CN109741266A - 一种阵列探测法激光光斑图像的复原显示方法 - Google Patents

一种阵列探测法激光光斑图像的复原显示方法 Download PDF

Info

Publication number
CN109741266A
CN109741266A CN201811465657.XA CN201811465657A CN109741266A CN 109741266 A CN109741266 A CN 109741266A CN 201811465657 A CN201811465657 A CN 201811465657A CN 109741266 A CN109741266 A CN 109741266A
Authority
CN
China
Prior art keywords
hot spot
frequency
frequency domain
detection method
display methods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811465657.XA
Other languages
English (en)
Other versions
CN109741266B (zh
Inventor
谢贤忱
杨鹏翎
陈绍武
赵海川
王振宝
王飞
张磊
武俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute of Nuclear Technology
Original Assignee
Northwest Institute of Nuclear Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute of Nuclear Technology filed Critical Northwest Institute of Nuclear Technology
Priority to CN201811465657.XA priority Critical patent/CN109741266B/zh
Publication of CN109741266A publication Critical patent/CN109741266A/zh
Application granted granted Critical
Publication of CN109741266B publication Critical patent/CN109741266B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种阵列探测法激光光斑图像的复原显示方法,利用频域滤波方法将混叠的高频成分滤除,保留的低频成分包含了长曝光积分光斑的大部分信息,重构阵列采样所丢失的数据,进而将光斑形貌近似恢复出来。与现有的线性插值法相比,可以降低复原光斑的误差,对探测点的布放位置不敏感,从而更为准确地复原光斑图像。

Description

一种阵列探测法激光光斑图像的复原显示方法
技术领域
本发明涉及一种用于阵列探测法的激光光斑图像的复原显示方法,是一种阵列采样数据经频域滤波处理后近似恢复光斑形貌的方法。
背景技术
在激光远程传输试验中,基于光电探测器的阵列探测法是测量激光远场光斑强度时空分布的有效手段,通常将光电探测器排布成若干行和若干列的点阵结构,每个探测器对所在区域照射的光斑进行空间取样,最后通过图像复原的方法得到激光光斑。由于光电探测器的光敏元面积有限,使得光电阵列探测法测量得到的是经过空间取样后的光斑强度时空分布的分立值,不可避免的丢失了部分远场光斑强度时空分布的信息。目前常用的光斑复原显示方法为线性插值法,即根据探测器光敏元所在位置处的光强数值,通过线性插值得到空白区域的光强值,以补足空间取样中丢失的数据。
线性插值法在实际应用中存在一定的不足:1)光斑的峰值功率偏差大。实际应用中由于测量系统摆放位置的关系,不能保证探测器正好准确探测到激光光斑的峰值光强点,而线性插值无法重构出峰值点,故对峰值功率的测量产生较大的偏差。2)复原的光斑形貌差距大。当空间采样间隔较大时,使用线性插值法恢复的光斑会出现拐点,无法得到平滑的图像,与实际光斑产生较大偏差。
发明内容
本发明的目的是克服现有线性插值存在的不足,提供一种用于阵列探测法的激光光斑图像的复原方法,用以近似恢复光斑形貌,从而进行直观的光斑图像显示。
本发明的基本构思是:光电探测法测量激光光斑时,帧频(时间分辨率)可达数十至数百Hz,其长曝光积分光斑图像通过将积分时间内的每一帧图像的光强分布进行平均的方式获取,故积分光斑的频谱以低频为主。经阵列采样后,其高频成分发生混叠而无法恢复,利用频域滤波方法将混叠的高频成分滤除,保留的低频成分包含了长曝光积分光斑的大部分信息。故利用保留的低频信息可以重构阵列采样所丢失的数据,进而将光斑形貌近似恢复出来。
本发明的技术解决方案是提供一种阵列探测法激光光斑图像的复原显示方法,包括以下步骤:
[1]令f(x,y)表示光斑功率分布,其中x=0,1,2,...,M-1,y=0,1,2,...,N-1,M×N为光斑图像大小,经阵列探测器对光斑进行空间取样后的测量数据为fs(x,y)
其中comb()为狄拉克梳状函数,dx和dy分别为x方向和y方向上的采样间隔,一般情况下dx=dy=d。
[2]计算频谱。对抽样数据fs(x,y)进行二维离散傅里叶变换(DFT)
其中,u、v为频域系统的频率变量,u=0,1,2,...,M-1,v=0,1,2,...,N-1,通过乘以(-1)x+y将变换的原点移至图像中心。
令R(u,v)和I(u,v)分别表示F(u,v)的实部和虚部,则傅里叶频谱的定义为
[3]确定频域截断的谱宽。设相邻探测器之间的间距为dx=dy=d,取样单元尺寸为a,采样间隔为d/a,谱宽为Ma/d和Na/d。
[4]进行频域截断,其本质为低频滤波
其中
[5]对截断处理后的频谱进行傅里叶反变换(IDFT)
f'(x,y)即为恢复的光斑功率分布。
本发明的有益效果是:
本发明提供了一种有效的阵列探测器光斑图像复原显示方法,利用频谱信息重构阵列采样所丢失的数据,通过采样光斑包含的低频信息将积分光斑形貌恢复出来。与现有的线性插值法相比,可以降低复原光斑的误差,对探测点的布放位置不敏感,从而更为准确地复原光斑图像。
附图说明
图1为本发明阵列探测法光斑图像的复原方法步骤的流程图;
图2为光斑空间取样示意图;
图3(a)为积分远场光斑图像频谱图;
图3(b)高分辨力阵列采样光斑图像频谱图;
图3(c)低分辨力阵列采样光斑图像频谱图;
图4(a)原始光斑;
图4(b)线性插值法复原光斑;
图4(c)本发明方法复原光斑;
图5为峰值光强误差受光斑抖动影响的比较图;
图6为光斑恢复误差受光斑抖动影响的比较图。
具体实施方式
以下结合附图及具体实施例对本发明做进一步地描述。
如图1所示,本发明阵列探测器光斑图像复原方法的具体实施步骤为:
[1]令f(x,y)表示光斑光强分布,其中x=0,1,2,...,M-1,y=0,1,2,...,N-1,M×N为光斑图像大小,经阵列探测器对光斑进行空间取样后的测量数据为fs(x,y)
式中comb()为狄拉克梳状函数,dx和dy分别为x方向和y方向上的采样间隔,一般情况下d=dx=dy。如图2所示,黑色的网格表示探测器光敏元所在的位置,故阵列探测器探测的结果是光强分布的抽样离散值;白色的网格为探测器没有布设的空白区域,其探测到的值为零,在光斑图像复原中则需要进行插值或其他运算处理弥补。
[2]计算频谱。对抽样数据fs(x,y)进行二维离散傅里叶变换(DFT)
其中,u、v为频域系统的频率变量,u=0,1,2,...,M-1,v=0,1,2,...,N-1,通过乘以(-1)x+y将变换的原点移至图像中心。
令R(u,v)和I(u,v)分别表示F(u,v)的实部和虚部,则傅里叶频谱的定义为
频谱如图3(a)所示,可见积分远场光斑是带限信号,即其频谱F只在频率空间的一个有限区域内有显著非零值。而取样数据的频谱可以由F的移位叠加得到,当取样间隔不大于某一上限时,相邻的频谱区域未发生混叠,如图3(b)所示。实际情况下,由于阵列探测器空间分辨力受限,所得到取样数据频谱会发生混叠,如图3(c)所示。
[3]确定频域截断的谱宽。探测单元间距为d,取样单元尺寸为a,a2/d2表示空间取样占空比,占空比越大,探测单元内获取到的光斑信息就越多,取样光斑越能反映真实光斑。采样间隔可由d/a计算得到,则频域截断的谱宽为Ma/d和Na/d。
[4]进行频域截断,其本质为低频滤波
其中
当频谱没有发生混叠时,可以对光斑光强分布f(x,y)进行准确的重建。而取样数据频谱发生混叠时,截取的频域信息包含了光斑光强分布的大部分低频信息和部分混叠信息。
[5]对截断处理后的频谱进行傅里叶反变换(IDFT)
f'(x,y)即为恢复的光斑功率分布。
具体实施例:
使用本发明方法对采样光斑数据进行频域滤波复原光斑,与利用采样数据线性插值的结果进行比较,图4(a)、图4(b)及图4(c)为比较结果。图4(a)为原始光斑、图4(b)为线性插值法复原光斑、图4(c)为本发明方法复原光斑。其中原始光斑即为未经处理得到的积分光斑,很明显看出,相比于原始光斑,本发明的频谱滤波法的处理结果与原始光斑更类似,能反映出一些光斑的细节。
保持采样间隔不变,随机抖动同一幅光斑使得探测点位置不断改变,复原光斑的峰值光强误差如图5所示。横坐标为采样次序,每次采样保证光斑直径内采样点数不变,采样位置随机变化。纵坐标为复原光斑的峰值光强与原光斑峰值光强之比。可以看到本发明方法复原得到的峰值光强在真实值附近浮动,而线性插值法由于无法重构峰值,其复原峰值始终小于真实值。
光斑复原误差如图6所示,横坐标同样为采样次序,纵坐标为复原误差。复原误差定义为复原光斑光强值和原始光斑对应点光强差值与原始光斑光强值的比。可以发现本发明方法的复原误差小于线性插值法,复原的光斑更为接近原始光斑。并且在光斑抖动条件下,复原的稳定性更高,意味着对探测点位置的敏感性低。

Claims (1)

1.一种阵列探测法激光光斑图像的复原显示方法,其特征在于,包括以下步骤:
[1]原始光斑图像函数建立:
令f(x,y)表示原始光斑功率分布,其中x=0,1,2,...,M-1,y=0,1,2,...,N-1,M×N为原始光斑图像大小,经阵列探测器对原始光斑进行空间取样后的测量数据为fs(x,y)
其中comb()为狄拉克梳状函数,dx和dy分别为x方向和y方向上的采样间隔,dx=dy=d;
[2]计算频谱:
对步骤[1]获取的fs(x,y)进行二维离散傅里叶变换DFT
其中,u、v为频域系统的频率变量,u=0,1,2,...,M-1,v=0,1,2,...,N-1,通过乘以(-1)x+y将变换的原点移至图像中心;
[3]频域截断:
设相邻探测器之间的间距为dx=dy=d,取样单元尺寸为a,采样间隔为d/a,则频域截断的谱宽为Ma/d和Na/d;
对F(u,v)函数进行低频滤波,得到截断函数
其中
[4]复原光斑图像函数建立:
对截断处理后的频谱进行傅里叶反变换IDFT
f'(x,y)即为复原的光斑功率分布函数,对其进行图像显示即获得光斑图像。
CN201811465657.XA 2018-12-03 2018-12-03 一种阵列探测法激光光斑图像的复原显示方法 Active CN109741266B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811465657.XA CN109741266B (zh) 2018-12-03 2018-12-03 一种阵列探测法激光光斑图像的复原显示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811465657.XA CN109741266B (zh) 2018-12-03 2018-12-03 一种阵列探测法激光光斑图像的复原显示方法

Publications (2)

Publication Number Publication Date
CN109741266A true CN109741266A (zh) 2019-05-10
CN109741266B CN109741266B (zh) 2021-04-02

Family

ID=66358392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811465657.XA Active CN109741266B (zh) 2018-12-03 2018-12-03 一种阵列探测法激光光斑图像的复原显示方法

Country Status (1)

Country Link
CN (1) CN109741266B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567395A (zh) * 2019-09-18 2019-12-13 长春理工大学 一种激光光斑尺寸边缘轮廓线绘制方法
CN112462351A (zh) * 2021-01-28 2021-03-09 常州纵慧芯光半导体科技有限公司 一种光源的检测系统和检测方法
CN112488975A (zh) * 2020-12-12 2021-03-12 南京理工大学 一种非均匀阵列探测激光光斑图像的复原显示方法
CN112528514A (zh) * 2020-12-21 2021-03-19 北京机电工程研究所 一种高精度亚像素星斑重塑方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976434A (zh) * 2010-08-27 2011-02-16 浙江大学 一种用于图像配准的频域加权的相关方法
CN104574301A (zh) * 2014-12-25 2015-04-29 深圳市一体太赫兹科技有限公司 一种太赫兹图像重构方法及系统
CN106802233A (zh) * 2017-04-07 2017-06-06 上海汇珏网络通信设备有限公司 一种微透镜阵列测试装置及方法
CN108663123A (zh) * 2018-04-02 2018-10-16 长春理工大学 一种与微扫描装置相匹配的哈特曼波前重构方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976434A (zh) * 2010-08-27 2011-02-16 浙江大学 一种用于图像配准的频域加权的相关方法
CN104574301A (zh) * 2014-12-25 2015-04-29 深圳市一体太赫兹科技有限公司 一种太赫兹图像重构方法及系统
CN106802233A (zh) * 2017-04-07 2017-06-06 上海汇珏网络通信设备有限公司 一种微透镜阵列测试装置及方法
CN108663123A (zh) * 2018-04-02 2018-10-16 长春理工大学 一种与微扫描装置相匹配的哈特曼波前重构方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
农民佰佰文库: ""图像信号的分析与变换"", 《百度文库》 *
杨鹏翎: ""阵列探测器法激光运动光斑测量技术"", 《第十五届全国光学测试学术交流会摘要集》 *
静默AHU: ""δ函数"", 《百度文库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567395A (zh) * 2019-09-18 2019-12-13 长春理工大学 一种激光光斑尺寸边缘轮廓线绘制方法
CN112488975A (zh) * 2020-12-12 2021-03-12 南京理工大学 一种非均匀阵列探测激光光斑图像的复原显示方法
CN112528514A (zh) * 2020-12-21 2021-03-19 北京机电工程研究所 一种高精度亚像素星斑重塑方法及装置
CN112528514B (zh) * 2020-12-21 2024-02-23 北京机电工程研究所 一种高精度亚像素星斑重塑方法及装置
CN112462351A (zh) * 2021-01-28 2021-03-09 常州纵慧芯光半导体科技有限公司 一种光源的检测系统和检测方法

Also Published As

Publication number Publication date
CN109741266B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN109741266A (zh) 一种阵列探测法激光光斑图像的复原显示方法
JP6952176B2 (ja) 時間的圧縮感知システム
US9453730B2 (en) Machine vision 3D line scan image acquisition and processing
AU2012211359B8 (en) Reflection removal system
CN111343376B (zh) 一种基于透射式双缝孔径编码成像系统及其超分辨方法
US20160010990A1 (en) Machine Vision System for Forming a Digital Representation of a Low Information Content Scene
Cantale et al. Firedec: a two-channel finite-resolution image deconvolution algorithm
Girard et al. Sparse representations and convex optimization as tools for LOFAR radio interferometric imaging
CN108288250A (zh) 基于tgv正则化的红外遥感图像超分辨率重建方法
CN103886559A (zh) 一种光谱图像处理方法
US20200351454A1 (en) Wish: wavefront imaging sensor with high resolution
CN110765631B (zh) 基于有效成像像素的红外辐射特性测量小目标判断方法
CN106382985B (zh) 一种利用多狭缝实现的光谱成像方法及其使用装置
Meiniel et al. Reducing data acquisition for fast structured illumination microscopy using compressed sensing
CN102735347B (zh) 目标跟踪红外凝视层析成像方法及装置
Li et al. Positive–negative corresponding normalized ghost imaging based on an adaptive threshold
Alici Extraction of modulation transfer function by using simulated satellite images
Poletto et al. Enhancing the spatial resolution of a two-dimensional discrete array detector
CN103325103B (zh) 高分辨率图像复原方法及系统
Pruksch et al. Positive iterative deconvolution in comparison to Richardson-Lucy like algorithms
Denneulin et al. RHAPSODIE: Reconstruction of high-contrast polarized SOurces and deconvolution for circumstellar environments
High et al. Pixelation effects in weak lensing
CN103325091B (zh) 低频频谱数据补零法图像获取方法及系统
Cashmore et al. Optical technique for photovoltaic spatial current response measurements using compressive sensing and random binary projections
Damian et al. Measurement of non-circular PSFs in single Pixel cameras

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant