CN109742790B - 一种基于三相多功能逆变器的微电网电能质量优化方法 - Google Patents

一种基于三相多功能逆变器的微电网电能质量优化方法 Download PDF

Info

Publication number
CN109742790B
CN109742790B CN201811557290.4A CN201811557290A CN109742790B CN 109742790 B CN109742790 B CN 109742790B CN 201811557290 A CN201811557290 A CN 201811557290A CN 109742790 B CN109742790 B CN 109742790B
Authority
CN
China
Prior art keywords
node
microgrid
tpmfi
harmonic
power quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811557290.4A
Other languages
English (en)
Other versions
CN109742790A (zh
Inventor
李永丽
孙广宇
靳伟
李松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811557290.4A priority Critical patent/CN109742790B/zh
Publication of CN109742790A publication Critical patent/CN109742790A/zh
Application granted granted Critical
Publication of CN109742790B publication Critical patent/CN109742790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种基于三相多功能逆变器的微电网电能质量优化方法,包括:根据各个节点检测到的注入微电网的谐波电流和负序电流,计算各节点TPMFI所需补偿容量Sci;当第i个节点(1≤i≤n)对应的TPMFI的剩余容量Si大于等于Sci时,采用该TPMFI对所在节点等效谐波/负序电流源产生的谐波和负序电流进行完全补偿;另外,对于微电网中不满足Si≥Sci的TPMFI,则需对其补偿容量进行优化选择,基于熵—Shapely二次权重修正方法对微电网各个节点的电能质量问题进行评估,并确定补偿容量优化方案。本发明可以提升微电网的总体电能质量。

Description

一种基于三相多功能逆变器的微电网电能质量优化方法
技术领域
本发明涉及三相多功能逆变器的功率优化选择分配问题,涉及了一种微电网电能质量优化方法。
背景技术
微电网能够在中低压层面有效解决分布式电源高渗透率运行的问题。然而,大量电力电子设备接入微电网会严重恶化微电网的电能质量。为提升微电网的电能质量,目前微电网中一般采用专门的电能质量治理装置:如有源电力滤波器(APF)和静止无功发生器(SVG)等。由于三相逆变器与上述电能质量治理装置在拓扑结构和控制方法上有诸多相似之处,因此,有学者提出三相多功能逆变器(TPMFI)的概念:将不同功能的控制策略复合到同一台三相逆变器中,利用微源逆变器运行时的容量裕度,在实现并网发电功能的同时,对微电网中电能质量问题进行就地治理,既减少了微电网成本,又能有效改善微电网的电能质量。
为更好地发挥TPMFI对微电网电能质量综合优化的功能,需要对采用多个TPMFI对微电网进行电能质量治理时的补偿容量优化方案进行研究。然而,目前对TPMFI的研究主要集中在TPMFI自身拓扑结构的优化和各类补偿功能的实现上,缺乏对TPMFI补偿容量优化方案的相关研究。
发明内容
本发明提供了一种基于三相多功能逆变器的微电网电能质量优化方法,用于对于微电网的整体电能质量进行优化。根据各个三相多功能的剩余容量,基于熵—Shapely二次权重修正法,对各个三相多功能逆变器的补偿电流进行实时优化选择,提升微电网的整体电能质量。技术方案如下:
一种基于三相多功能逆变器的微电网电能质量优化方法,包括:
根据各个节点检测到的注入微电网的谐波电流Ighik和负序电流Igni,计算各节点TPMFI所需补偿容量Sci
Figure BDA0001912292700000011
其中,Ui为该节点的电压有效值,Igni和Ighi分别为该节点注入微电网的负序电流和总谐波电流有效值;
当第i个节点(1≤i≤n)对应的TPMFI的剩余容量Si大于等于Sci时,采用该TPMFI对所在节点等效谐波/负序电流源产生的谐波和负序电流进行完全补偿;另外,对于微电网中不满足Si≥Sci的TPMFI,则需对其补偿容量进行优化选择,补偿容量优化方案如下:
定义描述各节点的谐波严重程度的λTHDi和描述各节点不平衡严重程度的λui分别为:
Figure BDA0001912292700000012
Figure BDA0001912292700000013
其中,Ib为微电网的额定电流,Ihi和Ini分别为各个节点注入微电网的谐波电流和负序电流有效值;
基于熵—Shapely二次权重修正方法对微电网各个节点的电能质量问题进行评估;对于包含n个节点,且以谐波及负序作为电能质量评估指标的微电网,其评估矩阵为:
Figure BDA0001912292700000021
其中,xi1和xi2的表达式分别如下:
Figure BDA0001912292700000022
对于矩阵Xn×2,计算熵权值H(xj)的公式为:
Figure BDA0001912292700000023
将公式(6)转化为具体权重如下:
Figure BDA0001912292700000024
在确定了各项指标权重dj的基础上,得到微电网中各节点的电能质量评价指标Mi(i=2,4)如下:
Mi=d1Ihi+d2Ini (8)
为获得微电网的最优电能质量评估指标,令各个节点的Mi均最小即可,此时,Ihi和Ini需满足如下关系:
Figure BDA0001912292700000025
计算出Ihi和Ini后,得到各个TPMFI输出的负序电流Icni和某次谐波电流Ichik分别为:
Figure BDA0001912292700000026
将Icni和Ichik叠加即得到各个TPMFI的电能质量补偿模块输出的参考电流。
附图说明
图1三相多功能逆变器的基本配置
图2微电网仿真模型的基本拓扑。
图3工况1下仿真模型中各PCC点的基波正序电压,负序电压以及谐波电压分量的变化。(a)基波正序电压分量(b)谐波电压分量(c)负序电压分量
具体实施方式
下面将结合实施例及参照附图对该发明的技术方案进行详细说明。
为验证本发明所提电能质量优化方法的有效性,在Simulink仿真环境下搭建了如图2所示的4节点微电网仿真模型(以下简称所提模型)。表1给出了各个元件参数的基本配置情况。在上述模型中,各谐波负载均为三相二极管桥式整流电路。
为验证所提优化方法的有效性,设置工况1如下:微电网运行于孤岛模式,仿真时间ts=6s。t=0时,所有TPMFI(VSC)均投入运行,所有负荷的三相有功负载投入运行;t=3s时,投入负荷1—4的无功负载,投入负荷2和负荷4的谐波负载。
表1微电网的基本配置
Figure BDA0001912292700000031
对于图2所示的微电网,根据各个节点检测到的注入微电网的谐波电流Ighik和负序电流Igni,计算各节点TPMFI所需补偿容量Sci(1≤i≤4):
Figure BDA0001912292700000032
其中,Ui为该节点的电压有效值,Igni和Ighi分别为该节点注入微电网的负序电流和总谐波电流有效值。
根据公式(1)计算可知,PCC1和PCC3对应的TPMFI的剩余容量Si大于等于Sci,因此采用TPMFI1和TPMFI3对所在节点注入微电网的谐波和负序电流进行完全补偿;PCC2和PCC4对应的TPMFI的剩余容量Si小于Sci,需对其补偿容量进行优化选择,具体补偿容量优化方案如下:
定义描述各节点的谐波严重程度的λTHDi,和描述各节点不平衡严重程度的λui,(i=2,4)分别为:
Figure BDA0001912292700000033
Figure BDA0001912292700000041
其中,Ib为微电网的额定电流,Ihi和Ini分别为各个节点注入微电网的谐波电流和负序电流有效值。在此基础上,基于熵—Shapely二次权重修正方法对微电网各个节点的电能质量问题进行评估。对于图1所示微电网,且以谐波及负序作为电能质量评估指标的微电网,其评估矩阵为:
Figure BDA0001912292700000042
其中,xi1和xi2的表达式分别如下(i=2,4):
Figure BDA0001912292700000043
对于等效矩阵X2×2,计算熵权值H(xj)(j=1,2)的公式为:
H(xj)=-(x2jlnx2j+x4jlnx4j)j=1,2 (6)
将公式(6)转化为具体权重如下:
Figure BDA0001912292700000044
在确定了各项指标权重dj的基础上,得到微电网中各节点的电能质量评价指标Mi(i=2,4)如下:
Mi=d1Ihi+d2Ini (8)
为获得微电网的最优电能质量评估指标,只需令各个节点的Mi均最小即可。此时,Ihi和Ini(i=2,4)需满足如下关系:
Figure BDA0001912292700000045
计算出Ihi和Ini后,得到各个TPMFI输出的负序电流Icni和某次谐波电流Ichik(i=2,4)分别为:
Figure BDA0001912292700000046
将Icni和Ichik叠加即得到各个TPMFI的电能质量补偿模块输出的参考电流。
为验证所提电能质量优化方法的效果,图3给出了在工况1的仿真环境下,仿真模型中各PCC点的基波正序电压,负序电压以及谐波电压分量的变化。由图3可见,在各个节点电压稳定之后,各个TPMFI的电能质量补偿功能投入,在只有TPMFI1和TPMFI3的补偿容量充足的情况下,将各节点的负序电压均下降到1%左右,谐波电压均下降到0.7%以下,使得微电网获得了良好的整体电能质量治理效果。
本发明所提出的电能质量优化方法能够大大提升微电网的整体电能质量。

Claims (1)

1.一种基于三相多功能逆变器的微电网电能质量优化方法,包括:
根据各个节点检测到的注入微电网的谐波电流Ighik和负序电流Igni,计算各节点TPMFI所需补偿容量Sci
Figure FDA0001912292690000011
其中,Ui为该节点的电压有效值,Igni和Ighi分别为该节点注入微电网的负序电流和总谐波电流有效值;
当第i个节点对应的TPMFI的剩余容量Si大于等于Sci时,采用该TPMFI对所在节点等效谐波/负序电流源产生的谐波和负序电流进行完全补偿;另外,对于微电网中不满足Si≥Sci的TPMFI,则需对其补偿容量进行优化选择,补偿容量优化方案如下:
定义描述各节点的谐波严重程度的λTHDi和描述各节点不平衡严重程度的λui分别为:
Figure FDA0001912292690000012
Figure FDA0001912292690000013
其中,Ib为微电网的额定电流,Ihi和Ini分别为各个节点注入微电网的谐波电流和负序电流有效值;
基于熵—Shapely二次权重修正方法对微电网各个节点的电能质量问题进行评估;对于包含n个节点,且以谐波及负序作为电能质量评估指标的微电网,其评估矩阵为:
Figure FDA0001912292690000014
其中,xi1和xi2的表达式分别如下:
Figure FDA0001912292690000015
对于矩阵Xn×2,计算熵权值H(xj)的公式为:
Figure FDA0001912292690000016
将公式(6)转化为具体权重如下:
Figure FDA0001912292690000017
在确定了各项指标权重dj的基础上,得到微电网中各节点的电能质量评价指标Mi,i=2,4,如下:
Mi=d1Ihi+d2Ini (8)
为获得微电网的最优电能质量评估指标,令各个节点的Mi均最小即可,此时,Ihi和Ini需满足如下关系:
Figure FDA0001912292690000018
计算出Ihi和Ini后,得到各个TPMFI输出的负序电流Icni和某次谐波电流Ichik分别为:
Figure FDA0001912292690000021
将Icni和Ichik叠加即得到各个TPMFI的电能质量补偿模块输出的参考电流。
CN201811557290.4A 2018-12-19 2018-12-19 一种基于三相多功能逆变器的微电网电能质量优化方法 Active CN109742790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811557290.4A CN109742790B (zh) 2018-12-19 2018-12-19 一种基于三相多功能逆变器的微电网电能质量优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811557290.4A CN109742790B (zh) 2018-12-19 2018-12-19 一种基于三相多功能逆变器的微电网电能质量优化方法

Publications (2)

Publication Number Publication Date
CN109742790A CN109742790A (zh) 2019-05-10
CN109742790B true CN109742790B (zh) 2022-02-15

Family

ID=66360756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811557290.4A Active CN109742790B (zh) 2018-12-19 2018-12-19 一种基于三相多功能逆变器的微电网电能质量优化方法

Country Status (1)

Country Link
CN (1) CN109742790B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879680A (zh) * 2018-07-16 2018-11-23 南京邮电大学 基于滑动傅立叶变换的多功能并网逆变器谐波选择性补偿方法
CN108923453A (zh) * 2018-06-08 2018-11-30 上海电力学院 一种三相组式多功能并网逆变器柔性控制及评估补偿方法
CN109038652A (zh) * 2018-07-16 2018-12-18 南京邮电大学 基于调制滑动傅立叶变换的多功能并网逆变器谐波选择性补偿方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923453A (zh) * 2018-06-08 2018-11-30 上海电力学院 一种三相组式多功能并网逆变器柔性控制及评估补偿方法
CN108879680A (zh) * 2018-07-16 2018-11-23 南京邮电大学 基于滑动傅立叶变换的多功能并网逆变器谐波选择性补偿方法
CN109038652A (zh) * 2018-07-16 2018-12-18 南京邮电大学 基于调制滑动傅立叶变换的多功能并网逆变器谐波选择性补偿方法

Also Published As

Publication number Publication date
CN109742790A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
Rocabert et al. Control of energy storage system integrating electrochemical batteries and supercapacitors for grid-connected applications
Ravada et al. Control of a supercapacitor-battery-PV based stand-alone DC-microgrid
Chang et al. An active damping method based on a supercapacitor energy storage system to overcome the destabilizing effect of instantaneous constant power loads in DC microgrids
EP2891221B2 (en) Power distribution system loss reduction with distributed energy resource control
Sigrist et al. Sizing and controller setting of ultracapacitors for frequency stability enhancement of small isolated power systems
Ebrahimzadeh et al. Reducing harmonic instability and resonance problems in PMSG-based wind farms
Ramos et al. Placement and sizing of utility-size battery energy storage systems to improve the stability of weak grids
Wang et al. Improved V/f control strategy for microgrids based on master–slave control mode
Sarojini et al. Inertia emulation through supercapacitor for a weak grid
Boghdady et al. Reactive power compensation using STATCOM in a PV grid connected system with a modified MPPT method
Dhal et al. Design and analysis of STATCOM for reactive power compensation and transient stability improvement using intelligent controller
Bakhoda et al. Fuzzy logic controller vs. PI controller for MPPT of three-phase grid-connected PV system considering different irradiation conditions
Jami et al. Dynamic improvement of DC microgrids using a dual approach based on virtual inertia
CN109742790B (zh) 一种基于三相多功能逆变器的微电网电能质量优化方法
Yarlagadda et al. Comparative Analysis of STATCOM and SVC on Power System Dynamic Response and Stability Margins with time and frequency responses using Modelling
Ismeil et al. Hardware in the Loop Real-Time Simulation of Improving Hosting Capacity in Photovoltaic Systems Distribution Grid with Passive Filtering Using OPAL-RT
Benaissa et al. Photovoltaic solar farm with high dynamic performance artificial intelligence based on maximum power point tracking working as STATCOM
Sarker FC-PV-battery-Z source-BBO integrated unified power quality conditioner for sensitive load & EV charging station
CN106655245A (zh) 一种光储输出功率主动控制方法
Xu et al. Optimal configuration of filters for harmonic suppression in microgrid
Cheng et al. Sizing of Battery Energy Storage for Wind Integration: Considering Frequency Regulation and Peak Load Shaving
Jia et al. A study on electric power smoothing system for lead-acid battery of stand-alone natural energy power system using EDLC
Manohara et al. Power Quality Improvement of Solar PV System With Shunt Active Power Filter Using FS-MPC Method
Rao et al. Performance of a fuzzy logic based AVR in SMIB, MMIB system and power flow control using SSSC and IPFC
Elgammal et al. Minimum Harmonic Distortion Losses and Power Quality Improvement of Grid Integration Photovoltaic-Wind Based Smart Grid Utilizing MOPSO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant