CN109753693B - 一种土岩组合地基抗拔桩极限承载力的计算方法 - Google Patents

一种土岩组合地基抗拔桩极限承载力的计算方法 Download PDF

Info

Publication number
CN109753693B
CN109753693B CN201811523030.5A CN201811523030A CN109753693B CN 109753693 B CN109753693 B CN 109753693B CN 201811523030 A CN201811523030 A CN 201811523030A CN 109753693 B CN109753693 B CN 109753693B
Authority
CN
China
Prior art keywords
rock
soil
pile
bearing capacity
uplift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811523030.5A
Other languages
English (en)
Other versions
CN109753693A (zh
Inventor
朱志铎
浦少云
宋世攻
彭宇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201811523030.5A priority Critical patent/CN109753693B/zh
Publication of CN109753693A publication Critical patent/CN109753693A/zh
Application granted granted Critical
Publication of CN109753693B publication Critical patent/CN109753693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种土岩组合地基抗拔桩极限承载力的计算方法,假设土岩组合地基中抗拔桩极限平衡时桩周岩体的破坏面为组合倒锥台破坏面,基于Kotter极限平衡被动方程式求解土层提供的抗拔力,基于Hoek‑Brown破坏准则求解抗拔桩嵌岩端岩体的强度,从而得到嵌岩端岩体的抗拔力;由静力平衡原理,叠加土层及嵌岩端岩体提供的抗拔力及破坏锥体重量,即可得土岩组合地基嵌岩抗拔桩的极限承载力,此时得到的解析式无法完全反映岩石性质、嵌岩深度等因素对抗拔桩极限承载力的影响,对其进一步修正得到修正的土岩组合地基抗拔桩极限承载力解析式,该解析式能反映不同因素对极限承载力的影响。运用本发明方法能计算土岩组合地基中不同嵌岩深度抗拔桩极限承载力。

Description

一种土岩组合地基抗拔桩极限承载力的计算方法
技术领域
本发明涉及岩土工程技术领域,尤其是一种土岩组合地基抗拔桩极限承载力的计算方法。
背景技术
在土木工程中,抗拔桩广泛应用于有抗浮需求的工程中,如地下停车场、广场、变电站、商场及地铁轨道交通等地下工程中。然而,类似工程结构的稳定性、安全性与抗拔桩极限承载力密切相关。抗拔桩极限承载力确定一直以来都是工程中的难点问题,正确计算抗拔桩极限承载力对工程的设计和施工是必须解决的问题。虽然抗拔桩相关方面的研究较多,对抗拔桩的极限承载力研究主要集中在桩周为土层或岩层的试验研究及理论研究。然而,对于土岩组合地基抗拔桩极限承载力的确定尚未见报道。实际工程中,使用规范法对抗拔桩进行计算与设计,对于土体地基得到结果较为合理,对于土岩组合地基抗拔桩极限承载力的计算结果偏于保守。土岩组合地基嵌岩端岩石一般并非是理想的介质体,而是在长期地质作用下产生大量裂隙的不完整岩体,嵌岩端岩石的性质对其极限承载力的影响较大,不容忽视。因此,为了能合理地计算土岩组合地基抗拔桩的极限承载力,本发明建立一种适用于土岩组合地基考虑嵌岩端岩石性质、嵌岩深度等因素的抗拔桩极限承载力计算方法,这对土岩组合地区抗拔桩的设计与施工具有重要的意义。
发明内容
本发明所要解决的技术问题在于,提供一种土岩组合地基抗拔桩极限承载力的计算方法,能够正确计算土岩组合地基抗拔桩的极限承载力。
为解决上述技术问题,本发明提供一种土岩组合地基抗拔桩极限承载力的计算方法,包括如下步骤:
(1)假设极限平衡时抗拔桩桩周岩土体破坏面为组合倒台锥面;
(2)基于kotter理论计算土岩组合地基中桩周土层提供的抗力;
(3)基于hook-brown准则计算土岩组合地基中嵌岩端岩体提供的抗力;
(4)计算桩周扣除桩身重的岩体破坏体的重量;
(5)叠加桩周土体提供的抗力、嵌岩端岩体提供的抗力即可得抗拔桩极限承载力解析式;
(6)由于步骤(5)中抗拔桩极限承载力解析式不能完全反映岩石性质、嵌岩深度的影响,为增强步骤(5)中公式的适用性,根据步骤(5)计算结果与试验数据,提出修正系数对步骤(5)中极限承载力解析式进行修正;
(7)得到能反映嵌岩端岩石性质、嵌岩深度等因素的抗拔桩极限承载力计算解析式。
优选的,步骤(2)中,基于kotter理论计算土岩组合地基中桩周土层提供的抗力具体为:在荷载作用下,当桩周土体受力达到极限平衡状态时,土层破坏面上土压力分布为
Figure BDA0001903694290000021
s为破坏面到地表面的斜距;
dθ为选取土体微元体的水平角度,dH为土层微分体的高度,r为破坏面上某点至桩中心的距离,dR为微分体单元破坏面上应力p的合力,微元体极限状态时,滑动面上选取的微元体侧表面积dA=rdθds,微分面积上的作用力为
Figure BDA0001903694290000022
γ2为土层的重度,α2为土层破坏面与水平面之间的夹角;
由r表示的地表面沿滑动面的斜距为
Figure BDA0001903694290000023
略去式中出现的高阶微量dr2可得微分单元土体提供的抗力为
Figure BDA0001903694290000024
将其积分投影到竖直方向上,即得到土体提供的抗拔力
Figure BDA0001903694290000025
其中,C1=(H1/tanα1+d/2),C2=(H1/tanα1+H2/tanα2+d/2),其中:H1为嵌岩深度;H2为土层厚度;
Figure BDA0001903694290000026
嵌岩端岩石的内摩擦角;
Figure BDA0001903694290000027
土的内摩擦角;α1为嵌岩端岩体破坏面与水平面之间的夹角,
Figure BDA0001903694290000028
α2为土层破坏面与水平面之间的夹角,
Figure BDA0001903694290000029
d为桩径。
优选的,步骤(3)中,基于hook-brown准则计算土岩组合地基中嵌岩端岩体提供的抗力具体为:
由岩石饱和单轴抗压强度表示的风化岩石抗拉强度为
Figure BDA0001903694290000031
σc为完整岩石饱和单轴抗压强度;m、s1为岩体的完整性系数;其中,m为反映岩石的软硬程度指标,其取值范围为0.001~25.0;s1为反映岩体破碎程度的指标,其取值范围为0.0~1.0;对于完整的岩体,s1=1.0,m、s1值可由岩体质量和经验常数之间关系表查取;
计算嵌岩端岩石提供的抗拔力时,将岩层中嵌岩端岩体受力分离出来,嵌岩端岩体提供的抗力合力为R=Sσt,S为岩层中破坏体的侧表面积,得该侧表面积为
Figure BDA0001903694290000032
则可得岩体竖直方向上的合力为
Figure BDA0001903694290000033
优选的,步骤(4)中,计算桩周扣除桩身重的岩体破坏体的重量具体为:桩周破坏体倒台锥的重量由岩石重量和土体重量构成,不考虑桩身自重的桩周破坏体总重为
Figure BDA0001903694290000034
γ1为岩石重度。
优选的,步骤(5)中,叠加桩周土体提供的抗力、嵌岩端岩体提供的抗力即可得抗拔桩极限承载力解析式具体为:由静力平衡原理可得嵌岩抗拔桩的极限抗拔承载力为
Figure BDA0001903694290000035
优选的,步骤(6)和步骤(7)中,提出修正系数对步骤(5)中极限承载力解析式进行修正,得到能反映嵌岩端岩石性质、嵌岩深度等因素的抗拔桩极限承载力计算解析式具体为:结合式(1)的结算结果与试验数据,提出修正系数
Figure BDA0001903694290000036
对式(1)修正得到考虑岩石性质、不同嵌岩深度下抗拔桩极限承载力计算的解析式为式(2),其中H为桩长,H=H1+H2
Figure BDA0001903694290000041
本发明的有益效果为:本发明可正确计算土岩组合地基抗拔桩的极限承载力,该计算方法可反映岩石性质、嵌岩深度等因素对抗拔桩极限承载力的影响。
附图说明
图1为本发明的土岩组合地基抗拔桩的破坏模式示意图。
图2为本发明的土岩组合破坏体受力机理分析示意图。
图3为本发明的计算模型示意图。
图4为本发明的岩体破坏体计算模型示意图。
图5为本发明的图层破坏体剖面示意图。
具体实施方式
一种土岩组合地基抗拔桩极限承载力的计算方法,包括如下步骤:
(1)假设极限平衡时抗拔桩桩周岩土体破坏面为组合倒台锥面;
(2)基于kotter理论计算土岩组合地基中桩周土层提供的抗力;
(3)基于hook-brown准则计算土岩组合地基中嵌岩端岩体提供的抗力;
(4)计算桩周扣除桩身重的岩体破坏体的重量;
(5)叠加桩周土体提供的抗力、嵌岩端岩体提供的抗力即可得抗拔桩极限承载力解析式;
(6)由于步骤(5)中抗拔桩极限承载力解析式不能完全反映岩石性质、嵌岩深度的影响,为增强步骤(5)中公式的适用性,根据步骤(5)计算结果与试验数据,提出修正系数对步骤(5)中极限承载力解析式进行修正;
(7)得到能反映嵌岩端岩石性质、嵌岩深度等因素的抗拔桩极限承载力计算解析式。
假设土岩组合地基抗拔极限平衡时,桩周岩体成如图1所示的组合倒台锥破坏模式,土体破坏面与水平面的夹角α2
Figure BDA0001903694290000042
岩石破坏面与水平面的夹角为
Figure BDA0001903694290000043
Figure BDA0001903694290000044
为土体的内摩擦角,
Figure BDA0001903694290000045
为岩石的内摩擦角。
对于图1所示的模型中,抗拔桩的抗拔力由桩周岩土体自重及桩周岩土体提供的抗力构成。其中,土体提供的抗力根据Kotter原理进行求解,岩体提供的抗力结合Hoek-Brown强度准则求取。图中:H1为嵌岩深度;H2为土层厚度;
Figure BDA0001903694290000051
嵌岩端岩石的内摩擦角;
Figure BDA0001903694290000052
土的内摩擦角;α1为嵌岩端岩体破坏面与水平面之间的夹角,
Figure BDA0001903694290000053
α2为土层破坏面与水平面之间的夹角,
Figure BDA0001903694290000054
d为桩径。
在荷载作用下,当桩周土体受力达到极限平衡状态时,土层破坏面上土压力分布为
Figure BDA0001903694290000055
s为破坏面到地表面的斜距。
由岩石饱和单轴抗压强度表示的风化岩石抗拉强度为
Figure BDA0001903694290000056
σc为完整岩石饱和单轴抗压强度;m、s1为岩体的完整性系数。其中,m为反映岩石的软硬程度指标,其取值范围为0.001~25.0;s1为反映岩体破碎程度的指标,其取值范围为0.0~1.0;对于完整的岩体(即岩石),s1=1.0。m、s1值可由岩体质量和经验常数之间关系表查取。
根据步骤3、基于图2-4的计算模型可计算土层提供的抗力。图3中dθ为选取土体微元体的水平角度,dH为土层微分体的高度,r为破坏面上某点至桩中心的距离,dR为微分体单元破坏面上应力p的合力。根据图4所示的微元体,极限状态时,滑动面上选取的微元体侧表面积dA=rdθds,微分面积上的作用力为
Figure BDA0001903694290000057
γ2为土层的重度。
图3所示的三维微分体平面分析见图4。根据图3、4中的几何关系可得由r表示的地表面沿滑动面的斜距为
Figure BDA0001903694290000058
根据步骤4、5,略去式中出现的高阶微量dr2可得微分单元土体提供的抗力为
Figure BDA0001903694290000059
将其积分投影到竖直方向上,即得到土体提供的抗拔力
Figure BDA00019036942900000510
其中,C1=(H1/tanα1+d/2),C2=(H1/tanα1+H2/tanα2+d/2)。
计算嵌岩端岩石提供的抗拔力时,将岩层中嵌岩端岩体受力图从图1中的分离出来,即得到图5所示嵌岩端岩体发生破坏时的平面受力图。由图5可知,嵌岩端岩体提供的抗力合力为R=Sσt,S为岩层中破坏体的侧表面积,由图5中的几何关系可得该侧表面积为
Figure BDA0001903694290000061
则可得岩体竖直方向上的合力为
Figure BDA0001903694290000062
桩周破坏体倒台锥的重量由岩石重量和土体重量构成,不考虑桩身自重的桩周破坏体总重为
Figure BDA0001903694290000063
Figure BDA0001903694290000064
γ1为岩石重度。
根据图1所示的模型图,由静力平衡原理可得嵌岩抗拔桩的极限抗拔承载力为
Figure BDA0001903694290000065
由于Pu不能全面反映岩石性质、嵌岩深度等因素对其极限承载力的影响,结合式(1)的结算结果与试验数据,提出修正系数
Figure BDA0001903694290000066
对式(1)修正得到考虑岩石性质、不同嵌岩深度下抗拔桩极限承载力计算的解析式为式(2),其中H为桩长,H=H1+H2
Figure BDA0001903694290000067
某工程岩土条件如下:
素填土黏聚力为8kPa,内摩擦角为10°,容重γ为18.3kN/m3,E取4MPa,泊松比为0.18;岩石弹性模量为16.304GPa,泊松比ν为0.21,容重为26.3kN/m3,粘聚力为360kPa,内摩擦角为31°;桩体重度为25KN/m3,体积模量K为17.24×109Pa,剪切模量G为6.737×109Pa。
采用本发明的抗拔桩极限承载力计算解析式对不同嵌岩深度、不同桩长的工程试验桩K23#、K37#、K149#进行计算。计算结果与数值模拟对比结果见表1。实际工程中的试桩抗拔极限承载力数值模拟结果与本发明解析式(2)的结算结果对比见表1。由表1可知,本发明的解析式(2)计算结果与数值模拟结果较为接近。说明本发明建立的土岩组合地基中抗拔桩极限承载力解析式可用于工程区抗拔桩的极限承载力计算。
表1发明方法与数值模拟结果对比
Figure BDA0001903694290000071

Claims (2)

1.一种土岩组合地基抗拔桩极限承载力的计算方法,其特征在于,包括如下步骤:
(1)假设极限平衡时抗拔桩桩周岩土体破坏面为组合倒台锥面;
(2)基于kotter理论计算土岩组合地基中桩周土层提供的抗力;具体为:在荷载作用下,当桩周土体受力达到极限平衡状态时,土层破坏面上土压力分布为
Figure FDA0003376132280000011
s为破坏面到地表面的斜距,α2为土层破坏面与水平面之间的夹角,
Figure FDA0003376132280000012
Figure FDA0003376132280000013
土的内摩擦角;
dθ为选取土体微元体的水平角度,dH为土层微分体的高度,r为破坏面上某点至桩中心的距离,dR为微分体单元破坏面上应力p的合力,微元体极限状态时,滑动面上选取的微元体侧表面积dA=rdθds,微分面积上的作用力为
Figure FDA0003376132280000014
γ2为土层的重度;
由r表示的地表面沿滑动面的斜距为
Figure FDA0003376132280000015
略去式中出现的高阶微量dr2得微分单元土体提供的抗力为
Figure FDA0003376132280000016
将其积分投影到竖直方向上,即得到土体提供的抗拔力
Figure FDA0003376132280000017
其中,C1=(H1/tanα1+d/2),C2=(H1/tanα1+H2/tanα2+d/2),H1为嵌岩深度,H2为土层厚度,
Figure FDA0003376132280000018
嵌岩端岩石的内摩擦角,α1为嵌岩端岩体破坏面与水平面之间的夹角,
Figure FDA0003376132280000019
d为桩径;
(3)基于hook-brown准则计算土岩组合地基中嵌岩端岩体提供的抗力;具体为:
由岩石饱和单轴抗压强度表示的风化岩石抗拉强度为
Figure FDA00033761322800000110
σc为完整岩石饱和单轴抗压强度;m、s1为岩体的完整性系数;其中,m为反映岩石的软硬程度指标,其取值范围为0.001~25.0;s1为反映岩体破碎程度的指标,其取值范围为0.0~1.0;对于完整的岩体,s1=1.0,m、s1值由岩体质量和经验常数之间关系表查取;
计算嵌岩端岩石提供的抗拔力时,将岩层中嵌岩端岩体受力分离出来,嵌岩端岩体提供的抗力合力为R=Sσt,S为岩层中破坏体的侧表面积,得该侧表面积为
Figure FDA0003376132280000021
则得岩体竖直方向上的合力为
Figure FDA0003376132280000022
(4)计算桩周扣除桩身重的岩体破坏体的重量;
(5)叠加桩周土体提供的抗力、嵌岩端岩体提供的抗力即得抗拔桩极限承载力解析式;具体为:由静力平衡原理得嵌岩抗拔桩的极限抗拔承载力为
Figure FDA0003376132280000023
(6)由于步骤(5)中抗拔桩极限承载力解析式不能完全反映岩石性质、嵌岩深度的影响,为增强步骤(5)中公式的适用性,根据步骤(5)计算结果与试验数据,提出修正系数对步骤(5)中极限承载力解析式进行修正,得到能反映嵌岩端岩石性质、嵌岩深度因素的抗拔桩极限承载力计算解析式;具体为:结合式(1)的结算结果与试验数据,提出修正系数
Figure FDA0003376132280000024
对式(1)修正得到考虑岩石性质、不同嵌岩深度下抗拔桩极限承载力计算的解析式为式(2),其中H为桩长,H=H1+H2
Figure FDA0003376132280000025
2.如权利要求1所述的土岩组合地基抗拔桩极限承载力的计算方法,其特征在于,步骤(4)中,计算桩周扣除桩身重的岩体破坏体的重量具体为:桩周破坏体倒台锥的重量由岩石重量和土体重量构成,不考虑桩身自重的桩周破坏体总重为
Figure FDA0003376132280000031
γ1为岩石重度。
CN201811523030.5A 2018-12-13 2018-12-13 一种土岩组合地基抗拔桩极限承载力的计算方法 Active CN109753693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811523030.5A CN109753693B (zh) 2018-12-13 2018-12-13 一种土岩组合地基抗拔桩极限承载力的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811523030.5A CN109753693B (zh) 2018-12-13 2018-12-13 一种土岩组合地基抗拔桩极限承载力的计算方法

Publications (2)

Publication Number Publication Date
CN109753693A CN109753693A (zh) 2019-05-14
CN109753693B true CN109753693B (zh) 2022-02-11

Family

ID=66402624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811523030.5A Active CN109753693B (zh) 2018-12-13 2018-12-13 一种土岩组合地基抗拔桩极限承载力的计算方法

Country Status (1)

Country Link
CN (1) CN109753693B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110472313B (zh) * 2019-07-29 2022-05-10 西南石油大学 一种抗滑桩桩前均质岩体阻滑宽度的计算方法
CN112417550B (zh) * 2020-11-05 2022-07-12 中国电建集团成都勘测设计研究院有限公司 一种碎石桩竖向承载力的简化计算方法
CN114186383B (zh) * 2021-10-29 2024-06-07 广东省建科建筑设计院有限公司 一种计算浅基础地基极限承载力的分析方法
CN114528687B (zh) * 2021-12-28 2023-01-03 中国地质大学(北京) 适用于采空塌陷区桥桩嵌岩深度计算方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581508A (en) * 1969-08-18 1971-06-01 Ralph W Junius Uplift pile anchorage structure
CN101839001A (zh) * 2010-05-27 2010-09-22 关喜才 抗压桩载荷检测装置及方法
CN108038309A (zh) * 2017-12-12 2018-05-15 中国电建集团河北省电力勘测设计研究院有限公司 一种扩底抗拔短桩抗拔极限承载力标准值计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581508A (en) * 1969-08-18 1971-06-01 Ralph W Junius Uplift pile anchorage structure
CN101839001A (zh) * 2010-05-27 2010-09-22 关喜才 抗压桩载荷检测装置及方法
CN108038309A (zh) * 2017-12-12 2018-05-15 中国电建集团河北省电力勘测设计研究院有限公司 一种扩底抗拔短桩抗拔极限承载力标准值计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Earth pressure evolution of the double-row long-short stabilizing pile system;Yongjiang Shen等;《Environmental Earth Sciences》;20170823;第76卷;全文 *
等截面抗拔桩的极限承载力计算综述;何泓男 等;《公路交通科技》;20140630;第31卷(第6期);第64-68页 *

Also Published As

Publication number Publication date
CN109753693A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN109753693B (zh) 一种土岩组合地基抗拔桩极限承载力的计算方法
Ashford et al. Soil–pile response to blast-induced lateral spreading. I: field test
Shapiro et al. Effects of silt on three-dimensional stress–strain behavior of loose sand
Pamuk et al. Remediation of piled foundations against lateral spreading by passive site stabilization technique
CN113378261B (zh) 一种大面积高强度堆载地基极限承载力计算方法
Dong et al. Seismic response of a bridge pile foundation during a shaking table test
Kavand et al. Study of the behavior of pile groups during lateral spreading in medium dense sands by large scale shake table test
CN108108507B (zh) 一种高强土工布加固铁路岩溶路基的设计方法
Zhu et al. Centrifuge modelling of a tetrapod jacket foundation under lateral cyclic and monotonic loading in soft soil
Smith et al. Ground Improvement Reinforcement Mechanisms Determined for the Mw7. 8 Muisne, Ecuador, Earthquake
Rawat et al. Testing and Modelling of Soil Nailed Slopes
Lian et al. Surficial stability analysis of soil slope under seepage based on a novel failure mode
Qingke et al. Calculation method for the critical thickness of a karst cave roof at the bottom of a socketed pile
Sawamura et al. Experimental study on seismic resistance of a two-hinge precast arch culvert using strong earthquake response simulator
Ng et al. Development of preliminary load and resistance factor design of drilled shafts in Iowa.
Zhao et al. Force analysis of pile foundation in rock slope based on upper-bound theorem of limit
Almeida et al. Behaviour of three test embankments taken to failure on soft clay
Karpushko et al. Study of using the possibility of textile sand piles at the base of the automobile road folded by saline soils
Su et al. A systematic experimental study on the group effect of dragloads in pile foundations
Zhang Three dimensional discrete element modelling of open-ended tubular pile penetration in weak rocks
Ameratunga et al. Correlations for Laboratory Test Parameters
Ann et al. Finite element analysis of a soil nailed slope-some recent experience
Guo et al. Analysis of slope stability and disaster law under heavy rainfall
Kutschke et al. Stability and impacts of unsupported vertical cuts in stiff clay
Yang et al. Characteristics and causes of the preconsolidation stress of soils in the Yellow River Delta

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant