource system.
Background technique
In general home environment, can there are many household electrical appliance, and a plurality of types of household electrical appliance often have it is different Function, and all refer to the conversion of heat.For example, outdoor unit simultaneously can dissipate heat, together when air conditioner room unit freezes Sample, humidifier are also required to consumption electric energy or dissipate heat when freezing, and on the other hand, humidifier needs to add hot water Heat can also consume electric energy;When winter, air-conditioning needs to heat, and can also discharge a part of cooling capacity.Some need heat, has Heat, some need refrigeration are distributed, some distributes cooling capacity, therefore, causes great energy waste.
The humidifier that humidification is realized using refrigerant is heated including humidification disk and the refrigerant that humidification pan bottom is arranged in It manages, circulate high temperature refrigerant in refrigerant heating tube.
The heat and cooling capacity how electric appliance distributed carries out United Dispatching, provides heat for humidifier, reduces the energy Consumption and waste, realize energy-saving and emission-reduction, are current urgent problems to be solved.
Summary of the invention
The embodiment of the invention provides a kind of control methods of energy resource system.For some aspects of the embodiment to disclosure There is a basic understanding, simple summary is shown below.The summarized section is not extensive overview, nor to determine pass Key/important composition element or the protection scope for describing these embodiments.Its sole purpose is some general with the presentation of simple form It reads, in this, as the preamble of following detailed description.
According to a first aspect of the embodiments of the present invention, a kind of control method of energy resource system is provided.
In some optional embodiments, for the method for controlling an energy resource system, the energy resource system includes that energy is deposited Storage station and multiple humidifiers, the energy stores station includes heat storage device, and the humidifier includes refrigerant heating tube, The heat storage device is connected to by middle heat exchanger with the humidifier;The middle heat exchanger includes a heat absorbing end With a release end of heat, the heat absorbing end of the middle heat exchanger is connected to the heat storage device by intake line, it is described in The release end of heat of heat exchanger is connected to the refrigerant heating tube of the humidifier by output pipe, the middle heat exchanger it is defeated Enter the valve being provided on pipeline for controlling cold medium flux;It the described method comprises the following steps: obtaining each humidifier Target humidity and actual humidity;According to the difference of the target humidity of the humidifier and actual humidity, the humidifier is controlled The time to exchange heat with the heat storage device.
Optionally, the method also includes: obtain the quantity for the humidifier being currently running;According to the humidification being currently running The quantity of device controls the humidifier and exchanges heat with the heat storage device timesharing.
Optionally, the quantity for the humidifier that the basis is currently running controls the humidifier and deposits with the heat The step of storage device timesharing is exchanged heat, comprising: when the quantity for the humidifier being currently running is less than preset value, described in control Humidifier and the full-time connection of the heat storage device.
Optionally, the quantity for the humidifier that the basis is currently running controls the humidifier and deposits with the heat The step of storage device timesharing is exchanged heat, comprising: when the quantity for the humidifier being currently running is greater than preset value, described in control Humidifier and the heat storage device timesharing are connected.
Optionally, it is described when the quantity for the humidifier being currently running be greater than preset value when, control the humidifier with The step of heat storage device timesharing is connected, comprising: all humidifiers are followed using single-entry single-out switch mode Ring heat exchange.
Optionally, the method also includes: according to the quantity for the humidifier being currently running and each humidifier The difference of target humidity and actual humidity, the quantity for the humidifier that control exchanges heat with the heat storage device simultaneously.
Optionally, the method also includes: according to the quantity for the humidifier being currently running and each humidifier The difference of target humidity and actual humidity controls the time that each humidifier exchanges heat with the heat storage device.
Optionally, the time that humidifier and heat storage device exchange heatWherein, K is Proportionality coefficient, Δ TnFor the target humidity of the humidifier and the difference of actual humidity, Δ TavFor the target of each humidifier The average value of the difference of humidity and actual humidity, tbaseFor benchmark service time.
Optionally, the benchmark service time tbaseAccording to be currently running humidifier quantity setting.
Optionally, the Δ TnThe difference for subtracting actual humidity for humidifier target humidity, as Δ TnWhen≤0, humidification dress Set stopping heat exchange.
Technical solution provided in an embodiment of the present invention can include the following benefits:
The collection and scheduling to discarded energy are realized, supply other equipment use, and reduce energy consumption and waste, realize Energy-saving and emission-reduction.
It should be understood that above general description and following detailed description be only it is exemplary and explanatory, not It can the limitation present invention.
Detailed description of the invention
The drawings herein are incorporated into the specification and forms part of this specification, and shows and meets implementation of the invention Example, and be used to explain the principle of the present invention together with specification.
Fig. 1 is a kind of block diagram of energy resource system shown according to an exemplary embodiment;
Fig. 2 is a kind of flow diagram of the control method of energy resource system shown according to an exemplary embodiment;
Fig. 3 a is a kind of structural schematic diagram at energy stores station shown according to an exemplary embodiment;
Fig. 3 b is a kind of structural schematic diagram at energy stores station shown according to an exemplary embodiment;
Fig. 3 c is a kind of structural schematic diagram at energy stores station shown according to an exemplary embodiment;
Fig. 3 d is a kind of structural schematic diagram at energy stores station shown according to an exemplary embodiment;
Fig. 3 e is a kind of structural schematic diagram at energy stores station shown according to an exemplary embodiment;
Fig. 3 f is a kind of structural schematic diagram at energy stores station shown according to an exemplary embodiment;
Fig. 3 g is a kind of structural schematic diagram at energy stores station shown according to an exemplary embodiment;
Fig. 4 a is a kind of structural schematic diagram of middle heat exchanger shown according to an exemplary embodiment;
Fig. 4 b is a kind of structural schematic diagram of middle heat exchanger shown according to an exemplary embodiment;
Fig. 4 c is a kind of structural schematic diagram of middle heat exchanger shown according to an exemplary embodiment;
Fig. 4 d is a kind of structural schematic diagram of middle heat exchanger shown according to an exemplary embodiment;
Fig. 4 e is a kind of structural schematic diagram of middle heat exchanger shown according to an exemplary embodiment;
Fig. 4 f is a kind of structural schematic diagram of middle heat exchanger shown according to an exemplary embodiment;
Fig. 4 g is a kind of structural schematic diagram of middle heat exchanger shown according to an exemplary embodiment;
Fig. 4 h is a kind of structural schematic diagram of middle heat exchanger shown according to an exemplary embodiment.
Specific embodiment
The following description and drawings fully show specific embodiments of the present invention, to enable those skilled in the art to Practice them.Other embodiments may include structure, logic, it is electrical, process and other change.Embodiment Only represent possible variation.Unless explicitly requested, otherwise individual components and functionality is optional, and the sequence operated can be with Variation.The part of some embodiments and feature can be included in or replace part and the feature of other embodiments.This hair The range of bright embodiment includes equivalent obtained by the entire scope of claims and all of claims Object.Herein, each embodiment individually or can be indicated generally with term " invention ", and it is convenient that this is used for the purpose of, And if in fact disclosing the invention more than one, the range for being not meant to automatically limit the application is any single invention Or inventive concept.Herein, relational terms such as first and second and the like be used only for by an entity or operation with Another entity or operation distinguish, and without requiring or implying, there are any actual relationships between these entities or operation Or sequence.Moreover, the terms "include", "comprise" or any other variant thereof is intended to cover non-exclusive inclusion, thus So that process, method or equipment including a series of elements not only include those elements, but also including being not explicitly listed Other element, or further include for this process, method or the intrinsic element of equipment.In the feelings not limited more Under condition, the element that is limited by sentence "including a ...", it is not excluded that in process, method or equipment including the element In there is also other identical elements.Each embodiment herein is described in a progressive manner, and each embodiment stresses Be the difference from other embodiments, the same or similar parts in each embodiment may refer to each other.For implementing For method, product etc. disclosed in example, since it is corresponding with method part disclosed in embodiment, so the comparison of description is simple Single, reference may be made to the description of the method.
Fig. 1 shows an alternative embodiment of energy resource system.
In the alternative embodiment, the energy resource system includes energy stores station and multiple humidifiers, the energy stores It stands including heat storage device, the humidifier includes refrigerant heating tube, the heat storage device and the humidifier It exchanges heat.The multiple humidifier includes at least two humidifiers, that is, includes two or more humidifier.
Optionally, the energy resource system further includes middle heat exchanger, the heat storage device by middle heat exchanger with The humidifier exchanges heat.
Optionally, the middle heat exchanger includes a heat absorbing end and a release end of heat, the heat absorption of the middle heat exchanger End is connected to the heat storage device by intake line, and the release end of heat of the middle heat exchanger is connected to by output pipe The refrigerant heating tube of a corresponding humidifier is provided on the intake line of the middle heat exchanger cold for controlling The valve of matchmaker's flow, when valve is opened, the humidifier and the heat storage device are connected, when the valve is closed, institute It states humidifier and the heat storage device is cut off.
Fig. 2 shows an alternative embodiments of the control method of above-mentioned energy resource system.
In some optional embodiments, the control method is for controlling previously described energy resource system, including following step It is rapid: step 11, to obtain the target humidity and actual humidity of each humidifier.Step 12, according to the target of the humidifier The difference of humidity and actual humidity controls the time that the humidifier exchanges heat with the heat storage device.
Using the alternative embodiment, humidifier is controlled according to the difference of target humidity and actual humidity and is deposited with the heat The time that storage device exchanges heat, psychrometric difference is big, then heat-exchange time is long, and psychrometric difference is small, then heat-exchange time is short, each humidifier Uniformly it can heat up or cool down, guarantee the usage experience of user.
Optionally, the energy resource system is as unit of family, or as unit of entire unit building, alternatively, with entire small Area is unit, alternatively, as unit of some region.
Optionally, the target humidity is default humidity set by user.
Using the alternative embodiment, according to heat exchanger intake line valve in the control of the difference of target humidity and actual humidity The service time of door, psychrometric difference is big, then service time is long, and psychrometric difference is small, then service time is short, each humidifier local environment Humidity can even regulation, guarantee the usage experience of user.
For example, the humidifier needs when the target humidity of one of humidifier and actual humidity psychrometric difference are larger More heats are wanted to exchange, the intake line valve service time for controlling the middle heat exchanger of the humidifier is longer, to guarantee Humidity regulation is very fast.
For another example the humidifier needs when the target humidity of one of humidifier and the actual humidity temperature difference are smaller Less heat is wanted to exchange, the intake line valve service time for controlling the middle heat exchanger of the humidifier is shorter, to guarantee The humidity value adjustment speed of each humidifier local environment is uniform.
Optionally, the actual humidity passes through the humidity sensor being arranged in the humidifier and obtains.
Optionally, the actual humidity is obtained by acquiring the loop temperature of the middle heat exchanger output pipe.It is optional Ground, the loop temperature are circuit surface temperature.Optionally, the loop temperature is refrigerant temperature in circuit.
In another alternative embodiment, the method also includes: obtain the quantity for the humidifier being currently running;According to The quantity for the humidifier being currently running controls the humidifier and exchanges heat with the heat storage device timesharing.
It is opened after the quantity for the humidifier being currently running reaches certain numerical value using timesharing using the alternative embodiment The humidifier that logical method control is connected with heat storage device is made with guaranteeing the supply of refrigerant in heat storage device The humidity value of each humidifier local environment being capable of even regulation.
Optionally, the quantity for the humidifier that the basis is currently running controls the humidifier and deposits with the heat The step of storage device timesharing is exchanged heat, comprising: when the quantity for the humidifier being currently running is less than preset value, described in control Humidifier and the full-time connection of the heat storage device;When the quantity for the humidifier being currently running is greater than preset value, control It makes the humidifier and the heat storage device timesharing is connected.
For example, being controlled in being connected with humidifier when the quantity for the humidifier being currently running is less than preset value The intake line valve of heat exchanger is full-time open-minded;When the quantity for the humidifier being currently running be greater than preset value when, control with The intake line valve timesharing for the middle heat exchanger that humidifier is connected is open-minded.
Using the alternative embodiment, the capacity of heat storage device can be optimized, pass through the lesser heat storage dress of capacity Set the more humidifier work of supply.For example, the humidifier quantity that heat storage device can supply simultaneously is 10, when When the humidifier quantity being currently running is 15, in a period, control is filled with the humidification that heat storage device exchanges heat Setting quantity is 10, and the humidifier being connected with heat storage device is controlled using the method that timesharing is opened, and realizes multiple add The uniform heat exchange of wet device makes the humidity of each humidifier local environment to guarantee the supply of refrigerant in heat storage device Value being capable of even regulation.
Optionally, when the quantity for the humidifier being currently running is greater than preset value, using single-entry single-out switch mode The humidifier for controlling the humidifier of access and exiting, all humidifiers are recycled using single-entry single-out switch mode Heat exchange.
In another alternative embodiment, the method also includes: according to the quantity for the humidifier being currently running and The target humidity of each humidifier and the difference of actual humidity, what control exchanged heat with the heat storage device simultaneously adds The quantity of wet device.
Using the alternative embodiment, it is ensured that the reasonable supply of cooling capacity in heat storage device guarantees the stabilization of system Operation.
For example, biggish humidifier is differed with actual humidity for target humidity, it is wet compared to target humidity and reality Degree differs lesser humidifier, needs more to be exchanged heat with the heat storage device, and therefore, target humidity and reality are wet The difference of degree is the important evidence of the control heat storage device access humidifier quantity.For example, for target humidity with Actual humidity differs biggish humidifier, and separate unit humidifier needs are more exchanged heat, and therefore, controls the heat storage Device accesses the quantity of above-mentioned humidifier simultaneously, prevents the situation of system refrigerant insufficient supply.For another example for target Humidity differs lesser humidifier with actual humidity, and separate unit humidifier needs to carry out less heat exchange, therefore, the heat Storage device can access greater number of above-mentioned humidifier simultaneously.
In another alternative embodiment, the method also includes: according to the quantity for the humidifier being currently running and The target humidity of each humidifier and the difference of actual humidity, control each humidifier and the heat storage device carries out The time of heat exchange.
Optionally, when target humidity be higher than actual humidity, control the middle heat exchanger intake line valve of the humidifier Service time;When target humidity is lower than actual humidity, the middle heat exchanger intake line valve for controlling the humidifier is closed.
Using the alternative embodiment, the heat-exchange time of each humidifier and heat storage device is not identical, for mesh Humidity and the big humidifier of the actual humidity temperature difference are marked, the open-minded of the middle heat exchanger intake line valve of the humidifier is controlled Time is longer;The humidifier small for target humidity and the actual humidity temperature difference, the middle heat exchanger for controlling the humidifier are defeated The service time for entering pipe valve is shorter.
Optionally, the time that the humidifier and the heat storage device exchange heat Wherein, K is proportionality coefficient, Δ TnFor the target humidity of the humidifier and the difference of actual humidity, Δ TavIt is currently running The average value of the difference of the target humidity and actual humidity of humidifier, tbaseFor benchmark service time.
Optionally, Δ TnThe difference for subtracting actual humidity for target humidity, as Δ TnWhen≤0, which stops heat exchange.
Optionally, the benchmark service time tbaseAccording to be currently running humidifier quantity setting.Optionally, The quantity for the humidifier being currently running is fewer, the benchmark service time tbaseIt is longer, the number for the humidifier being currently running Measure more, the benchmark service time tbaseIt is shorter.
Herein, temperature equipment refers to bring the temperature of itself or environment is changed to set when equipment work It is standby, e.g., refrigerator, air conditioner, air energy compressor, solar energy heating temperature equipment, mobile robot heat release charger, hot water Device, heating temperature equipment, heating device, compressor, the cold temperature equipment of collection, refrigerator-freezer.
In conjunction with shown in Fig. 3 a to Fig. 3 g, illustrate a kind of energy stores station of the embodiment of the present invention.
Energy stores station 10, the energy absorption end 101 at energy stores station 10 is for absorbing the tune that can generate corresponding energy The energy of warm equipment (absorption edge temperature equipment 1011), energy release end 102 are used to (release to the temperature equipment of the corresponding energy of needs Put end temperature equipment 1021) it releases energy.
The concrete form at energy stores station 10 does not limit, and major function is storage energy, in have can store energy The energy-accumulation material of amount, and guarantee 10 adiabatic heat-insulation of energy storage sites.Energy stores station 10 can be an adiabatic heat-insulation Cabinet, it is interior to fill energy-accumulation material.It is also possible to dig on the ground storage pool, the inner wall of storage pool is insulated Isothermal holding.
The energy stores station of the embodiment of the present invention can be applied to single family, also can be applied to a cell or society Area.Application scenarios are different, and the quantity of temperature equipment is different, and the memory capacity at energy stores station 10 is different.Such as, it is applying single When in home scenarios, the limited amount of temperature equipment does not exceed 10 under normal circumstances.It is applying in cell, even more greatly Community in when, the quantity of external temperature equipment is just very huge, and the energy stores amount at energy stores station 10 just needs very at this time Greatly.As long as energy stores station has in application, determining according to actual conditions.
In the energy stores station 10 of the embodiment of the present invention, the energy of storage, can be with according to the reflected temperature of energy institute It is divided into heat and cooling capacity, therefore, heat and cooling capacity are opposite concepts, are divided i.e. according to the boundary (e.g., temperature limit) of setting It can.Therefore, in an alternative embodiment, the energy stores station 10 of the embodiment of the present invention can be heat storage device (heat Measure storage sites) 11, it is also possible to cooling capacity storage device (cooling capacity storage sites) 12, or deposit including heat storage device 11 and cooling capacity Storage device 12.
The energy absorption end 101 of heat storage device 11 is heat absorption end 111, can generate heat for absorbing The heat of first temperature equipment 1111, energy release end 102 is heat release end 112, for needing the second of heat to adjust Warm equipment 1121 discharges heat.Such as, air-conditioner outdoor unit, air when the first temperature equipment can be refrigerator, air conditioner refrigerating can press Contracting machine, solar energy heating temperature equipment, mobile robot heat release charger etc..Second temperature equipment can be water heater, heating Air-conditioning, heating temperature equipment, heating device etc..
The energy absorption end 101 of cooling capacity storage device 12 is cold absorption end 121 (that is, heat release end), for inhaling The cooling capacity that can generate the third temperature equipment 1211 of cooling capacity is received, energy release end 102 is cooling capacity release end 122 (that is, heat Absorption edge), for 1221 released cold quantity of the 4th temperature equipment for needing cooling capacity.Such as, third temperature equipment can be air-conditioning system Air-conditioner outdoor unit when hot, compressor, the cold temperature equipment of collection etc..4th temperature equipment can be refrigerator, refrigerator-freezer, refrigeration air-conditioner Deng.
The energy stores station 10 of the embodiment of the present invention may include one or more heat storage devices 11, and, one Or multiple cooling capacity storage devices 12.As shown in Figure 3b, a kind of energy stores station, including a heat storage device 11 and one it is cold Measure storage device 12.Specific setting number and type are determined according to the application scenarios of setting.
In the embodiment of the present invention, following energy stores stations 10 can refer to heat storage device when not doing specified otherwise 11, it can also refer to cooling capacity storage device 12.When heat storage device 11 is made at energy stores station 10, energy absorption end 101 is heat Absorption edge is measured, energy release end 102 is heat release end.When cooling capacity storage device 12 is made at energy stores station 10, energy absorption End 101 is cold absorption end, and energy release end 102 is cooling capacity release end.
In the embodiment of the present invention, energy stores station 10 can absorb one or absorbs the energy that multiple temperature equipments generate simultaneously Amount, can also release energy to one or simultaneously to multiple temperature equipments, therefore, the practical feelings according to external temperature equipment Condition, energy absorption end 101 can be one or more, energy release end 102 or one or more, specific number foundation Actual conditions determine.
In the energy stores station 10 of the embodiment of the present invention, energy absorption end 101 can generate corresponding energy for absorbing The energy of temperature equipment 1011 (the first temperature equipment 1111 and third temperature equipment 1211), absorption pattern multiplicity, e.g., utilizes stream When body medium is as carrier, energy absorption end 101 is logical using heat-exchanger rig and the heat-exchanger rig of 1011 side of absorption edge temperature equipment Pipeline connection is crossed, forms mediation cycle access between energy stores station 10 and temperature equipment.Liquid mediums absorb temperature equipment The energy that side generates, then flows to the energy absorption end 101 at energy stores station 10, and the energy storage material in energy stores station 10 will The energy absorption of the medium at energy absorption end 101 and storage, liquid mediums after releasing energy are changed flowing out to temperature equipment side Thermal absorbs the energy that temperature equipment side generates, so recycles, complete the energy stores at energy stores station 10.
In an alternative embodiment, the energy absorption end 101 at energy stores station 10 is one or more, each energy Absorption edge 101 is independently arranged.For example, the energy absorption end 101 at energy stores station 10 includes one (as shown in Figure 3 e) or multiple First heat-exchanger rig (as shown in Figure 3d), the first heat-exchanger rig have inlet tube 141 and outlet tube 142 (that is, one group of connecting pipeline 14) group, is connected to by two root canal roads with the heat-exchanger rig of 1011 side of absorption edge temperature equipment, in temperature equipment, (the first temperature adjustment is set Standby 1111 and third temperature equipment 1211) between energy stores station 10 energy turn is carried out by respective mediation cycle access It changes.For another example, as shown in Figure 3c, energy absorption end 101 is first heat-exchanger rig, and is connected in the liquid feeding end of the first heat-exchanger rig Lead to multiple inlet tubes 141, outlet end is connected to multiple outlet tubes 142.One inlet tube 141 and an outlet tube 142 are used as one Connecting pipeline group 14 constitutes multiple connecting pipeline groups being independently arranged, passes through multiple connecting pipeline group and external temperature equipment The terminal heat-exchanger rig of side is connected to.Adapt to the field that multiple external temperature equipments carry out energy input to energy absorption end 101 simultaneously Scape.It is filled by the way that flow control is arranged at multiple inlet tubes of the liquid feeding end in the first heat-exchanger rig and multiple outlet tubes of outlet end It sets, by the control to each volume control device, it can be achieved that absorbing the energy that one or more temperature equipments generate simultaneously, and The flow for adjusting medium in the mediation cycle pipeline of each temperature equipment realizes different heat exchange efficiencies.Further alternative reality It applies in example, the energy absorption end 101 at energy stores station 10 can also include multiple terminal heat-exchanger rigs, each terminal heat-exchanger rig With terminal inlet tube and terminal outlet tube, pass through the corresponding outlet tube and inlet tube with the first heat-exchanger rig in two root canal roads respectively Connection.The setting of terminal heat-exchanger rig is in 1011 side of absorption edge temperature equipment, for absorbing the energy of temperature equipment generation.First changes Thermal and terminal heat-exchanger rig constitute a mediation cycle access, and the energy for generating temperature equipment side is completed by liquid mediums In amount conversion to energy stores station 10.Wherein, when energy stores station 10 is heat storage device 11, the setting of terminal heat-exchanger rig exists First temperature equipment, 1111 side.When energy stores station 10 is cooling capacity storage device 12, terminal heat-exchanger rig is arranged in third temperature adjustment 1211 side of equipment.
In an alternative embodiment, the energy absorption end 101 at energy stores station 10 is multiple, multiple energy absorptions The pipeline at end 101 interconnects.There are many mode interconnected, as long as realizing the heat-exchanger rig and energy absorption of temperature equipment side End 101 may make up mediation cycle access.For example, as illustrated in figure 3f, multiple energy absorption ends 101 pass through feed liquor transfer pipeline 151 are connected to liquid transfer pipeline 152 out, and the inlet tube 141 at each energy absorption end 101 is connected to feed liquor transfer pipeline 151, The outlet tube 142 at each energy absorption end 101 is connected to liquid transfer pipeline 152 out.Again by feed liquor transfer pipeline 151 and out Liquid transfer pipeline 152 is used as one group of connecting pipeline group, is connected to by two root canal roads with the terminal heat-exchanger rig of temperature equipment side, Pass through respective mediation cycle access between temperature equipment (the first temperature equipment and third temperature equipment) and energy stores station 10 Carry out energy conversion.Multiple inlets of multiple energy absorption ends 101 (multiple first heat-exchanger rigs) are connected to, multiple liquid out Mouth connection.By the way that volume control device is arranged at each communication port on feed liquor transfer pipeline 151 and out liquid transfer pipeline 152, The energy that one or more temperature equipments generate is realized while being absorbed, and can be conveyed to one or more energy absorption ends 101 Energy.
Similarly, energy release end 102, for releasing energy to the temperature equipment of the corresponding energy of needs.Delivery mode multiplicity, Such as, using liquid mediums as when carrier, energy release end 102 passes through pipeline using the heat-exchanger rig of heat-exchanger rig and equipment side Connection, energy stores station 10 and release end temperature equipment 1021 (the second temperature equipment 1121 and the 4th temperature equipment 1221) it Between formed mediation cycle access.Liquid mediums absorb the energy in the energy-accumulation material at energy stores station 10 in energy release end 102 Amount, then flows to the terminal heat-exchanger rig of 1021 side of release end temperature equipment, and temperature equipment side absorbs the energy in liquid mediums Amount, the liquid mediums after releasing energy flow back into the energy release end 102 at energy stores station 10 again, so recycle, and complete energy The energy of storage sites 10 discharges.
In an alternative embodiment, the energy release end 102 at energy stores station 10 is one or more, each energy The pipeline of release end 102 is independently arranged.For example, the energy release end 102 at energy stores station 10 includes one (as shown in Figure 3 e) Or multiple second heat-exchanger rigs (as shown in Figure 3d), each second heat-exchanger rig have inlet tube 141 and outlet tube 142 (that is, one Group connecting pipeline group 14), it is connected to by two root canal roads with the terminal heat-exchanger rig of 1021 side of temperature equipment, in temperature equipment (tool Body is the second temperature equipment 1121 and the 4th temperature equipment 1221) and energy stores station 10 between pass through medium independent Circulation path carries out energy conversion.For another example, as shown in Figure 3c, energy release end 102 includes second heat-exchanger rig, and second changes The liquid feeding end of thermal is connected to multiple inlet tubes 141, and outlet end is connected to multiple outlet tubes 142.One inlet tube 141 and one go out Liquid pipe 142 is used as a connecting pipeline group 14, constitutes the connecting pipeline group 14 that multiple groups are independently arranged, is respectively used to and external release Hold the terminal heat-exchanger rig connection of 1021 side of temperature equipment.Adapt to energy release end 102 simultaneously to multiple external temperature equipments into The scene of row energy output.At multiple inlet tubes of the liquid feeding end in the second heat-exchanger rig and multiple outlet tubes of outlet end Volume control device is set, then by the control to each volume control device, it can be achieved that setting simultaneously to one or more temperature adjustments It is standby to release energy, and the flow of medium in the mediation cycle pipeline of each temperature equipment is adjusted, realize different heat exchange efficiencies. In further alternative embodiment, the energy release end 102 at energy stores station 10 can also include multiple terminal heat-exchanger rigs, often A terminal heat-exchanger rig has terminal inlet tube and terminal outlet tube, passes through two root canals road correspondence and the second heat-exchanger rig respectively Outlet tube 142 and inlet tube 141 connect.The setting of terminal heat-exchanger rig is generated in temperature equipment side for absorbing temperature equipment Energy.Second heat-exchanger rig and terminal heat-exchanger rig constitute a mediation cycle access, are completed by liquid mediums by energy Energy in storage sites 10 is released to temperature equipment side.Wherein, when energy stores station 10 is heat storage device 11, terminal heat exchange Device is arranged in 1121 side of the second temperature equipment.When energy stores station 10 is cooling capacity storage device 12, the setting of terminal heat-exchanger rig In 1221 side of the 4th temperature equipment.
In an alternative embodiment, the energy release end 102 at energy stores station 10 is multiple, multiple energy releases End 102 interconnects.There are many mode interconnected, as long as realizing the heat-exchanger rig and energy release end 102 of temperature equipment side It may make up mediation cycle access.For example, as illustrated in figure 3f, multiple energy release ends 102 (multiple second heat-exchanger rigs) are logical Feed liquor transfer pipeline 151 is crossed to be connected to liquid transfer pipeline 152 out, each energy release end 102 (each second heat-exchanger rig) Inlet tube 141 is connected to feed liquor transfer pipeline 151, the outlet tube of each energy release end 102 (each second heat-exchanger rig) 142 are connected to liquid transfer pipeline 152 out.It is connected to again with liquid transfer pipeline 152 out as one group by feed liquor transfer pipeline 151 Pipeline group is connected to, in temperature equipment (the first temperature equipment and third tune with the heat-exchanger rig of temperature equipment side by two root canal roads Warm equipment) and energy stores station 10 between pass through respective mediation cycle access carry out energy conversion.Multiple energy are discharged Hold multiple inlets connection of 102 (multiple second heat-exchanger rigs), multiple liquid outlet connections.By in feed liquor transfer pipeline and out Volume control device is set at each communication port on liquid transfer pipeline, realizes and is released simultaneously by one or more energy release ends 102 Exoergic amount, and can release energy simultaneously to one or more temperature equipments.
In the embodiment of the present invention, the heat exchange dress of the energy absorption end 101 at energy stores station 10 and the use of energy release end 102 It sets, it can be using plate heat exchanger, evaporator, condenser, heat exchange coil etc..
In the energy stores station 10 of the embodiment of the present invention, the set-up mode of energy absorption end 101 and energy release end 102 can It, can not also be identical with identical.
In an alternative embodiment, the structure at the energy absorption end 101 at energy stores station 10 and energy release end 102 It is identical.Specifically, energy stores station 10 includes following four specific embodiment:
As shown in Figure 3 e, the first energy stores station 10, energy absorption end 101 are first heat-exchanger rig, pass through one Group connecting pipeline group is connected to the heat-exchanger rig of temperature equipment side.Energy release end 102 is second heat-exchanger rig, passes through one Group connecting pipeline group is connected to the heat-exchanger rig of temperature equipment side.That is, the pipeline and energy release end 102 at energy absorption end 101 Pipeline be independently arranged.That is, the energy absorption end 101 at the first energy stores station 10 is first heat-exchanger rig, have One group of independent communication pipeline group, energy release end 102 are second heat-exchanger rig, have one group of independent communication pipeline group, use It is connected in the heat-exchanger rig of temperature equipment side.
As illustrated in figure 3f, second of energy stores station 10, energy absorption end 101 are multiple first heat-exchanger rigs, pass through one The heat-exchanger rig company of group connecting pipeline group (by feed liquor transfer pipeline 151 and out liquid transfer pipeline 152 is constituted) and temperature equipment side It is logical.Energy release end 102 is multiple second heat-exchanger rigs, by one group of connecting pipeline group (by feed liquor transfer pipeline 151 and liquid out Transfer pipeline 152 is constituted) it is connected to the heat-exchanger rig of temperature equipment side.That is, the pipeline at multiple energy absorption ends 101 is mutually connected Logical, the pipeline of multiple energy release ends 102 interconnects.That is, the energy absorption end 101 at second of energy stores station 10 is more A, the inlet tube and outlet tube at multiple energy absorption end interconnect, and pass through one group of connecting pipeline group and temperature equipment side Heat-exchanger rig connection.Energy release end 102 be it is multiple, the inlet tube and outlet tube of multiple energy release end interconnect, lead to One group of connecting pipeline group is crossed to be connected to the heat-exchanger rig of temperature equipment side.
As shown in Fig. 3 a and Fig. 3 c, the third energy stores station 10, energy absorption end 101 is first heat-exchanger rig, It is connected to by multiple groups connecting pipeline group with the heat-exchanger rig of temperature equipment side.Energy release end 102 is second heat-exchanger rig, It is connected to by multiple groups connecting pipeline group with the heat-exchanger rig of temperature equipment side.Multiple connecting pipelines at one energy absorption end 101 Group is independently arranged, and multiple connecting pipeline groups of an energy release end 102 are independently arranged.That is, the third energy stores station 10 Energy absorption end 101 is one, and with the connecting pipeline group that multiple groups are independently arranged, energy release end 102 is one, has multiple groups The connecting pipeline group being independently arranged.
As shown in Figure 3d, the 4th kind of energy stores station 10, energy absorption end 101 is multiple first heat-exchanger rigs, by every The connecting pipeline group 14 and the heat-exchanger rig of temperature equipment side of a heat-exchanger rig respective inlet tube 141 and the composition of outlet tube 142 Connection.Energy release end 102 is multiple second heat-exchanger rigs, passes through the respective inlet tube 141 of each heat-exchanger rig and outlet tube The 142 connecting pipeline groups 14 constituted are connected to the heat-exchanger rig of temperature equipment side.The connecting pipeline group at each energy absorption end 101 It is independently arranged, the connecting pipeline group of each energy release end 102 is independently arranged.That is, the energy absorption at the 4th kind of energy stores station To be multiple, the connecting pipeline group at each energy absorption end 101 is independently arranged at end 101;The energy release end 102 at energy stores station is Multiple, the connecting pipeline group at each energy release end end 102 is independently arranged.
Certainly, the energy absorption end 101 at energy stores station 10 and the set-up mode of energy release end 102 can not be identical. The specific set-up mode used is combined according to situation and determines, this is no longer going to repeat them.
In an alternative embodiment, energy stores station 10 further includes multiple volume control devices 13, multiple flow controls Device 13 processed is separately positioned on the energy absorption end 101 at energy stores station 10 and the pipeline of energy release end 102.Flow control Device has the function of adjusting flow, including power effect and throttling action.Wherein, power effect throttles for increasing flow Effect is for reducing flow.In the embodiment for carrying out energy exchange using liquid mediums, volume control device can be power Pump and solenoid valve, alternatively, expansion valve etc..The energy absorption end 101 at energy stores station 10 and energy release end 102 pass through pipe respectively Road (inlet tube 141 and outlet tube 142) and external temperature equipment carry out energy exchange, that is, a temperature equipment and energy absorption 101 (or energy release ends 102) are held to constitute a mediation cycle pipeline, volume control device setting is opposite in each temperature equipment On the mediation cycle pipeline answered.By the setting of volume control device, the mediation cycle where adjusting respectively can control The flow of medium in pipeline can be adjusted from zero between maximum stream flow, thus control the energy of energy storage station 10 Amount of storage or burst size.In a kind of specific embodiment, volume control device be separately positioned on energy absorption end 101 it is each into The interface and each inlet tube 141 of energy release end 102 of liquid pipe 141 and each outlet tube 142 and connecing for each outlet tube 142 At mouthful.
In the embodiment of the present invention, a kind of structure at specific energy stores station 10 is provided, as shown in figure 3g, including, one Or multiple accumulation of energy heaps 100, each accumulation of energy heap 100 include Storage Unit 110, are used for storage energy;Absorption edge heat-exchanger rig 101, The absorption edge heat-exchanger rig is embedded in the accumulation of energy heap 110;Release end heat-exchanger rig 102, the release end heat-exchanger rig It is embedded in the accumulation of energy heap 110.
In the embodiment of the present invention, Storage Unit 110 can use existing energy-accumulation material, and e.g., fused salt can store heat Amount.There are many type of fused salt, e.g., ceramic matrix fused salt.For another example, ice bag can store cooling capacity.The shape of Storage Unit is unlimited It is fixed, it is determined according to the physical property of energy-accumulation material itself, e.g., when using fused salt, Storage Unit uses rigidity shell, steel Property shell in encapsulate fused salt, and groove is formed on rigidity shell, for being embedded absorption edge heat-exchanger rig and release end heat exchange dress It sets.
Absorption edge heat-exchanger rig, i.e. energy absorption edge 101 can be set one or more absorption edges in each accumulation of energy heap and change Thermal.The connecting pipeline of absorption edge heat-exchanger rig in multiple accumulation of energy heaps can be independently arranged, and can also be interconnected.With reference to Foregoing teachings.
Release end heat-exchanger rig, i.e. energy release end 102 can be set one or more release ends in each accumulation of energy heap and change Thermal.The connecting pipeline of release end heat-exchanger rig in multiple accumulation of energy heaps can be independently arranged, and can also be interconnected.With reference to Foregoing teachings.
Certainly, energy stores station 10 further includes the shell of adiabatic heat-insulation, plays heat preservation heat insulating function, prevents energy loss.
In the present embodiment, absorption edge heat-exchanger rig uses the first heat exchange coil;Release end heat-exchanger rig is using the second heat exchange Coil pipe.Had using coil pipe using the heat exchange area increased with thermal storage unit, improves the efficiency of storage or release.
Further, the first heat exchange coil and the second heat exchange coil are staggered in Storage Unit.
When only having an accumulation of energy heap 100 in the energy stores station 10 of the present embodiment, absorption edge heat-exchanger rig 101 and release end The connecting pipeline of heat-exchanger rig 102 using it is above-mentioned the first to the 4th kind of energy stores station 10 structure.
When having multiple accumulation of energy heaps 100 in the energy stores station 10 of the present embodiment, the absorption edge in each accumulation of energy heap 100 is changed The connecting pipeline of thermal 101 and release end heat-exchanger rig 102 uses the set-up mode as shown in Fig. 3 e or Fig. 3 f.And it is absorbing End 101 end of heat-exchanger rig is further added by the total inlet tube of setting and main drain pipe, the inlet tube (141 of each absorption edge heat-exchanger rig 101 Or 151) it is connected to total inlet tube, the outlet tube (142 or 152) of each absorption edge heat-exchanger rig 101 is connected to main drain pipe. Similarly, the total inlet tube of setting and main drain pipe, each release end heat-exchanger rig are also further added by 102 end of release end heat-exchanger rig 102 inlet tube (141 or 151) is connected to total inlet tube, the outlet tube (142 or 152) of each release end heat-exchanger rig 102 It is connected to main drain pipe.
In conjunction with shown in Fig. 4 a to Fig. 4 f, illustrate a kind of middle heat exchanger of the invention, be denoted as heat exchanger 20 in first, wraps It includes: heat absorbing end 201, for being connected to 10/ temperature equipment of energy stores station (e.g., the first temperature equipment 1111 or the 4th temperature adjustment Equipment 1221);With release end of heat 202, for being connected to temperature equipment (e.g., the second temperature equipment 1121 or third temperature equipment 1211)/energy stores station 10.
Heat exchanger 20 in the first of the embodiment of the present invention accesses between energy stores station 10 and temperature equipment, to energy Energy between storage sites 10 and multiple temperature equipments has converted transfer effect.In practical application, the quantity of temperature equipment is not It is fixed, it can be one, it is also possible to it is two, it is even more;And energy stores station 10 also can have one or more, because This, the heat absorbing end 201 of the middle heat exchanger of the embodiment of the present invention is one or more, and release end of heat 202 is also one or more, real Now turn multichannel all the way, multichannel turns all the way or multichannel turns multichannel, can facilitate and adjust energy stores station 10 and temperature equipment (suction Receiving end temperature equipment 1011 or release end temperature equipment 1021) between energy stores and release, and access is easy to control, According to actual conditions, part of access can be connected and carry out energy exchange.It can also enough simplifying energy stores station and adjusting Connecting pipeline between warm equipment facilitates the layout of pipeline, reduces cost.
In the middle heat exchanger 20 of the embodiment of the present invention, when heat absorbing end 201 is connected to energy stores station 10, release end of heat 202 It is connected to temperature equipment, energy stores station 10 supplies heat to temperature equipment by middle heat exchanger 20, is also possible to temperature adjustment and sets It is standby that cooling capacity is supplied to energy stores station by middle heat exchanger 20.When heat absorbing end 201 is connected to temperature equipment, release end of heat 202 It is connected to energy stores station 10, temperature equipment supplies heat to energy stores station 10, is also possible to energy stores station 10 to temperature adjustment Equipment supplies cooling capacity.
In the embodiment of the present invention, heat absorbing end 201, for absorbing energy stores station 10 (alternatively, first temperature equipment 1111) Heat, namely the amount of letting cool end (released cold quantity).The specific structure multiplicity of use, e.g., using liquid mediums as carrier, heat absorption End 201 uses the heat exchange of the heat release end 112 (alternatively, first temperature equipment 1111) of heat-exchanger rig and 11 side of heat storage sites Device absorbs the heat of 11 side of heat storage sites (alternatively, first temperature equipment 1111), fluid by pipeline connection, liquid mediums Medium flows to the heat absorbing end 201, the medium fluid progress heat exchange of heat absorbing end 201 and release end of heat 202, so that heat be converted To release end of heat 202.Alternatively, heat absorbing end 201 is using the cold absorption end 121 of heat-exchanger rig and cooling capacity storage sites 12 (alternatively, the 4th Temperature equipment 1221) heat-exchanger rig by pipeline connection, at this point, heat absorbing end 201 can be understood as released cold quantity end 201, stream Body medium absorbs the heat (absorbing heat, i.e. released cold quantity) of 12 side of cooling capacity storage sites (alternatively, the 4th temperature equipment 1221), stream Body medium flows to the heat absorbing end 201, the medium fluid progress heat exchange of heat absorbing end 201 and release end of heat 202, so that heat be turned Shift to release end of heat 202.
Similarly, release end of heat 202 are used to discharge heat to energy stores station 10 (alternatively, second temperature equipment 1121), namely Absorb cooling capacity end (absorbing cooling capacity).The specific structure multiplicity of use, e.g., using liquid mediums as carrier, release end of heat 202 is used Heat-exchanger rig and the heat-exchanger rig at the heat absorption end 111 (alternatively, second temperature equipment 1121) of 11 side of heat storage sites pass through Pipeline connection, liquid mediums absorb the heat of 11 side of heat storage sites (alternatively, second temperature equipment 1121), liquid mediums flowing To the release end of heat 202, the medium fluid of release end of heat 202 and heat absorbing end 201 carries out heat exchange, to converting heat to heat absorbing end 201.Alternatively, release end of heat 202 is using the cooling capacity release end 122 of heat-exchanger rig and cooling capacity storage sites 12 (alternatively, third temperature equipment 1211) heat-exchanger rig is released by pipeline connection, liquid mediums to 12 side of cooling capacity storage sites (alternatively, third temperature equipment 1211) Thermal discharge (release heat, i.e. absorption cooling capacity), liquid mediums flow to the release end of heat 202, release end of heat 202 and heat absorbing end 201 Medium fluid carries out heat exchange, to converting heat to heat absorbing end 201.
That is, when by transfer heat exchanger applications to cooling capacity storage device, the inverse mistake of the transmitting of heat in middle heat exchanger 20 Journey is cooling capacity transmitting, that is, heat absorption is released cold quantity.
In an alternative embodiment, heat absorbing end 201 specifically use heat-exchanger rig, e.g., plate heat exchanger, evaporator or Person's heat exchange coil etc..Release end of heat 202 is specifically using heat-exchanger rig, e.g., plate heat exchanger, condenser, alternatively, heat exchange coil etc..
In the first of the embodiment of the present invention in heat exchanger 20, the number of heat absorbing end 201 and release end of heat 202, and, heat absorption The setting of the external connecting pipeline group of end 201 and release end of heat 202, according to connection side (energy stores station side and temperature equipment side) The quantity (can participate in the content hereinafter with regard to energy storage portion) of the connecting pipeline group of heat-exchanger rig determines.
In an alternative embodiment, in the first of the embodiment of the present invention heat exchanger 20 heat absorbing end 201 be one or Multiple, the pipeline of each heat absorbing end 201 is independently arranged.For example, heat absorbing end 201 includes one (such as Fig. 4 a, Fig. 4 b and Fig. 4 f institute Show) or multiple (release end of heat 202 of the middle heat exchanger 20 of d referring to fig. 4) third heat-exchanger rigs, each third heat-exchanger rig have Have inlet tube 211 and outlet tube 212 (that is, one group of connecting pipeline group 21), by two pipelines and energy stores station 10 (alternatively, First temperature equipment 1111 or the 4th temperature equipment 1221) side heat-exchanger rig connection, using liquid mediums by energy stores Stand 10 (alternatively, the first temperature equipment 1111 or the 4th temperature equipment 1221) sides heat transfer to heat absorbing end 201.That is, Each third heat-exchanger rig is independently with energy stores station 10 (alternatively, the first temperature equipment 1111 or the 4th temperature equipment 1221) it is connected to.For another example, as shown in Fig. 4 c, Fig. 4 e, heat absorbing end 201 is a third heat-exchanger rig, and in third heat-exchanger rig Liquid feeding end is connected to multiple inlet tubes 211, and outlet end is connected to multiple outlet tubes 212.One inlet tube 211 and an outlet tube 222 As a connecting pipeline group 21, constitute multiple independent connecting pipeline groups, by multiple independent communication pipeline group respectively with The third heat-exchanger rig of external temperature equipment side is connected to.
In another alternative embodiment, heat absorbing end 201 is multiple, and the pipeline of multiple heat absorbing ends 201 interconnects.Mutually There are many mode of connection, if realize can multiple heat absorbing ends with energy stores station 10 (alternatively, the first temperature equipment 1111 or The 4th temperature equipment 1221 of person) connection.For example, as shown in figure 4d, multiple heat absorbing ends 201 pass through feed liquor transfer pipeline 221 Liquid transfer pipeline 222 is connected to out, and the inlet tube 211 of each heat absorbing end 201 is connected to feed liquor transfer pipeline 221, each suction The outlet tube 212 in hot end 201 is connected to liquid transfer pipeline 222 out.Pass through feed liquor transfer pipeline 221 and out liquid transfer pipeline again 222 are used as one group of connecting pipeline group, by two root canal roads and energy stores station 10 (alternatively, the first temperature equipment 1111 or the Four temperature equipments 1221) side heat-exchanger rig connection.
Similarly, when release end of heat 202 is one or more, the pipeline of each release end of heat 202 is independently arranged, and set-up mode is the same The heat absorbing end 201 stated is identical.When release end of heat 202 is multiple, the pipeline of multiple release end of heat 202 is interconnected, and mode of communicating is the same The heat absorbing end 201 stated is identical.Details are not described herein.
Therefore, in the first of the embodiment of the present invention in heat exchanger, the pipeline of foundation heat absorbing end 201 and heat-exchange end 202 Set-up mode has following several specific embodiments.
As shown in fig. 4 a, the first transfer heat exchanger I, heat absorbing end 201 are one, have a connecting pipeline group;Release end of heat 202 is multiple, and the connecting pipeline group of multiple release end of heat 202 is independently arranged.That is, the pipeline of heat absorbing end 201 and release end of heat 202 is independent Setting.Turn multichannel all the way.
As shown in Figure 4 b, the first transfer heat exchanger II, heat absorbing end 201 are one, have a connecting pipeline group;Release end of heat 202 be one, and a release end of heat 202 has multiple connecting pipeline groups being independently arranged.That is, heat absorbing end 201 and release end of heat 202 Pipeline is independently arranged.Turn multichannel all the way.
As illustrated in fig. 4 c, heat exchanger III in first, heat absorbing end 201 are one, and a heat absorbing end 201 has multiple independences The connecting pipeline group of setting;Release end of heat 202 is one, has a connecting pipeline group.That is, heat absorbing end 201 and release end of heat 202 Pipeline is independently arranged.Multichannel turns all the way.
As shown in figure 4d, heat exchanger V in first, heat absorbing end 201 be it is multiple, multiple heat absorbing ends 201 are interconnected by one Group communicating pipe group is connected to the heat-exchanger rig of energy stores station 10 (or absorption edge temperature equipment 1011) side;Release end of heat 202 is Multiple, the connecting pipeline group of multiple release end of heat 202 is independently arranged.That is, the pipeline of multiple heat absorbing ends 201 is interconnected, Duo Gefang The pipeline in hot end 202 is independently arranged.Turn multichannel all the way.
As shown in fig 4e, heat exchanger IV in first, heat absorbing end 201 are one, and a heat absorbing end 201 has multiple independences The connecting pipeline group of setting;Release end of heat 202 is one, and a release end of heat 202 has multiple connecting pipeline groups being independently arranged. That is, the pipeline of heat absorbing end 201 and release end of heat 202 is independently arranged.Multichannel turns multichannel.
As shown in fig. 4f, heat exchanger VI in first, heat absorbing end 201 are one, have a connecting pipeline group;Release end of heat 202 be one, has a connecting pipeline group.That is, the pipeline of heat absorbing end 201 and release end of heat 202 is independently arranged.Turn one all the way Road.
Certainly, the structure of heat exchanger is not limited to above-mentioned six kinds in the first of the embodiment of the present invention, wherein 201 He of heat absorbing end The structure of release end of heat 202 can be interchanged, can also be in any combination.It is connected to the heat exchange of side (energy stores station side and temperature equipment side) The quantity of the connecting pipeline group of device determines the structure of the middle heat exchanger of adaptation.In addition, in first heat exchanger suction When the connecting pipeline group in hot end 201 (or release end of heat 202) is multiple groups, number is not limited, the energy storage according to required access Stand 10 or temperature equipment number determine.
In the first of the embodiment of the present invention in heat exchanger 20, the heat exchange of the heat-exchanger rig and release end of heat 202 of heat absorbing end 201 Device can be separately provided, and e.g., when using plate heat exchanger, the two is oppositely arranged and (can contact or do not contact), guarantee heat-transfer surface Product maximizes;When using heat exchange coil, makes the interlaced setting of the coil portions of the two (can contact or do not contact), guarantee have Effect heat exchange.Alternatively, the heat-exchanger rig design of the heat-exchanger rig and release end of heat 202 of heat absorbing end 201 is integrated.Set-up mode is unlimited Fixed, as long as realizing, the heat-exchanger rig of heat absorbing end 201 and the heat-exchanger rig of release end of heat 202 are able to carry out heat transmitting.Such as Fig. 4 a To shown in Fig. 4 f, being the heat-exchanger rig structure being oppositely arranged of heat absorbing end 201 and release end of heat 202 using contactless type, certainly Heat exchanger is not limited to structure given by attached drawing in the first of the embodiment of the present invention.
In an alternative embodiment, middle heat exchanger 20 further includes the valve 231 that absorbs heat, and is arranged in series in heat absorbing end On 201 pipeline;And/or heat release valve 232, it is arranged in series on the pipeline of release end of heat 202.The purpose that valve is arranged is control Heat absorbing end 201 processed and release end of heat 202 open or close.In specific embodiment, in each 201 (each heat exchange dress of heat absorbing end Set) inlet tube and outlet tube on be respectively provided with heat absorption valve 231, in the inlet tube of each release end of heat 202 (each heat-exchanger rig) With heat release valve 232 is respectively provided on outlet tube.By the control to each valve, the release end of heat of centering heat exchanger 20 is realized respectively 202 and heat absorbing end 201 each connecting pipeline folding control, adjust the transmitting of energy, can according to actual conditions, control the energy Storage sites 10 carry out energy release to part temperature equipment, also can control part temperature equipment case energy storage station 10 and store energy Amount.
In conjunction with shown in Fig. 4 g and Fig. 4 h, in the embodiment of the present invention, a kind of middle heat exchanger, heat exchanger in second are also provided 30, comprising:
Heat absorbing end 301, for being connected to 10/ temperature equipment of energy stores station (e.g., the first temperature equipment 1111 or the 4th Temperature equipment 1221);
Release end of heat 302, for being connected to temperature equipment (e.g., the second temperature equipment 1121 or third temperature equipment 1211)/energy stores station 10;With,
The both ends of undirectional thermal conducting 31 are arranged in undirectional thermal conducting 31, heat absorbing end 301 and release end of heat 302.
Heat exchanger 30 in the second of the embodiment of the present invention, can be at energy stores station by increasing undirectional thermal conducting 31 When releasing energy to release end temperature equipment, accurately energy is provided for temperature equipment.In addition, applying also for when energy stores station It cannot be carried out by the direction of setting between 10 and temperature equipment (absorption edge temperature equipment 1011 or release end temperature equipment 1021) The case where energy transmission.When general progress heat transmitting, the low one end of temperature can only be transmitted to from the high one end of temperature, if heat is deposited Temperature itself in storage station is higher than the medium temp of temperature equipment output, and at this point, heat storage sites are deposited there are many more heating load The capacity of storage then can not carry out heat storage by direction initialization to heat storage sites at this time, will cause heat storage sites instead Heat losses play opposite effect.When heat storage sites carry out heat release, and identical problem can be encountered.Therefore originally Inventive embodiments provide the heat exchanger 30 in second, using undirectional thermal conducting 31 to (cold from temperature equipment guiding heat Amount) storage sites medium temp, and be adjusted from the medium temp of heat (cooling capacity) storage sites guide device, can There is provided accurate energy to release end temperature equipment, or make energy storage sites 10 and temperature equipment by direction initialization normally into Row heat transfer.
Heat exchanger 30 in the second of the embodiment of the present invention, on the basis of being heat exchanger 20 in above-mentioned first, Undirectional thermal conducting 31 is increased between heat absorbing end and release end of heat.Therefore, the absorption edge 301 of heat exchanger 30 and heat release in second The structure setting at end 302 and role are identical as the heat absorbing end 201 of heat exchanger 20 in first and release end of heat 202, It can refer to foregoing teachings, details are not described herein.
Therefore, it is being inhaled according to the first transfer heat exchanger I as described in Fig. 4 a to Fig. 4 f to VI structure of heat exchanger in first Increase undirectional thermal conducting 31 can successively obtain heat absorbing end between hot end and release end of heat and release end of heat corresponds in consistent second Heat exchanger VI in heat exchanger I to the second.The second transfer heat exchanger II 30 as shown in figure 4g is the transition heat in first Increase undirectional thermal conducting 31 on the basis of device II 20 to obtain, as shown in figure 4h second in heat exchanger VI 30 be the Increase what undirectional thermal conducting 31 obtained in one on the basis of heat exchanger VI 20.
Heat exchanger 30 in the second of the embodiment of the present invention, undirectional thermal conducting 31 are realized the heat (pressure) of heat absorbing end It exchanges to release end of heat.Refrigerant heat exchanger or semiconductor temperature adjustor can specifically be used.
In an alternative embodiment, refrigerant heat exchanger includes evaporator 311, compressor (not shown), condenser 312 Heat-exchanging loop is connected and composed with expansion valve (not shown), four.Heat exchanger 30 includes two adiabatic heat-insulation settings in second Absorb heat chamber 303 and heat release chamber 304;The heat absorbing end 301 of heat exchanger 30 is oppositely arranged in evaporator 311 and second, and is set It sets in heat absorption chamber 303;The release end of heat 302 of heat exchanger 30 is oppositely arranged in condenser 312 and second, and is arranged in heat release In chamber 304.
In an alternative embodiment, semiconductor temperature adjustor, including semiconductor chilling plate, setting are in semiconductor The first end heat exchanger of the first end of cooling piece and the second end heat exchanger and power supply unit of second end.Power supply unit is used for Electric energy is provided for semiconductor chilling plate.By controlling the direction of supply current, the first end and second of semiconductor chilling plate can be made It holds and is switched under the cold both of which of heat production and production.For example, first end is cold end under forward current, second end is heat End;Behind switching electric current direction, first end is switched to hot end, and second end is switched to cold end.Heat exchanger 30 includes two in second The heat absorption chamber 303 and heat release chamber 304 of adiabatic heat-insulation setting;The heat absorbing end of heat exchanger 30 in first end heat exchanger and second 301 are oppositely arranged, and are arranged in heat absorption chamber 303;302 phase of release end of heat of heat exchanger 30 in second end heat exchanger and second To setting, and it is arranged in heat release chamber 304.Determine that first end heat exchanger is hot end (or cold end) and the according to actual conditions Two end heat exchangers are cold end (or hot end).
When needing to provide accurate energy to release end temperature equipment, alternatively, energy stores station 10 and temperature equipment it Between when cannot carry out heat transmitting by direction initialization, start undirectional thermal conducting 31, force exchange to putting the heat of heat absorbing end 301 Hot end 302, then energy stores station 10 (perhaps absorption edge temperature equipment 1011 or release are transferred heat to by release end of heat 302 Hold temperature equipment 1021).
The invention is not limited to the structures for being described above and being shown in the accompanying drawings, and can not depart from its model It encloses and carry out various modifications and change.The scope of the present invention is limited only by the attached claims.

Claims (10)

1. a kind of control method of energy resource system, which is characterized in that the energy resource system includes energy stores station and multiple humidifications Device, the energy stores station includes heat storage device, and the humidifier includes refrigerant heating tube, the heat storage dress It sets and is connected to by middle heat exchanger with the humidifier;The middle heat exchanger includes a heat absorbing end and a release end of heat, The heat absorbing end of the middle heat exchanger is connected to the heat storage device, the heat release of the middle heat exchanger by intake line End is connected to the refrigerant heating tube of the humidifier by output pipe, is provided on the intake line of the middle heat exchanger For controlling the valve of cold medium flux;It the described method comprises the following steps:
Obtain the target humidity and actual humidity of each humidifier;
According to the difference of the target humidity of the humidifier and actual humidity, controls the humidifier and heat storage fills Set the time to exchange heat.
2. the method as described in claim 1, which is characterized in that further include:
Obtain the quantity for the humidifier being currently running;
According to the quantity for the humidifier being currently running, controls the humidifier and changed with the heat storage device timesharing Heat.
3. method according to claim 2, which is characterized in that the quantity for the humidifier that the basis is currently running, control The step of humidifier and the heat storage device timesharing are exchanged heat, comprising:
When the quantity for the humidifier being currently running is less than preset value, the humidifier and the heat storage device are controlled Full-time connection.
4. method according to claim 2, which is characterized in that the quantity for the humidifier that the basis is currently running, control The step of humidifier and the heat storage device timesharing are exchanged heat, comprising:
When the quantity for the humidifier being currently running is greater than preset value, the humidifier and the heat storage device are controlled Timesharing is connected.
5. method as claimed in claim 4, which is characterized in that described to be preset when the quantity for the humidifier being currently running is greater than When value, the step of humidifier is connected with the heat storage device timesharing is controlled, comprising: all humidifiers are using single Cycle heat exchange is carried out into the switch mode singly gone out.
6. method according to claim 2, which is characterized in that further include:
According to the difference of the target humidity and actual humidity of the quantity for the humidifier being currently running and each humidifier, control The quantity for the humidifier that system exchanges heat with the heat storage device simultaneously.
7. method according to claim 2, which is characterized in that further include:
According to the difference of the target humidity and actual humidity of the quantity for the humidifier being currently running and each humidifier, control Make the time that each humidifier exchanges heat with the heat storage device.
8. the method for claim 7, which is characterized in that the humidifier exchanges heat with the heat storage device TimeWherein, K is proportionality coefficient, Δ TnFor the target humidity and actual humidity of the humidifier Difference, Δ TavFor the average value of the difference of the target humidity and actual humidity of each humidifier, tbaseFor benchmark service time.
9. method according to claim 8, which is characterized in that the benchmark service time tbaseAccording to be currently running plus The quantity of wet device is arranged.
10. method according to claim 8, which is characterized in that the Δ TnSubtract actual humidity for humidifier target humidity Difference, as Δ TnWhen≤0, which stops heat exchange.
CN201910018950.XA 2019-01-09 2019-01-09 Control method of energy system Active CN109764458B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910018950.XA CN109764458B (en) 2019-01-09 2019-01-09 Control method of energy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910018950.XA CN109764458B (en) 2019-01-09 2019-01-09 Control method of energy system

Publications (2)

Publication Number Publication Date
CN109764458A true CN109764458A (en) 2019-05-17
CN109764458B CN109764458B (en) 2021-01-29

Family

ID=66453748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910018950.XA Active CN109764458B (en) 2019-01-09 2019-01-09 Control method of energy system

Country Status (1)

Country Link
CN (1) CN109764458B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607116A (en) * 2011-01-21 2012-07-25 际高建业有限公司 Regenerative temperature and humidity independent air conditioning system
CN105241122A (en) * 2009-11-16 2016-01-13 苏纳珀有限公司 Energy storage systems
CN207094911U (en) * 2017-08-25 2018-03-13 广东美的制冷设备有限公司 Humidifying air-conditioner
CN108592192A (en) * 2018-04-23 2018-09-28 广东美的暖通设备有限公司 Air conditioner, humidifying controlling method and computer readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241122A (en) * 2009-11-16 2016-01-13 苏纳珀有限公司 Energy storage systems
CN102607116A (en) * 2011-01-21 2012-07-25 际高建业有限公司 Regenerative temperature and humidity independent air conditioning system
CN207094911U (en) * 2017-08-25 2018-03-13 广东美的制冷设备有限公司 Humidifying air-conditioner
CN108592192A (en) * 2018-04-23 2018-09-28 广东美的暖通设备有限公司 Air conditioner, humidifying controlling method and computer readable storage medium

Also Published As

Publication number Publication date
CN109764458B (en) 2021-01-29

Similar Documents

Publication Publication Date Title
CN109764460A (en) A kind of energy resource system and control method
CN109764451A (en) A kind of control method of energy resource system
CN109757906A (en) A kind of control method of energy resource system
CN109757904A (en) A kind of control method of energy resource system
CN109764506A (en) A kind of control method of energy resource system
CN109764550B (en) Control method of energy system
CN109764458A (en) A kind of control method of energy resource system
CN109764553A (en) A kind of control method of energy resource system
CN109855311A (en) A kind of control method of energy resource system
CN109764540A (en) A kind of control method of energy resource system
CN109764509A (en) A kind of control method of energy resource system
CN109764546A (en) A kind of control method of energy resource system
CN109757915A (en) A kind of control method of energy resource system
CN109764508A (en) A kind of control method of energy resource system
CN109764510A (en) A kind of control method of energy resource system
CN109757899A (en) A kind of control method of energy resource system
CN109885110A (en) A kind of control method of energy resource system
CN109764613A (en) A kind of control method of energy resource system
CN109764511A (en) A kind of control method of energy resource system
CN109764453A (en) A kind of control method of energy resource system
CN109764558A (en) A kind of control method of energy resource system
CN109907581A (en) A kind of control method of energy resource system
CN109883056A (en) A kind of control method of energy resource system
CN109798568A (en) A kind of control method of energy resource system
CN109757919A (en) A kind of control method of energy resource system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210105

Address after: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao

Applicant after: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd.

Applicant after: Haier Zhijia Co.,Ltd.

Address before: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao

Applicant before: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant