CN109759789A - 液体火箭发动机的推力室耐压夹层制造方法 - Google Patents

液体火箭发动机的推力室耐压夹层制造方法 Download PDF

Info

Publication number
CN109759789A
CN109759789A CN201910067071.6A CN201910067071A CN109759789A CN 109759789 A CN109759789 A CN 109759789A CN 201910067071 A CN201910067071 A CN 201910067071A CN 109759789 A CN109759789 A CN 109759789A
Authority
CN
China
Prior art keywords
wall
rib
nickel shell
thrust chamber
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910067071.6A
Other languages
English (en)
Other versions
CN109759789B (zh
Inventor
杨瑞康
袁宇
宣智超
韩建业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Blue Arrow Interspace Technology Ltd
Original Assignee
Beijing Blue Arrow Interspace Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Blue Arrow Interspace Technology Ltd filed Critical Beijing Blue Arrow Interspace Technology Ltd
Priority to CN201910067071.6A priority Critical patent/CN109759789B/zh
Publication of CN109759789A publication Critical patent/CN109759789A/zh
Application granted granted Critical
Publication of CN109759789B publication Critical patent/CN109759789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明提供一种液体火箭发动机的推力室耐压夹层制造方法,方法包括以下步骤:至少在内壁的肋表面电镀钎料;将半镍壳紧压在所述内壁上,其中,所述半镍壳的内表面紧密接触所述肋;将所述半镍壳定位焊接在所述内壁上;沿着所述内壁的所述肋将所述半镍壳与所述内壁的所述肋焊接到一起;根据工艺需求沿着所述内壁的所述肋多次重复焊接所述半镍壳与所述内壁的所述肋;将焊接后的所述半镍壳的外表面打磨光滑;在所述半镍壳表面电铸镍层或者包夹钢套。本发明可以显著提高推力室身部加工的自动化程度,提高推力室的承压强度、稳定质量、降低成本。

Description

液体火箭发动机的推力室耐压夹层制造方法
技术领域
本发明涉及液体火箭发动机技术领域,尤其涉及液体火箭发动机推力室的制造方法,具体涉及一种液体火箭发动机的推力室耐压夹层制造方法。
背景技术
推力室身部是液体火箭发动机中负责将燃料进行混合燃烧,产生高温高压燃气,燃气进而通过喉部加速排出,获得反推力的部件。为了承受燃气的高温,喷管一般采用再生冷却技术,由一种推进剂在喷管结构内数百个微小通道流过,带走燃气的热量,由铣槽内壁和外壁组成,其横截面结构如图1所示。
由于冷却通道内流动的冷却剂压力远高于外界的燃气压力、大气压力(冷却剂压力从几十个大气压到几百个大气压),因此要求内壁与铣槽内壁在内外壁贴合处(肋的顶端),必须形成具有良好力学性能的结合,将各个冷却通道彼此隔离,从而形成数百个封闭的管型通道,以承受内部的高压。若内外壁贴合处脱开,轻则造成局部结构失稳、撕裂,重则导致喷管烧毁、发动机冷却失效,火箭飞行失败。
同时由于燃气温度高达3500K,壁面热交换功率可达到百兆瓦,故推力室身部的内壁材料选用铜合金。为了增加强度,承担压力外壁采用高温合金、不锈钢、镀Ni层等。
喷管冷却夹套结构现有的制造方法主要有:真空加压钎焊(或称为真空扩散钎焊)、扩散焊、电铸镍层和铜合金激光焊接。
真空加压钎焊的方法是:在内壁的肋顶布置钎焊料,将外壁套在内壁上装配好,保证两者的良好贴合,进行钎焊,钎料熔化并充分扩散,接头的抗剪强度能达到170MPa~200MPa左右。真空加压钎焊技术存在的问题有:钎焊前的准备工序多、工艺复杂、内外壁之间贴合间隙要求不大于0.1mm,实现难度较大,设备昂贵、调试/试制周期长、生产能耗较大、接头力学性能低于母材、焊接缺陷(未钎焊、脱焊、焊料堵塞通道)排除困难等。
扩散焊的利用热等静压的高温高压设备。在真空、高温下,通过机械加压或其他加压,将内外壁紧紧压紧在一起,贴合面处金属原子发生扩散迁移,冷却后形成力学性能与母材接近的接头。扩散焊技术存在的问题有:喷管内外壁在扩散焊时需要施加非常大的机械压力,对焊接设备、焊接夹具的设计要求非常高,价格昂贵。机械加压在喷管型面上难以保证处处均匀,导致焊缝力学性能不均匀、扩散焊的喷管价格昂贵。
同时以上两种制造方法由于整体加热过程导致铜合金内壁的性能发生较大变化,无法保证良好的强度、导热性等。
电铸镍层方式填充电铸的方法包括:1)利用可溶性材料将沟槽内填充满,并保证肋顶完全裸露;2)在沟槽顶面铺设导电层,并保证肋顶完全裸露;3)对产品表面进行活化处理;4)电铸铜层,厚度约0.5mm;5)电铸镍层。由于电铸过程为原子级沉积,其结合力与两侧材料中强度较低的一方相当。
电铸镍层存在的技术问题是:由于电铸过程是电沉积过程,具有尖端放电效应,为保证铸层厚度生长均匀,需要电铸表面光滑,所以内壁电铸前需要将沟槽内填充满可溶性材料,为保证可溶性材料不会附着在肋顶影响电铸的结合强度,需要用工具人为地一个一个的将肋顶刮干净,同样是一个影响电铸质量,但又完全依赖操作经验的工序过程,对生产效率和生产质量稳定性有很大影响。另外,电铸完成后如何确定夹层内的填充物完全去除,只能通过工艺参数和间接检测手段进行保证,如出现无法去除填充物的通道,产品只能报废,产品质量难以控制。
现有的相关铜合金激光焊接的难点:直接采用铜壳与铜合金内壁进行激光焊接时,易产生高反,无法稳定进行焊接。铜内壁筋槽结构与薄外壁进行激光焊接时,由于基体铜的热导率极高,导致焊接时,小的激光功率难以熔化,大的功率会偏向某一侧,形成的连接存在间隙、裂纹源等缺陷。极难形成稳定焊接。铣槽结构在肋宽度焊透时不能保证准确的流道面积,肋宽度不焊透时,肋边缘有裂纹源,不利于承压与重复使用。
本发明亟需提供一种液体火箭发动机推力室耐压夹层结构的成型方法,解决现有技术中存在的上述问题。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种液体火箭发动机的推力室耐压夹层制造方法,可以解决现有铜合金激光焊接时产生激光高反现象,焊接不稳定的问题。
为了解决上述技术问题,本发明的具体实施方式提供一种液体火箭发动机的推力室耐压夹层制造方法,包括:至少在内壁的肋表面电镀钎料;将半镍壳紧压在所述内壁上,其中,所述半镍壳的内壁紧密接触所述肋;将所述半镍壳定位焊接在所述内壁上;沿着所述内壁的所述肋将所述半镍壳与所述内壁的所述肋焊接到一起。
根据本发明的上述具体实施方式可知,液体火箭发动机的推力室耐压夹层制造方法至少具有以下有益效果:可以显著提高推力室身部加工的自动化程度,提高推力室的承压强度、稳定质量、降低成本。增加铜焊接的稳定性,增加钎角,减少了应力集中。本发明解决了现有液体火箭发动机推力室身部再生冷却夹套结构的生产难题,可实现全自动化生产,消除人为及经验因素的影响,从而实现较高的产品质量稳定性。通过激光熔钎焊的方式后可封闭沟槽,进而可通过电铸出推力室外壁。相对于传统扩散钎焊工艺,可在现有推力室身部整体设计上进行,不用将推力室身部再分三段,减少后续三段对接焊接的工序及其带来的质量不稳定性。相对于传统推力室外壁电铸工艺,通过激光熔钎焊接镍板后,可直接进行电铸,省去通道填充与去填充的过程,极大地减少手工操作带来的质量控制成本。所有的工艺环节都具备自动化升级的潜力,可以对工艺步骤进一步改进。
应了解的是,上述一般描述及以下具体实施方式仅为示例性及阐释性的,其并不能限制本发明所欲主张的范围。
附图说明
下面的所附附图是本发明的说明书的一部分,其绘示了本发明的示例实施例,所附附图与说明书的描述一起用来说明本发明的原理。
图1为一种现有推力室身部的结构示意图。
图2为本发明具体实施方式提供的一种液体火箭发动机的推力室耐压夹层制造方法的实施例一的流程图。
图3为本发明具体实施方式提供的一种通过横向压板将半镍壳紧压在内壁上的状态图。
图4为本发明具体实施方式提供的一种沿着内壁的肋将半镍壳与内壁的肋焊接在一起的状态图。
图5为本发明具体实施方式提供的一种液体火箭发动机的推力室耐压夹层制造方法的实施例二的流程图。
图6为本发明具体实施方式提供的一种液体火箭发动机的推力室耐压夹层制造方法的实施例三的流程图。
图7为本发明具体实施方式提供的一种多次重复沿着内壁的肋将半镍壳与内壁的肋焊接在一起的状态图。
图8为本发明具体实施方式提供的一种液体火箭发动机的推力室耐压夹层制造方法的实施例四的流程图。
图9为本发明具体实施方式提供的一种半镍壳与内壁的肋焊接在一起后在内壁的肋的边缘形成钎角的状态图。
图10为本发明具体实施方式提供的一种推力室表面电铸镍层后的结构示意图。
附图标记说明:
1内壁 2半镍壳
3钎料 11肋
4横向压板 5焊机
6钎角 7镍层
I铣槽内壁 O外壁
101~107方法步骤
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面将以附图及详细叙述清楚说明本发明所揭示内容的精神,任何所属技术领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。
本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。另外,在附图及实施方式中所使用相同或类似标号的元件/构件是用来代表相同或类似部分。
关于本文中所使用的“第一”、“第二”、…等,并非特别指称次序或顺位的意思,也非用以限定本发明,其仅为了区别以相同技术用语描述的元件或操作。
关于本文中所使用的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本创作。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
关于本文中所使用的“及/或”,包括所述事物的任一或全部组合。
关于本文中的“多个”包括“两个”及“两个以上”;关于本文中的“多组”包括“两组”及“两组以上”。
关于本文中所使用的用语“大致”、“约”等,用以修饰任何可以微变化的数量或误差,但这些微变化或误差并不会改变其本质。一般而言,此类用语所修饰的微变化或误差的范围在部分实施例中可为20%,在部分实施例中可为10%,在部分实施例中可为5%或是其他数值。本领域技术人员应当了解,前述提及的数值可依实际需求而调整,并不以此为限。
图2为本发明具体实施方式提供的一种液体火箭发动机的推力室耐压夹层制造方法的实施例一的流程图;图3为本发明具体实施方式提供的一种通过横向压板将半镍壳紧压在内壁上的状态图;图4为本发明具体实施方式提供的一种沿着内壁的肋将半镍壳与内壁的肋焊接在一起的状态图,如图2、图3、图4所示,至少先在内壁的肋表面电镀钎料,再将半镍壳紧压在内壁上,然后对半镍壳进行定位焊接,最后沿着内壁的肋将半镍壳与内壁的肋焊接到一起。
该附图所示的具体实施方式中,液体火箭发动机的推力室耐压夹层制造方法包括:
步骤101:至少在内壁1的肋11表面电镀钎料3。本发明的具体实施例中,推力室耐压夹层通常由内壁1和镍壳组成,镍壳由两个镍金属仿型薄半壳组成;所述内壁1材质是铜合金或者铜等;内壁1的外表面具有多个铣槽结构及铣槽结构形成的多个肋11。钎料3是银基(银层)或者镍基(镍层)等。
步骤102:将半镍壳2紧压在所述内壁1上,其中,所述半镍壳2的内表面紧密接触所述肋。本发明的具体实施例中,横向压板4所在的平面垂直于推力室的中心轴。步骤102具体包括:通过横向压板4将半镍壳2紧压在所述内壁1上。
步骤103:将所述半镍壳2定位焊接在所述内壁1上。本发明的具体实施例中,在横向压板4将半镍壳2紧压在内壁1上的时候,将半镍壳2焊接在内壁1上。
步骤104:沿着所述内壁1的所述肋11将所述半镍壳2与所述内壁1的所述肋11焊接到一起。本发明的具体实施例中,内壁1具有多个铣槽及形成铣槽的肋11,因为内壁1的肋11与半镍壳2的内表面接触,因此,利用焊机5沿着所述内壁1的肋11可以将所述半镍壳2与所述内壁1的肋11焊接到一起。步骤104具体可以包括:沿着所述内壁的肋利用小功率激光、电子束、等离子束或者TIG(非熔化极气体保护电弧焊)等将所述半镍壳与所述内壁的肋焊接到一起。沿着内壁1的肋11在半镍壳2的外表面施加能量,钎料3熔化,将半镍壳2与内壁1的肋11焊接到一起,钎料3熔化后在所述内壁1的肋11的边缘形成钎角6,增加应力,如图9所示。
参见图2、图3、图4,可显著提高推力室身部加工的自动化程度,脱离人为及经验因素的影响,提高推力室的承压强度,稳定质量,降低成本,增加焊接的稳定性;通过熔钎焊的方式后可封闭沟槽,相对于传统扩散钎焊工艺,可在现有推力室身部整体设计上进行,不用将推力室身部再分三段,减少后续三段对接焊接的工序及其带来的质量不稳定性。
图5为本发明具体实施方式提供的一种液体火箭发动机的推力室耐压夹层制造方法的实施例二的流程图,如图5所示,将半镍壳紧压在所述内壁上之前,通过冲压、拉伸或者旋压的方式获得仿型的两个半镍壳。
该附图所示的具体实施方式中,步骤102之前,液体火箭发动机的推力室耐压夹层制造方法还包括:
步骤101-1:通过冲压、拉伸或者旋压的方式获得仿型的两个所述半镍壳2,其中,两个所述半镍壳2拼接在一起刚好包覆所述内壁1。本发明的具体实施例中,获得仿型的两个半镍壳2后,通常还需要对半镍壳2的内外表面进行清理。
参见图5,可在现有身部整体设计上进行,不用将推力室身部再分三段,减少后续三段对接焊接的工序及其带来的质量不稳定性。
图6为本发明具体实施方式提供的一种液体火箭发动机的推力室耐压夹层制造方法的实施例三的流程图,图7为本发明具体实施方式提供的一种多次重复沿着内壁的肋将半镍壳与内壁的肋焊接在一起的状态图,如图6、图7所示,根据焊接效果,一次焊接后,适当调整参数,再利用焊机沿原轨迹进行0~10次的重复能量施加,使钎料熔化铺展更好,使焊接后应力更加均匀。
该附图所示的具体实施方式中,在步骤104之后,液体火箭发动机的推力室耐压夹层制造方法还包括:
步骤105:沿着所述内壁的肋11多次重复焊接所述半镍壳2与所述内壁1的肋11。本发明的具体实施例中,可以利用激光、电子束、等离子束或者TIG等方式进行焊接。步骤105具体包括:利用焊机5沿着所述内壁的肋重复1~10次焊接所述半镍壳2与所述内壁1的肋11。
参见图6、图7,一次焊接后,可以根据焊接效果,适量调整参数,再沿原轨迹进行0-10次的重复焊接,使钎料3熔化铺展更好,使焊后应力更加均匀。
图8为本发明具体实施方式提供的一种液体火箭发动机的推力室耐压夹层制造方法的实施例四的流程图,图10为本发明具体实施方式提供的一种推力室表面电铸镍层后的结构示意图,如图8、图10所示,焊接完成后,在内壁的肋的边缘形成钎角,焊接后应力更加均匀。
该附图所示的具体实施方式中,步骤104之后,液体火箭发动机的推力室耐压夹层制造方法还包括:
步骤106:将焊接后的所述半镍壳2的外表面打磨光滑。本发明的具体实施例中,将半镍壳的外表面打磨光滑,便于在半镍壳的外表面电铸镍层或者包夹钢套。
步骤107:在所述半镍壳2表面电铸镍层7或者包夹钢套。本发明的具体实施例中,在半镍壳2的外表面电铸镍层7或者包夹钢套,可以增加推力室刚性。
参见图8、图10,在半镍壳2表面电铸镍层7或者包夹钢套,可以增加推力室刚性,提高承压强度,从而实现较高的产品质量稳定性。
本发明提供一种液体火箭发动机的推力室耐压夹层制造方法,可以显著提高推力室身部加工的自动化程度,提高推力室的承压强度、稳定质量、降低成本。增加铜焊接的稳定性,增加钎角,减少了应力集中。本发明解决了现有液体火箭发动机推力室身部再生冷却夹套结构的生产难题,可实现全自动化生产,消除人为及经验因素的影响,从而实现较高的产品质量稳定性。通过激光熔钎焊的方式后可封闭沟槽,进而可通过电铸出推力室外壁。相对于传统扩散钎焊工艺,可在现有推力室身部整体设计上进行,不用将推力室身部再分三段,减少后续三段对接焊接的工序及其带来的质量不稳定性。相对于传统推力室外壁电铸工艺,通过激光熔钎焊接镍板后,可直接进行电铸,省去通道填充与去填充的过程,极大地减少手工操作带来的质量控制成本。所有的工艺环节都具备自动化升级的潜力,可以对工艺步骤进一步改进。
以上所述仅为本发明示意性的具体实施方式,在不脱离本发明的构思和原则的前提下,任何本领域的技术人员所做出的等同变化与修改,均应属于本发明保护的范围。

Claims (10)

1.一种液体火箭发动机的推力室耐压夹层制造方法,其特征在于,该方法包括:
至少在内壁的肋表面电镀钎料;
将半镍壳紧压在所述内壁上,其中,所述半镍壳的内表面紧密接触所述肋;
将所述半镍壳定位焊接在所述内壁上;以及
沿着所述内壁的所述肋将所述半镍壳与所述内壁的所述肋焊接到一起。
2.根据权利要求1所述的液体火箭发动机的推力室耐压夹层制造方法,其特征在于,将半镍壳紧压在所述内壁上包括:通过横向压板将半镍壳紧压在所述内壁上,
将半镍壳紧压在所述内壁上之前,该方法还包括:
通过冲压、拉伸或者旋压的方式获得仿型的两个所述半镍壳,其中,两个所述半镍壳拼接在一起刚好包覆所述内壁。
3.根据权利要求1所述的液体火箭发动机的推力室耐压夹层制造方法,其特征在于,沿着所述内壁的肋将所述半镍壳与所述内壁的肋焊接到一起的步骤之后,该方法还包括:
沿着所述内壁的肋多次重复焊接所述半镍壳与所述内壁的肋。
4.根据权利要求1或3所述的液体火箭发动机的推力室耐压夹层制造方法,其特征在于,该方法还包括:
将焊接后的所述半镍壳的外表面打磨光滑。
5.根据权利要求4所述的液体火箭发动机的推力室耐压夹层制造方法,其特征在于,将焊接后的所述半镍壳的外表面打磨光滑的步骤之后,该方法还包括:
在所述半镍壳表面电铸镍层或者包夹钢套。
6.根据权利要求1或3所述的液体火箭发动机的推力室耐压夹层制造方法,其特征在于,所述钎料熔化后在所述内壁的肋的边缘形成钎角。
7.根据权利要求3所述的液体火箭发动机的推力室耐压夹层制造方法,其特征在于,沿着所述内壁的肋多次重复焊接所述半镍壳与所述内壁的肋的步骤,具体包括:
沿着所述内壁的肋重复1~10次焊接所述半镍壳与所述内壁的肋。
8.根据权利要求1所述的液体火箭发动机的推力室耐压夹层制造方法,其特征在于,沿着所述内壁的肋将所述半镍壳与所述内壁的肋焊接到一起的步骤,具体包括:
沿着所述内壁的肋利用小功率激光、电子束、等离子束或者TIG将所述半镍壳与所述内壁的肋焊接到一起。
9.根据权利要求1所述的液体火箭发动机的推力室耐压夹层制造方法,其特征在于,所述内壁材质是铜合金或者铜。
10.根据权利要求1所述的液体火箭发动机的推力室耐压夹层制造方法,其特征在于,所述钎料是银基或者镍基。
CN201910067071.6A 2019-01-24 2019-01-24 液体火箭发动机的推力室耐压夹层制造方法 Active CN109759789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910067071.6A CN109759789B (zh) 2019-01-24 2019-01-24 液体火箭发动机的推力室耐压夹层制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910067071.6A CN109759789B (zh) 2019-01-24 2019-01-24 液体火箭发动机的推力室耐压夹层制造方法

Publications (2)

Publication Number Publication Date
CN109759789A true CN109759789A (zh) 2019-05-17
CN109759789B CN109759789B (zh) 2020-07-03

Family

ID=66455069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910067071.6A Active CN109759789B (zh) 2019-01-24 2019-01-24 液体火箭发动机的推力室耐压夹层制造方法

Country Status (1)

Country Link
CN (1) CN109759789B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653569A (zh) * 2019-09-30 2020-01-07 湖北三江航天江北机械工程有限公司 液体火箭发动机燃烧室成形方法
CN111531321A (zh) * 2020-07-09 2020-08-14 蓝箭航天空间科技股份有限公司 一种航天器推力室夹套的修复方法及航天器推力室
CN111633339A (zh) * 2020-06-03 2020-09-08 蓝箭航天空间科技股份有限公司 火箭发动机推力室激光焊接工艺及火箭发动机推力室
CN112338308A (zh) * 2020-10-23 2021-02-09 西安远航真空钎焊技术有限公司 一种基于钎料预置熔融固化后的真空钎焊方法
CN112792505A (zh) * 2020-12-31 2021-05-14 湖北三江航天江北机械工程有限公司 内壁沟槽结构再生冷却身部成型方法
CN114165362A (zh) * 2021-11-08 2022-03-11 湖北三江航天江北机械工程有限公司 液体火箭发动机燃烧室复合成形方法
WO2022116955A1 (zh) * 2020-12-01 2022-06-09 蓝箭航天空间科技股份有限公司 一种推力室的双层结构加工方法及航天器推力室
CN116038171A (zh) * 2023-03-30 2023-05-02 北京星河动力装备科技有限公司 再生冷却推力室及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498702A (zh) * 2002-11-11 2004-05-26 新日钢制品有限公司 钎焊复合管的制造方法
CN101637983A (zh) * 2008-08-01 2010-02-03 凌星中 一种冶金结合复合钢管、其制造方法及其制造装置
CN102179586A (zh) * 2011-03-18 2011-09-14 北京航空航天大学 一种不锈钢层板式喷注器的钎焊制备方法
CN102950351A (zh) * 2012-11-02 2013-03-06 首都航天机械公司 过氧化氢推力室身部扩散钎焊制造方法
CN108397679A (zh) * 2017-02-08 2018-08-14 张跃 一种夹芯金属板材
CN108979900A (zh) * 2018-08-29 2018-12-11 北京航天动力研究所 一种液体火箭发动机推力室身部的集液环

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498702A (zh) * 2002-11-11 2004-05-26 新日钢制品有限公司 钎焊复合管的制造方法
CN101637983A (zh) * 2008-08-01 2010-02-03 凌星中 一种冶金结合复合钢管、其制造方法及其制造装置
CN102179586A (zh) * 2011-03-18 2011-09-14 北京航空航天大学 一种不锈钢层板式喷注器的钎焊制备方法
CN102950351A (zh) * 2012-11-02 2013-03-06 首都航天机械公司 过氧化氢推力室身部扩散钎焊制造方法
CN108397679A (zh) * 2017-02-08 2018-08-14 张跃 一种夹芯金属板材
CN108979900A (zh) * 2018-08-29 2018-12-11 北京航天动力研究所 一种液体火箭发动机推力室身部的集液环

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周万盛: "火箭发动机推力室钎焊技术的发展", 《航天工艺》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653569A (zh) * 2019-09-30 2020-01-07 湖北三江航天江北机械工程有限公司 液体火箭发动机燃烧室成形方法
CN111633339A (zh) * 2020-06-03 2020-09-08 蓝箭航天空间科技股份有限公司 火箭发动机推力室激光焊接工艺及火箭发动机推力室
CN111531321A (zh) * 2020-07-09 2020-08-14 蓝箭航天空间科技股份有限公司 一种航天器推力室夹套的修复方法及航天器推力室
CN111531321B (zh) * 2020-07-09 2020-10-16 蓝箭航天空间科技股份有限公司 一种航天器推力室夹套的修复方法及航天器推力室
CN112338308A (zh) * 2020-10-23 2021-02-09 西安远航真空钎焊技术有限公司 一种基于钎料预置熔融固化后的真空钎焊方法
WO2022116955A1 (zh) * 2020-12-01 2022-06-09 蓝箭航天空间科技股份有限公司 一种推力室的双层结构加工方法及航天器推力室
GB2616149A (en) * 2020-12-01 2023-08-30 Landspace Science & Tech Co Ltd Method for processing double-layer structure of thrust chamber, and spacecraft thrust chamber
GB2616149B (en) * 2020-12-01 2024-07-17 Landspace Science & Tech Co Ltd Method for processing double-layer structure of thrust chamber, and spacecraft thrust chamber
CN112792505A (zh) * 2020-12-31 2021-05-14 湖北三江航天江北机械工程有限公司 内壁沟槽结构再生冷却身部成型方法
CN112792505B (zh) * 2020-12-31 2022-05-13 湖北三江航天江北机械工程有限公司 内壁沟槽结构再生冷却身部成型方法
CN114165362A (zh) * 2021-11-08 2022-03-11 湖北三江航天江北机械工程有限公司 液体火箭发动机燃烧室复合成形方法
CN116038171A (zh) * 2023-03-30 2023-05-02 北京星河动力装备科技有限公司 再生冷却推力室及其制作方法

Also Published As

Publication number Publication date
CN109759789B (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN109759789A (zh) 液体火箭发动机的推力室耐压夹层制造方法
US9199342B2 (en) Repairing method for wall member with flow passages
US6673169B1 (en) Method and apparatus for repairing superalloy components
CN109834356B (zh) 一种复杂双合金锥体结构的制作方法
CN101108453A (zh) 用于修复涡轮发动机部件的方法
JP2007007730A (ja) ガスタービンに適用される超合金を接合するためのシム利用レーザービーム溶接方法
JP2014534079A (ja) 凸部の抵抗ろう付けを用いた超合金構造の接合または補修方法および対応する超合金コンポーネント
US11504799B2 (en) Heat-exchanger element and method for producing a heat-exchanger element
US20130115480A1 (en) Projection resistance welding of superalloys
JP6188130B2 (ja) 金属物品を修理するための方法
CN111037065B (zh) 一种小孔径换热管的管子管板内孔焊焊接方法
CN110977074A (zh) 一种镍基高温合金材料的炉中钎焊方法
JP2012020308A (ja) 金属部品の補修方法及び補修された金属部品
US9427817B2 (en) Brazing method
US20230125860A1 (en) Combustor for rocket engine and method for manufacturing it
EP3345708B1 (en) Method of feeding a braze filler to a joint, brazed article, and braze assembly
CN113427097B (zh) 一种含异型气管的风洞加热器制备方法
CN114248029A (zh) 一种燃气轮机燃烧室喷嘴的制造方法
CN106270869A (zh) 一种铜合金接触反应钎焊方法及所用活性连接剂
US20190084044A1 (en) Method of joining members and turbine component
CN114643431B (zh) 航空发动机燃油喷嘴组件的组合焊接方法
CN114211073B (zh) 一种硬质合金和钢的焊材及焊接方法
US4280040A (en) Method of arc welding porous sheet metal
CN117505881A (zh) 一种带导流锥结构涡轮出口管及制造方法
JP2017035721A (ja) レーザ溶接継手

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 100176 H1 Building, CAAC International Plaza, 13 Ronghua South Road, Daxing Economic and Technological Development Zone, Beijing

Applicant after: Blue Arrow Space Technology Co.,Ltd.

Address before: 100176 H1 Building, CAAC International Plaza, 13 Ronghua South Road, Daxing Economic and Technological Development Zone, Beijing

Applicant before: BEIJING LANDSPACE TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant