CN109752026B - 一种五轴惯性稳定平台系统外框架锁零方法 - Google Patents

一种五轴惯性稳定平台系统外框架锁零方法 Download PDF

Info

Publication number
CN109752026B
CN109752026B CN201910019404.8A CN201910019404A CN109752026B CN 109752026 B CN109752026 B CN 109752026B CN 201910019404 A CN201910019404 A CN 201910019404A CN 109752026 B CN109752026 B CN 109752026B
Authority
CN
China
Prior art keywords
frame
beta
follow
coordinate system
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910019404.8A
Other languages
English (en)
Other versions
CN109752026A (zh
Inventor
魏宗康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijign Institute of Aerospace Control Devices
Original Assignee
Beijign Institute of Aerospace Control Devices
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijign Institute of Aerospace Control Devices filed Critical Beijign Institute of Aerospace Control Devices
Priority to CN201910019404.8A priority Critical patent/CN109752026B/zh
Publication of CN109752026A publication Critical patent/CN109752026A/zh
Application granted granted Critical
Publication of CN109752026B publication Critical patent/CN109752026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

本发明提供了一种五轴惯性稳定平台系统外框架锁零方法,以正交安装于平台台体的3个陀螺仪输出角速率
Figure DDA0001940237020000011
内框架角速度和外框架角速度等5个变量作为解耦环节的输入信息,通过信息融合后输出5个分别作用到台体轴、内环轴、外环轴、内随动框架轴和外随动框架轴的轴端力矩电机。本发明首次给出了五轴平台在内随动框架角为90°时的外框架锁零方法,以及各框架角在稳定时的值,实现了平台台体相对于惯性空间的稳定。

Description

一种五轴惯性稳定平台系统外框架锁零方法
技术领域
本发明涉及惯性测量技术领域,特别涉及一种五轴惯性稳定平台系统外框架锁零方法,主要用于航空、航天领域的全姿态高精度导航。
背景技术
由于三轴惯性平台系统存在“框架锁定”现象,难以满足载体大机动运动的要求,引起“框架锁定”的主要原因是内框架角工作于非零状态,特别是内框架角为90°时引起三个电机的力矩处于一个平面,从而导致平台台体中垂直于该平面的矢量方向缺少克服载体运动的能力,会引起平台台体相对惯性空间不能稳定。因此,产生了四轴惯性稳定平台系统。
四轴惯性平台系统相对三轴惯性平台系统,在台体、内框架和外框架的基础上增加了随动框架,随动框架处于平台外框架和基座之间。随动回路信号来自于内框架角,采用正割分解器进行增益补偿,其核心是使内框架角工作于0°。但有一个特殊情况,不能保证内框架角βyk=0。当βxk=90°时,如图3所示,随动回路将不具备使内框架角βyk=0的功能,此时,如果基座带动随动框架和外框架一起绕内框架轴转动时,则内框架角将不为0。进一步,如果内框架上面有限位档钉,则会带动台体转动,从而引起台体相对惯性空间转动。
因此,考虑在四轴惯性平台的基础上再增加一个框架,使得外框架角也始终工作于0,构成五轴惯性平台。定义新增加的框架为外随动框架,而四轴平台的随动框架在五轴平台中被定义为内随动框架。下面举例介绍五轴惯性稳定平台随动回路工作的原理。
首先,五轴惯性稳定平台系统的六个本体坐标系定义如图1所示,从中可以看出各本体坐标系之间关系。在图1中,设βzk为内框架相对台体的相对角度,βyk为外框架相对内框架的相对角度,βxk为内随动框架相对外框架的相对角度,βyk′为外随动框架相对内随动框架的相对角度,βxk′为基座(箭体)相对外随动框架的相对角度。
在βzk=0、βyk=0、βxk=0、βyk′=0、βxk′=0时,包含台体、内框架、外框架、内随动框架、外随动框架和基座的平台结构如图2所示。此时,平台框架可以隔离基座的角运动,台体相对惯性空间稳定,且可保证内框架角βyk=0、βxk=0。在内随动回路不工作时,如果基座OX1轴上存在角速度ωx1,基座会带动随动框架、外框架绕内框架轴转动,使得转动角度βyk不为0。而在内随动回路工作时,以βyk作为控制器的输入量,作用到随动轴电机以克服角速度ωx1,实现了内框架角βyk=0。同理,外随动回路的作用是保证外框架角βxk=0。
但有一个特殊情况,不能保证外框架角βxk=0。当βyk′=90°时,如图3所示,外随动回路将不具备使外框架角βxk=0的功能,此时,如果基座带动外随动框架和内随动框架一起绕外框架轴转动时,则外框架角将不为0。
为此,需要研究一种使五轴惯性稳定平台系统外框架角度βxk始终为0的解耦方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种五轴惯性稳定平台系统外框架角锁零方法,该方法实现了内随动框架角为90°时外框架角始终保持于零位的要求,可有效隔离载体的角运动,提高了平台台体相对惯性空间稳定的全姿态适应能力。
本发明的上述目的通过以下技术方案实现:
一种五轴惯性稳定平台系统外框架锁零方法,基于五轴惯性稳定平台系统实现,所述稳定平台系统包括基座、外随动框架、内随动框架、外框架、内框架和台体,对应的本体坐标系分别为基座本体坐标系X1Y1Z1、外随动框架坐标系Xp4Yp4Zp4、内随动框架坐标系Xp3Yp3Zp3、外框架本体坐标系Xp2Yp2Zp2、内框架本体坐标系Xp1Yp1Zp1和台体本体坐标系XpYpZp;所述六个坐标系的原点重合,并且:台体本体坐标系的Zp轴与内框架本体坐标系的Zp1轴重合,外框架的本体坐标系的Yp2轴与内框架本体坐标系的Yp1轴重合,内随动框架本体坐标系的Xp3轴与外框架本体坐标系的Xp2轴重合,外随动框架本体坐标系的Yp4轴与内随动框架本体坐标系的Yp4轴重合,基座本体坐标系的X1轴与外随动框架本体坐标系的Xp4轴重合;其中,基座与载体固连,在所述稳定平台系统在载体带动下发生内部相对转动时,基座绕外随动框架本体坐标系的Xp4轴转动,外随动框架绕内随动框架本体坐标系的Yp3轴转动,内随动框架绕外框架本体坐标系的Xp2轴转动,外框架绕内框架本体坐标系的Yp1轴转动,内框架绕台体本体坐标系的Zp轴转动;
所述五轴惯性稳定平台系统内框架锁零方法实现步骤如下:
(1)、根据台体上安装的陀螺仪输出的角速度,得到台体在Xp轴、Yp轴和Zp轴上的角速度分量
Figure BDA0001940235000000031
(2)、测量得到五轴惯性稳定平台系统内部相对转动的角度和角速度,包括:基座绕外随动框架本体坐标系的Xp4轴转动的角度βxk′和角速度
Figure BDA0001940235000000032
外随动框架绕内随动框架本体坐标系的Yp3轴转动的角度βyk′和角速度
Figure BDA0001940235000000033
内随动框架绕外框架本体坐标系的Xp2轴转动的角度βxk和角速度
Figure BDA0001940235000000034
外框架绕内框架本体坐标系的Yp1轴转动的角度βyk和角速度
Figure BDA0001940235000000035
内框架绕台体本体坐标系的Zp轴转动的角度βzk和角速度
Figure BDA0001940235000000036
(3)采用解耦计算公式计算台体、内框架、外框架、内随动框架和外随动框架的转动角速度;
(4)采用步骤(3)的解耦计算公式,得到平台五个框架角的角速度确定方程,如下:
Figure BDA0001940235000000037
Figure BDA0001940235000000041
Figure BDA0001940235000000042
Figure BDA0001940235000000043
Figure BDA0001940235000000044
其中,
Figure BDA0001940235000000045
式中,基座本体坐标系下平台基座的角速度为
Figure BDA0001940235000000046
(5)根据步骤(4)平台五个框架角的角速度确定方程、步骤(2)的五个框架转动的角度(具体是:基座绕外随动框架本体坐标系的Xp4轴转动的角度βxk′,外随动框架绕内随动框架本体坐标系的Yp3轴转动的角度βyk′,内随动框架绕外框架本体坐标系的Xp2轴转动的角度βxk,外框架绕内框架本体坐标系的Yp1轴转动的角度βyk,内框架绕台体本体坐标系的Zp轴转动的角度βzk)和台体上安装的陀螺仪测量的角速度,对外框架锁零条件进行判断,如下:
1)、在βyk′≠90°且βyk′≠-90°时,平台外框架角速度为0,不需要对外框架锁零使平台台体相对惯性空间稳定;
2)、在βyk′=90°或βyk′=-90°,以及基座角速度ωy1=ωz1=0时,不需要对外框架锁零使平台台体相对惯性空间稳定;
3)、在βyk′=90°或βyk′=-90°,当ωy1、ωz1中有一个为非零时,需要对外框架锁零才能使平台台体相对惯性空间稳定;
(6)在需要对外框架锁零才能使平台台体相对惯性空间稳定时,外随动框架带动内随动框架、外框架和内框架一起相对台体快速发生转动,转动前后外框架角βxk恒为零,保证平台台体相对惯性空间仍然稳定。
步骤(3)采用解耦计算公式计算台体、内框架、外框架、内随动框架和外随动框架的转动角速度,具体解耦计算公式如下:
ωz=ωzp
ωy=ωyp cosβzkxp sinβzk
Figure BDA0001940235000000051
Figure BDA0001940235000000052
Figure BDA0001940235000000053
其中,ωz为台体Zp轴的合成转动角速度;ωy为内框架Yp1轴的合成转动角速度;ωx为外框架Xp2轴的合成转动角速度;ωyk′为内随动框架Yp3轴的合成转动角速度;ωxk′为外随动框架Xp4轴的合成转动角速度。
在步骤(6)中,外随动框架带动内随动框架、外框架和内框架相对台体快速转动后的稳定位置的框架角度值,计算过程为:
(1)、测量得到βxk、βyk和βzk的初始值分别为βxk0、βyk0和βzk0
(2)、设基座本体坐标系下平台基座的角速度为
Figure BDA0001940235000000054
Figure BDA0001940235000000055
Figure BDA0001940235000000056
中有一个为非零时,基座绕外随动框架本体坐标系的Xp4轴转动的角速度
Figure BDA0001940235000000057
外随动框架绕内随动框架本体坐标系的Yp3轴转动的角速度
Figure BDA0001940235000000058
内随动框架绕外框架本体坐标系的Xp2轴转动的角速度
Figure BDA0001940235000000059
外框架绕内框架本体坐标系的Yp1轴转动的角速度
Figure BDA00019402350000000510
内框架绕台体本体坐标系的Zp轴转动的角速度
Figure BDA00019402350000000511
的表达式分别为
Figure BDA00019402350000000512
Figure BDA00019402350000000513
Figure BDA00019402350000000514
Figure BDA00019402350000000515
Figure BDA00019402350000000516
其中,
Figure BDA00019402350000000517
(3)、基座绕外随动框架本体坐标系的Xp4轴转动的角度βxk′、外随动框架绕内随动框架本体坐标系的Yp3轴转动的角度βyk′、内随动框架绕外框架本体坐标系的Xp2轴转动的角度βxk、外框架绕内框架本体坐标系的Yp1轴转动的角度βyk、内框架绕台体本体坐标系的Zp轴转动的角度βzk的稳态值分为以下四种情况,其中“→”是指趋于;
(a)βyk′<90°且βyk′→90°时,sinβyk′=1,tanβyk′>0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=-1,即βxk′=180°-α,其中,βxk′的变化量为Δβxk′=180°-α-βxk′0;此时,由于
Figure BDA0001940235000000061
Figure BDA0001940235000000062
符号相同,所以βzk的稳态值为βzk=βzk0+Δβxk′=βzk0-α-βxk′0+180°;由于
Figure BDA0001940235000000063
所以βyk′递减。
(b)βyk′>90°且βyk′→90°时,sinβyk′=1,tanβyk′<0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=+1,即βxk′=-α,其中,βxk′的变化量为Δβxk′=-α-βxk′0;此时,由于
Figure BDA0001940235000000064
Figure BDA0001940235000000065
符号相同,所以βzk的稳态值为βzk=βzk0+Δβxk′=βzk0-α-βxk′0;由于
Figure BDA0001940235000000066
所以βyk′递增。
(c)βyk′<-90°且βyk′→-90°时,sinβyk′=-1,tanβyk′>0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=-1,即βxk′=180°-α,其中,βxk′的变化量为Δβxk′=180°-α-βxk′0;此时,由于
Figure BDA0001940235000000067
Figure BDA0001940235000000068
符号相反,所以βzk的稳态值为βzk=βzk0-Δβxk′=βzk0+α+βxk′0-180°;由于
Figure BDA0001940235000000069
所以βyk′递减。
(d)βyk′>-90°且βyk′→-90°时,sinβyk′=-1,tanβyk′<0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=+1,即βxk′=-α,其中,βxk′的变化量为Δβxk′=-α-βxk′0;此时,由于
Figure BDA00019402350000000610
Figure BDA00019402350000000611
符号相反,所以βzk的稳态值为βzk=βzk0-Δβxk′=βzk0+α+βxk′0;由于
Figure BDA00019402350000000612
所以βyk′递增。
在步骤(2)中,通过如下方法测量得到五轴惯性稳定平台系统内部相对转动角度和角速度:
在外随动框架的Xp4轴上安装角度传感器,测量得到基座绕外随动框架本体坐标系的Xp4轴转动的角度βxk′;在内随动框架的Yp3轴上安装角度传感器,测量得到外随动框架绕内随动框架本体坐标系的Yp3轴转动的角度βyk′;在外框架的Xp2轴上安装角度传感器,测量得到内随动框架绕外框架本体坐标系的Xp2轴转动的角度βxk;在内框架的Yp1轴上安装角度传感器,测量得到外框架绕内框架本体坐标系的Yp1轴转动的角度βyk和角速度
Figure BDA0001940235000000071
在台体Zp轴上安装传感器测量内框架绕台体本体坐标系的Zp轴转动的角度βzk
在步骤(2)中,转动角度βxk′、βyk′、βxk、βyk、βzk的取值范围为-180°~+180°。
角度传感器采用光电编码器或正余弦旋转编码器。
步骤(3)中计算台体、内框架、外框架、内随动框架和外随动框架的合成转动角速度采用数字计算机实现。
五轴惯性稳定平台系统的基座与载体固连。
外随动框架和内随动框架上安装有力矩电机,力矩电机输出力矩大于1N·m。
台体上安装的陀螺仪为双自由度陀螺时,数量需要至少两个,两个正交安装;台体上安装的陀螺仪为单自由度陀螺时,数量需要至少三个,两两正交安装。
本发明与现有技术相比具有以下优点:
(1)、本发明给出的一种五轴惯性稳定平台系统外框架锁零方法,完全覆盖了5个姿态角在任意象限的情况,克服了原有技术在内随动框架角βyk′=±90°时的外框架非零的问题;
(2)、本发明给出了一种五轴惯性稳定平台系统外框架锁零方法,虽然在计算环节中存在secβyk′,但给出了在该奇异点处的框架角稳态值,确保了系统仍然稳定而不发散。
(3)、本发明实现了内随动框架角为90°时外框架角始终保持于零位的要求,可有效隔离载体的角运动,提高了平台台体相对惯性空间稳定的全姿态适应能力。
附图说明
图1为五轴惯性稳定平台系统中六个本体坐标系之间的关系示意图;
图2为五个框架角度为零时的五轴平台结构示意图;
图3为本发明实现外框架锁零的五个框架角仿真结果;
图4为本发明实现外框架锁零的台体OYp和OXp轴的角速度仿真结果;
图5为本发明的流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
本发明提供的一种五轴惯性稳定平台系统外框架锁零方法,基于五轴惯性稳定平台系统实现,所述稳定平台系统包括基座、外随动框架、内随动框架、外框架、内框架和台体,对应的本体坐标系分别为基座本体坐标系X1Y1Z1、外随动框架坐标系Xp4Yp4Zp4、内随动框架坐标系Xp3Yp3Zp3、外框架本体坐标系Xp2Yp2Zp2、内框架本体坐标系Xp1Yp1Zp1和台体本体坐标系XpYpZp;所述六个坐标系的原点重合,并且:台体本体坐标系的Zp轴与内框架本体坐标系的Zp1轴重合,外框架的本体坐标系的Yp2轴与内框架本体坐标系的Yp1轴重合,内随动框架本体坐标系的Xp3轴与外框架本体坐标系的Xp2轴重合,外随动框架本体坐标系的Yp4轴与内随动框架本体坐标系的Yp4轴重合,基座本体坐标系的X1轴与外随动框架本体坐标系的Xp4轴重合;其中,基座与载体固连,在所述稳定平台系统在载体带动下发生内部相对转动时,基座绕外随动框架本体坐标系的Xp4轴转动,外随动框架绕内随动框架本体坐标系的Yp3轴转动,内随动框架绕外框架本体坐标系的Xp2轴转动,外框架绕内框架本体坐标系的Yp1轴转动,内框架绕台体本体坐标系的Zp轴转动;
如图1所示的六个坐标系的关系示意图,以上所述的六个坐标系的原点重合,并且存在如下相对约束关系:台体本体坐标系的Zp轴与内框架本体坐标系的Zp1轴重合,外框架的本体坐标系的Yp2轴与内框架本体坐标系的Yp1轴重合,内随动框架本体坐标系的Xp3轴与外框架本体坐标系的Xp2轴重合,外随动框架本体坐标系的Yp4轴与内随动框架本体坐标系的Yp3轴重合,基座本体坐标系的X1轴与外随动框架本体坐标系的Xp4轴重合。其中,基座与载体固连,在所述稳定平台系统在载体带动下发生内部相对转动时:基座绕外随动框架本体坐标系的Xp4轴转动且转动角度为βxk′;外随动框架绕内随动框架本体坐标系的Yp3轴转动且转动角度为βyk′;内随动框架绕外框架本体坐标系的Xp2轴转动且转动角度为βxk;外框架绕内框架本体坐标系的Yp1轴转动且转动角度为βyk,内框架绕台体本体坐标系的Zp轴转动且转动角度为βzk
所述五轴惯性稳定平台系统内框架锁零方法实现步骤如下:
(1)、根据台体上安装的陀螺仪输出的角速度,得到台体在Xp轴、Yp轴和Zp轴上的角速度分量
Figure BDA0001940235000000091
(2)、测量得到五轴惯性稳定平台系统内部相对转动的角度和角速度,包括:外随动框架绕内随动框架本体坐标系的Yp3轴转动的角度βyk′,内随动框架绕外框架本体坐标系的Xp2轴转动的角度βxk和角速度
Figure BDA0001940235000000092
外框架绕内框架本体坐标系的Yp1轴转动的角度βyk和角速度
Figure BDA0001940235000000093
内框架绕台体本体坐标系的Zp轴转动的角度βzk
(3)、计算台体、内框架、外框架和随动框架的转动角速度,具体计算公式如下:
Figure BDA0001940235000000094
Figure BDA0001940235000000095
Figure BDA0001940235000000101
Figure BDA0001940235000000102
Figure BDA0001940235000000103
其中,ωz为台体Zp轴的合成转动角速度;ωy为内框架Yp1轴的合成转动角速度;ωx为外框架Xp2轴的合成转动角速度;ωyk′为内随动框架Yp3轴的合成转动角速度;ωxk′为外随动框架Xp4轴的合成转动角速度。
(4)、在βyk′≠90°且βyk′≠-90°时,平台内框架角速度为0,使平台台体相对惯性空间稳定;
(5)、在βyk′=90°或βyk′=-90°,以及基座角速度
Figure BDA0001940235000000104
时,平台台体相对惯性空间稳定;
(6)、在βyk′=90°或βyk′=-90°,当
Figure BDA0001940235000000105
中有一个为非零时,随动框架带动外框架和内框架一起相对台体快速发生转动,外框架角βxk=0°,保证了平台台体相对惯性空间仍然稳定。
所述的一种五轴惯性稳定平台系统外框架锁零方法,其特征在于:在步骤(6)中,外随动框架带动内随动框架、外框架和内框架相对台体快速转动后的稳定位置的框架角度值计算过程为:
(1)、测量得到βxk、βyk和βzk的初始值分别为βxk0、βyk0和βzk0
(2)、设平台基座的角速度为
Figure BDA0001940235000000106
Figure BDA0001940235000000107
中有一个为非零时,基座绕随动框架本体坐标系的Yp3轴转动的角速度
Figure BDA0001940235000000108
随动框架绕外框架本体坐标系的Xp2轴转动的角速度
Figure BDA0001940235000000109
外框架绕内框架本体坐标系的Yp1轴转动的角速度
Figure BDA00019402350000001010
内框架绕台体本体坐标系的Zp轴转动的角速度
Figure BDA00019402350000001011
的表达式分别为
Figure BDA00019402350000001012
Figure BDA00019402350000001013
Figure BDA00019402350000001014
Figure BDA0001940235000000111
Figure BDA0001940235000000112
其中,
Figure BDA0001940235000000113
(3)、基座绕外随动框架本体坐标系的Xp4轴转动的角度βxk′、外随动框架绕内随动框架本体坐标系的Yp3轴转动的角度βyk′、内随动框架绕外框架本体坐标系的Xp2轴转动的角度βxk、外框架绕内框架本体坐标系的Yp1轴转动的角度βyk、内框架绕台体本体坐标系的Zp轴转动的角度βzk的稳态值分为以下四种情况,其中“→”是指趋于;
(a)βyk′<90°且βyk′→90°时,sinβyk′=1,tanβyk′>0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=-1,即βxk′=180°-α,其中,βxk′的变化量为Δβxk′=180°-α-βxk′0;此时,由于
Figure BDA0001940235000000114
Figure BDA0001940235000000115
符号相同,所以βzk的稳态值为βzk=βzk0+Δβxk′=βzk0-α-βxk′0+180°;由于
Figure BDA0001940235000000116
所以βyk′递减。
(b)βyk′>90°且βyk′→90°时,sinβyk′=1,tanβyk′<0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=+1,即βxk′=-α,其中,βxk′的变化量为Δβxk′=-α-βxk′0;此时,由于
Figure BDA0001940235000000117
Figure BDA0001940235000000118
符号相同,所以βzk的稳态值为βzk=βzk0+Δβxk′=βzk0-α-βxk′0;由于
Figure BDA0001940235000000119
所以βyk′递增。
(c)βyk′<-90°且βyk′→-90°时,sinβyk′=-1,tanβyk′>0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=-1,即βxk′=180°-α,其中,βxk′的变化量为Δβxk′=180°-α-βxk′0;此时,由于
Figure BDA00019402350000001110
Figure BDA00019402350000001111
符号相反,所以βzk的稳态值为βzk=βzk0-Δβxk′=βzk0+α+βxk′0-180°;由于
Figure BDA00019402350000001112
所以βyk′递减。
(d)βyk′>-90°且βyk′→-90°时,sinβyk′=-1,tanβyk′<0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=+1,即βxk′=-α,其中,βxk′的变化量为Δβxk′=-α-βxk′0;此时,由于
Figure BDA0001940235000000121
Figure BDA0001940235000000122
符号相反,所以βzk的稳态值为βzk=βzk0-Δβxk′=βzk0+α+βxk′0;由于
Figure BDA0001940235000000123
所以βyk′递增。
为形象说明本发明提供的五轴惯性平台系统外框架锁零方法,举例说明,当βyk′趋于90°、且ωx1≠0的瞬时,外随动框架带动内随动框架、外框架、内框架一起绕基座OZ1和台体OZp快速转动,到达内随动框架轴Yp4轴与基座OX1轴平行的位置。此时,基座带动外随动框架一起绕Yp4轴转动,在转动过程中平台台体相对惯性空间保持稳定。
优选实施例如下:
在本实施例中,利用本发明的计算公式进行仿真计算,其中设定条件如下:基座绕外随动框架坐标系Xp4轴转动的角度βxk′=0;外随动框架绕内随动框架坐标系Yp3轴转动的角度βyk′以1°/s的速度趋近90°;内随动框架绕外框架坐标系Xp2轴转动的角度βxk=0;外框架绕内框架坐标系Yp1轴转动的角度βyk=0;内框架绕台体坐标系Zp轴转动的角度βzk=0。
当基座角速度
Figure BDA0001940235000000124
时,sinα=1,cosα=0,因此,α=90°;由cos(βxk′+α)=-1,求得βxk′=180°-α=90°,如图3所示,βxk′快速稳定在+90°,βzk也快速跟随到βzk=180°-α=90°,βyk′以-1°/s的速度逐渐减小;在此过程中,外框架角βxk和框架角βyk近似为0。平台台体OYp和OXp轴的角速度仿真结果如图4所示,可以看出,在外框架锁零过程中台体角速度的值为零。
图3左上图纵坐标为Bzk表示βzk,右上图纵坐标为Byk表示βyk,左中图纵坐标为Bxk表示βxk,左下图纵坐标为Bxkp表示βxk′;右中图中Bykp表示βyk′,.Time表示时间。图4中,wxp表示
Figure BDA0001940235000000125
wyp表示
Figure BDA0001940235000000126
Time表示时间。
上述实施例可以验证本发明的五轴惯性平台系统外框架锁零方法正确,图5为实现本发明的方法流程图。
以上所述,仅为本发明一个具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (8)

1.一种五轴惯性稳定平台系统外框架锁零方法,其特征在于:基于五轴惯性稳定平台系统实现,所述稳定平台系统包括基座、外随动框架、内随动框架、外框架、内框架和台体,对应的本体坐标系分别为基座本体坐标系X1Y1Z1、外随动框架坐标系Xp4Yp4Zp4、内随动框架坐标系Xp3Yp3Zp3、外框架本体坐标系Xp2Yp2Zp2、内框架本体坐标系Xp1Yp1Zp1和台体本体坐标系XpYpZp;上述六个坐标系的原点重合,并且:台体本体坐标系的Zp轴与内框架本体坐标系的Zp1轴重合,外框架本体坐标系的Yp2轴与内框架本体坐标系的Yp1轴重合,内随动框架本体坐标系的Xp3轴与外框架本体坐标系的Xp2轴重合,外随动框架本体坐标系的Yp4轴与内随动框架本体坐标系的Yp4轴重合,基座本体坐标系的X1轴与外随动框架本体坐标系的Xp4轴重合;其中,基座与载体固连,在所述稳定平台系统在载体带动下发生内部相对转动时,基座绕外随动框架本体坐标系的Xp4轴转动,外随动框架绕内随动框架本体坐标系的Yp3轴转动,内随动框架绕外框架本体坐标系的Xp2轴转动,外框架绕内框架本体坐标系的Yp1轴转动,内框架绕台体本体坐标系的Zp轴转动;
所述一种五轴惯性稳定平台系统外框架锁零方法实现步骤如下:
(1)、根据台体上安装的陀螺仪输出的角速度,得到台体在Xp轴、Yp轴和Zp轴上的角速度分量
Figure FDA0003927373870000011
(2)、测量得到五轴惯性稳定平台系统内部相对转动的角度和角速度,包括:基座绕外随动框架本体坐标系的Xp4轴转动的角度βxk′和角速度
Figure FDA0003927373870000012
外随动框架绕内随动框架本体坐标系的Yp3轴转动的角度βyk′和角速度
Figure FDA0003927373870000013
内随动框架绕外框架本体坐标系的Xp2轴转动的角度βxk和角速度
Figure FDA0003927373870000014
外框架绕内框架本体坐标系的Yp1轴转动的角度βyk和角速度
Figure FDA0003927373870000015
内框架绕台体本体坐标系的Zp轴转动的角度βzk和角速度
Figure FDA0003927373870000016
(3)采用解耦计算公式计算台体、内框架、外框架、内随动框架和外随动框架的转动角速度,具体解耦计算公式如下:
Figure FDA0003927373870000021
Figure FDA0003927373870000022
Figure FDA0003927373870000023
Figure FDA0003927373870000024
Figure FDA0003927373870000025
其中,ωz为台体Zp轴的合成转动角速度;ωy为内框架Yp1轴的合成转动角速度;ωx为外框架Xp2轴的合成转动角速度;ωyk′为内随动框架Yp3轴的合成转动角速度;ωxk′为外随动框架Xp4轴的合成转动角速度;
(4)采用步骤(3)的解耦计算公式,得到平台五个框架角的角速度确定方程,如下:
Figure FDA0003927373870000026
Figure FDA0003927373870000027
Figure FDA0003927373870000028
Figure FDA0003927373870000029
Figure FDA00039273738700000210
其中,
Figure FDA00039273738700000211
式中,基座本体坐标系下平台基座的角速度为
Figure FDA00039273738700000212
(5)根据步骤(4)平台五个框架角的角速度确定方程、步骤(2)的五个框架转动的角度和台体上安装的陀螺仪测量的角速度,对外框架锁零条件进行判断,如下:
1)、在βyk′≠90°且βyk′≠-90°时,平台外框架角速度为0,不需要对外框架锁零使平台台体相对惯性空间稳定;
2)、在βyk′=90°或βyk′=-90°,以及基座角速度
Figure FDA0003927373870000031
时,不需要对外框架锁零使平台台体相对惯性空间稳定;
3)、在βyk′=90°或βyk′=-90°,当
Figure FDA0003927373870000032
中有一个为非零时,需要对外框架锁零才能使平台台体相对惯性空间稳定;
(6)在需要对外框架锁零才能使平台台体相对惯性空间稳定时,外随动框架带动内随动框架、外框架和内框架一起相对台体快速发生转动,转动前后外框架角βxk恒为零,保证平台台体相对惯性空间仍然稳定;
外随动框架带动内随动框架、外框架和内框架相对台体快速转动后的稳定位置的框架角度值,计算过程为:
1)、测量得到βxk、βyk和βzk的初始值分别为βxk0、βyk0和βzk0
2)、设基座本体坐标系下平台基座的角速度为
Figure FDA0003927373870000033
Figure FDA0003927373870000034
中有一个为非零时,基座绕外随动框架本体坐标系的Xp4轴转动的角速度
Figure FDA0003927373870000035
外随动框架绕内随动框架本体坐标系的Yp3轴转动的角速度
Figure FDA0003927373870000036
内随动框架绕外框架本体坐标系的Xp2轴转动的角速度
Figure FDA0003927373870000037
外框架绕内框架本体坐标系的Yp1轴转动的角速度
Figure FDA0003927373870000038
内框架绕台体本体坐标系的Zp轴转动的角速度
Figure FDA0003927373870000039
的表达式分别为
Figure FDA00039273738700000310
Figure FDA00039273738700000311
Figure FDA00039273738700000312
Figure FDA00039273738700000313
Figure FDA00039273738700000314
其中,
Figure FDA00039273738700000315
3)、基座绕外随动框架本体坐标系的Xp4轴转动的角度βxk′、外随动框架绕内随动框架本体坐标系的Yp3轴转动的角度βyk′、内随动框架绕外框架本体坐标系的Xp2轴转动的角度βxk、外框架绕内框架本体坐标系的Yp1轴转动的角度βyk、内框架绕台体本体坐标系的Zp轴转动的角度βzk的稳态值分为以下四种情况:
(a)βyk′<90°且βyk′→90°时,sinβyk′=1,tanβyk′>0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=-1,即βxk′=180°-α,其中,βxk′的变化量为Δβxk′=180°-α-βxk′0;此时,由于
Figure FDA0003927373870000041
Figure FDA0003927373870000042
符号相同,所以βzk的稳态值为βzk=βzk0+Δβxk′=βzk0-α-βxk′0+180°;由于
Figure FDA0003927373870000043
所以βyk′递减;
(b)βyk′>90°且βyk′→90°时,sinβyk′=1,tanβyk′<0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=+1,即βxk′=-α,其中,βxk′的变化量为Δβxk′=-α-βxk′0;此时,由于
Figure FDA0003927373870000044
Figure FDA0003927373870000045
符号相同,所以βzk的稳态值为βzk=βzk0+Δβxk′=βzk0-α-βxk′0;由于
Figure FDA0003927373870000046
所以βyk′递增;
(c)βyk′<-90°且βyk′→-90°时,sinβyk′=-1,tanβyk′>0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=-1,即βxk′=180°-α,其中,βxk′的变化量为Δβxk′=180°-α-βxk′0;此时,由于
Figure FDA0003927373870000047
Figure FDA0003927373870000048
符号相反,所以βzk的稳态值为βzk=βzk0-Δβxk′=βzk0+α+βxk′0-180°;由于
Figure FDA0003927373870000049
所以βyk′递减;
(d)βyk′>-90°且βyk′→-90°时,sinβyk′=-1,tanβyk′<0;βxk′的初始值为βxk′0,为保证系统稳定,则有cos(βxk′+α)=+1,即βxk′=-α,其中,βxk′的变化量为Δβxk′=-α-βxk′0;此时,由于
Figure FDA00039273738700000410
Figure FDA00039273738700000411
符号相反,所以βzk的稳态值为βzk=βzk0-Δβxk′=βzk0+α+βxk′0;由于
Figure FDA00039273738700000412
所以βyk′递增。
2.根据权利要求1所述的一种五轴惯性稳定平台系统外框架锁零方法,其特征在于:在步骤(2)中,通过如下方法测量得到五轴惯性稳定平台系统内部相对转动角度和角速度:
在外随动框架的Xp4轴上安装角度传感器,测量得到基座绕外随动框架本体坐标系的Xp4轴转动的角度βxk′;在内随动框架的Yp3轴上安装角度传感器,测量得到外随动框架绕内随动框架本体坐标系的Yp3轴转动的角度βyk′;在外框架的Xp2轴上安装角度传感器,测量得到内随动框架绕外框架本体坐标系的Xp2轴转动的角度βxk;在内框架的Yp1轴上安装角度传感器,测量得到外框架绕内框架本体坐标系的Yp1轴转动的角度βyk和角速度
Figure FDA0003927373870000051
在台体Zp轴上安装传感器测量内框架绕台体本体坐标系的Zp轴转动的角度βzk
3.根据权利要求1所述的一种五轴惯性稳定平台系统外框架锁零方法,其特征在于:在步骤(2)中,转动角度βxk′、βyk′、βxk、βyk、βzk的取值范围为-180°~+180°。
4.根据权利要求2所述的一种五轴惯性稳定平台系统外框架锁零方法,其特征在于:角度传感器采用光电编码器或正余弦旋转编码器。
5.根据权利要求1所述的一种五轴惯性稳定平台系统外框架锁零方法,其特征在于:步骤(3)中计算台体、内框架、外框架、内随动框架和外随动框架的合成转动角速度采用数字计算机实现。
6.根据权利要求1所述的一种五轴惯性稳定平台系统外框架锁零方法,其特征在于:五轴惯性稳定平台系统的基座与载体固连。
7.根据权利要求1所述的一种五轴惯性稳定平台系统外框架锁零方法,其特征在于:外随动框架和内随动框架上安装有力矩电机,力矩电机输出力矩大于1N·m。
8.根据权利要求1所述的一种五轴惯性稳定平台系统外框架锁零方法,其特征在于:台体上安装的陀螺仪为双自由度陀螺时,数量需要至少两个,两个正交安装;台体上安装的陀螺仪为单自由度陀螺时,数量需要至少三个,两两正交安装。
CN201910019404.8A 2019-01-09 2019-01-09 一种五轴惯性稳定平台系统外框架锁零方法 Active CN109752026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910019404.8A CN109752026B (zh) 2019-01-09 2019-01-09 一种五轴惯性稳定平台系统外框架锁零方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910019404.8A CN109752026B (zh) 2019-01-09 2019-01-09 一种五轴惯性稳定平台系统外框架锁零方法

Publications (2)

Publication Number Publication Date
CN109752026A CN109752026A (zh) 2019-05-14
CN109752026B true CN109752026B (zh) 2023-02-28

Family

ID=66405241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910019404.8A Active CN109752026B (zh) 2019-01-09 2019-01-09 一种五轴惯性稳定平台系统外框架锁零方法

Country Status (1)

Country Link
CN (1) CN109752026B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213500A1 (de) * 1992-04-24 1993-10-28 Bodenseewerk Geraetetech Lotsensor
US5868031A (en) * 1995-02-07 1999-02-09 Anatoliy Kokush Triaxial gyroscopic stabilizer for movie or television camera
CN103488081A (zh) * 2013-09-09 2014-01-01 广东电网公司电力科学研究院 惯性稳定平台控制方法
CN105157702A (zh) * 2015-06-30 2015-12-16 北京航天控制仪器研究所 一种全姿态三框架四轴惯性平台随动环控制方法
CN108318052A (zh) * 2018-01-24 2018-07-24 北京航天控制仪器研究所 一种基于双轴连续旋转的混合式平台惯导系统标定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213500A1 (de) * 1992-04-24 1993-10-28 Bodenseewerk Geraetetech Lotsensor
US5868031A (en) * 1995-02-07 1999-02-09 Anatoliy Kokush Triaxial gyroscopic stabilizer for movie or television camera
CN103488081A (zh) * 2013-09-09 2014-01-01 广东电网公司电力科学研究院 惯性稳定平台控制方法
CN105157702A (zh) * 2015-06-30 2015-12-16 北京航天控制仪器研究所 一种全姿态三框架四轴惯性平台随动环控制方法
CN108318052A (zh) * 2018-01-24 2018-07-24 北京航天控制仪器研究所 一种基于双轴连续旋转的混合式平台惯导系统标定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Measurement of Angle-of-Arrival Fluctuations over a real Atmospheric Turbulent Path";Yi Liu;《2015 International Conference on Optoelectronics and Microelectronics (ICOM)》;20151231;正文第160-164页 *
"四轴平台随动系统的模型分析与设计";高桂杰;《导航与控制》;20140831;第13卷(第4期);正文第21-31页 *

Also Published As

Publication number Publication date
CN109752026A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN109211269B (zh) 一种双轴旋转惯导系统姿态角误差标定方法
CN106052682B (zh) 一种混合式惯性导航系统及导航方法
CN103727939B (zh) 一种双轴旋转的姿态测量系统及其测量方法
CN102288133B (zh) 一种陀螺间接稳定系统安装偏角标定方法
CN105180936B (zh) 一种四轴惯性稳定平台系统的伺服回路解耦方法
CN106500733B (zh) 一种三轴旋转惯导系统框架不正交角自标定及补偿方法
CN111623768A (zh) 一种基于克雷洛夫角奇异条件下的姿态角解算方法
CN109506649B (zh) 一种四轴惯性稳定平台系统内框架锁零方法及系统
CN108871323B (zh) 一种低成本惯性传感器在机动环境下的高精度导航方法
CN105115505A (zh) 一种四轴惯性稳定平台系统的二阶动态干扰力矩补偿方法
CN105043414A (zh) 一种三轴惯性稳定平台系统的台体控制参数计算方法
CN107102653A (zh) 一种控制无人机的挂载设备对地角度的装置和方法
CN107607128B (zh) 一种两轴两框架稳定平台瞄准线精度补偿方法
CN105115503B (zh) 一种三轴稳定平台系统的伺服回路解耦方法
Xing et al. Quaternion-based Complementary Filter for Aiding in the Self-Alignment of the MEMS IMU
CN111006663B (zh) 一种基于serf陀螺仪和速率陀螺仪的三轴惯性平台系统
CN109752026B (zh) 一种五轴惯性稳定平台系统外框架锁零方法
CN110488853B (zh) 一种降低转轴涡动影响的混合式惯导系统稳定控制指令的计算方法
CN109443352B (zh) 一种四轴惯性稳定平台系统的伺服回路解耦方法
CN109540134B (zh) 一种三轴稳定平台系统框架自解锁方法及系统
CN107315340A (zh) 一种基于微机电式imu测量反馈的稳像装置及控制方法
CN105277212B (zh) 一种三轴惯性稳定平台系统的二阶动态干扰力矩补偿方法
CN111006664A (zh) 一种基于原子自旋陀螺仪的三轴惯性平台系统
CN106840195B (zh) 一种旋转式半捷联微惯性测量系统误差抑制方法
CN110631580B (zh) 一种基于原子自旋陀螺仪的单轴惯性平台系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant