CN109732563B - 一种压电驱动的被动柔顺微夹钳 - Google Patents

一种压电驱动的被动柔顺微夹钳 Download PDF

Info

Publication number
CN109732563B
CN109732563B CN201910214587.9A CN201910214587A CN109732563B CN 109732563 B CN109732563 B CN 109732563B CN 201910214587 A CN201910214587 A CN 201910214587A CN 109732563 B CN109732563 B CN 109732563B
Authority
CN
China
Prior art keywords
bridge type
amplification mechanism
type amplification
micro
lever support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910214587.9A
Other languages
English (en)
Other versions
CN109732563A (zh
Inventor
董为
陈方鑫
杜志江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910214587.9A priority Critical patent/CN109732563B/zh
Publication of CN109732563A publication Critical patent/CN109732563A/zh
Application granted granted Critical
Publication of CN109732563B publication Critical patent/CN109732563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种压电驱动的被动柔顺微夹钳,它涉及一种微夹钳。本发明解决现有的压电驱动的微夹钳行程范围小、定位精度低以及夹持物的受力状态不均造成损伤微小零件的问题。桥式放大机构为四框体结构,压电陶瓷竖直设置在桥式放大机构内部且压电陶瓷的两端与桥式放大机构的上下端相接触,桥式放大机构的位移输出端两侧竖直设置有两个杠杆支臂,桥式放大机构的位移输出端分别通过一个连接铰链与同侧的杠杆支臂的下部连接,两个夹持臂并列设置且位于桥式放大机构的正上方,每个杠杆支臂的上部与相邻的一个夹持臂连接,每个夹持臂的上端设置有一个钳口,两个钳口相对设置,每个夹持臂上设置有一个测力应变片。本发明用于微装配系统中的执行机构。

Description

一种压电驱动的被动柔顺微夹钳
技术领域
本发明涉及一种微夹钳,具体涉及一种压电驱动的被动柔顺微夹钳。
背景技术
微夹钳作为微操作、微装配系统的执行机构,是沟通宏观世界和微观世界的基本工具,被广泛应用于生物医学,MEMS装配,航空航天等领域。在微装配领域,经常需要使用微夹钳对微米级的微小零件进行操作,因此微夹钳应该具有大行程和高分辨率并且保持较小的结构尺寸,此外,为了避免损伤微小零件并进行高精度装配,要求微夹钳钳口运动过程中始终保持平行关系;同时需要对钳口的夹持力和位置进行在线监测,并进行反馈控制。
综上,现有的压电驱动的微夹钳行程范围小、定位精度低以及夹持物的受力状态不均造成损伤微小零件。
发明内容
本发明为解决现有的压电驱动的微夹钳行程范围小、定位精度低以及夹持物的受力状态不均造成损伤微小零件的问题,进而提供一种压电驱动的被动柔顺微夹钳。
本发明为解决上述技术问题采取的技术方案是:
本发明的压电驱动的被动柔顺微夹钳压电驱动的被动柔顺微夹钳包括基座1、桥式放大机构2、压电陶瓷3、两个杠杆支臂4、两个连接铰链5、两个夹持臂6、两个测力应变片7和两个钳口8,桥式放大机构2为四框体结构,桥式放大机构2的上下端为桥式放大机构2的位移输入端,桥式放大机构2的两侧中部为桥式放大机构2的位移输出端,桥式放大机构2每侧的位移输出部为双层结构,压电陶瓷3竖直设置在桥式放大机构2内部且压电陶瓷3的两端与桥式放大机构2的上下端相接触,桥式放大机构2的位移输出端两侧竖直设置有两个杠杆支臂4,桥式放大机构2的位移输出端分别通过一个连接铰链5与同侧的杠杆支臂4的下部连接,两个夹持臂6并列设置且位于桥式放大机构2的正上方,每个杠杆支臂4的上部与相邻的一个夹持臂6连接,每个夹持臂6的上端设置有一个钳口8,两个钳口8相对设置,每个夹持臂6上设置有一个测力应变片7。
在一个实施方案中,夹持臂6为平行四边形结构,每个夹持臂6的平行四边形结构内侧壁上设置有测力应变片7。
在一个实施方案中,连接铰链5为片状连接铰链。
在一个实施方案中,桥式放大机构2的下部通过两个内六角螺栓安装在基座1上。
在一个实施方案中,每个连接铰链5的一端通过两个内六角螺栓与对应的杠杆支臂4连接,每个连接铰链5的另一端通过两个内六角螺栓与桥式放大机构2相应的输出端连接。
在一个实施方案中,基座1的两侧对称加工有两个安装通孔1-1。
本发明与现有技术相比具有以下有益效果:
本发明的压电驱动的被动柔顺微夹钳采用桥式机构和杠杆支臂对位移进行二级放大,实现50倍量级的放大倍数,由此保证压电陶瓷行程在20μm的情况下,夹持位移可达1mm;增加了微夹钳的行程范围,同时有利于减小结构尺寸;
本发明的压电驱动的被动柔顺微夹钳将夹持臂设计成平行四边形机构,保证钳口在拾起、夹持和释放全过程保持平行夹持,保证了夹持物的受力状态均匀;
本发明的压电驱动的被动柔顺微夹钳引入被动柔顺的设计思想,对平行四边形夹持臂进行刚度设计,可以使得微夹钳系统的位置控制不需要依赖位置传感器,只需要开环控制即可,从而简化系统结构。
附图说明
图1是本发明的压电驱动的被动柔顺微夹钳的整体结构主视图;
图2是本发明的压电驱动的被动柔顺微夹钳的整体结构立体图。
具体实施方式
具体实施方式一:如图1和图2所示,本实施方式的压电驱动的被动柔顺微夹钳包括基座1、桥式放大机构2、压电陶瓷3、两个杠杆支臂4、两个连接铰链5、两个夹持臂6、两个测力应变片7和两个钳口8,桥式放大机构2为四框体结构,桥式放大机构2的上下端为桥式放大机构2的位移输入端,桥式放大机构2的两侧中部为桥式放大机构2的位移输出端,桥式放大机构2每侧的位移输出部为双层结构,压电陶瓷3竖直设置在桥式放大机构2内部且压电陶瓷3的两端与桥式放大机构2的上下端相接触,桥式放大机构2的位移输出端两侧均竖直设置有两个杠杆支臂4,桥式放大机构2的位移输出端分别通过一个连接铰链5与同侧的杠杆支臂4的下部连接,两个夹持臂6并列设置且位于桥式放大机构2的正上方,每个杠杆支臂4的上部与相邻的一个夹持臂6连接,每个夹持臂6的上端设置有一个钳口8,两个钳口8相对设置,每个夹持臂6上设置有一个测力应变片7。
具体实施方式二:如图1和图2所示,本实施方式夹持臂6为平行四边形结构,每个夹持臂6的平行四边形结构内侧壁上设置有测力应变片7。如此设计,本发明的压电驱动的被动柔顺微夹钳引入被动柔顺的设计思想,对平行四边形夹持臂进行刚度设计,可以使得微夹钳系统的位置控制不需要依赖位置传感器,只需要开环控制即可,从而简化系统结构。其它组成及连接关系与具体实施方式一相同。
夹持臂6刚度设计原则:
夹持臂6刚度小于等于开环位置控制的最大误差与被夹持物最大承受力的比值,公式如下:
Figure GDA0003256208770000031
其中K为夹持臂刚度,E为开环位置控制误差,F为被夹持物不被破坏情况下所能承受的最大力。
本发明申请中“被动柔顺”是指夹持臂6设计成平行四边形结构,同时对平行四边形夹持臂进行刚度设计,可以使得微夹钳系统的位置控制不需要依赖位置传感器,只需要开环控制即可,从而简化系统结构,实现“被动柔顺”。
具体实施方式三:如图1和图2所示,本实施方式连接铰链5为片状连接铰链。如此设计,通过片状铰链5可以对杠杆支臂4进行二次放大,实现50倍量级的放大倍数,保证杠杆支臂4放大倍数的稳定性。其它组成及连接关系与具体实施方式一或二相同。
具体实施方式四:如图1和图2所示,本实施方式桥式放大机构2的下部通过两个内六角螺栓安装在基座1上。如此设计,方便将桥式放大机构2固定在基座1上。其它组成及连接关系与具体实施方式三相同。
具体实施方式五:如图1和图2所示,本实施方式每个连接铰链5的一端通过两个内六角螺栓与对应的杠杆支臂4连接,每个连接铰链5的另一端通过两个内六角螺栓与桥式放大机构2相应的输出端连接。如此设计,桥式放大机构2的移输出端可以通过连接铰链5将杠杆支臂4的位移进行放大,由此保证压电陶瓷行程在20μm的情况下,夹持位移可达1mm。其它组成及连接关系与具体实施方式一、二或四相同。
具体实施方式六:如图1和图2所示,本实施方式基座1的两侧对称加工有两个安装通孔1-1。如此设计,便于基座1安装。其它组成及连接关系与具体实施方式五相同。
以上仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落在本发明的保护范围。
工作原理:
本发明的压电驱动的被动柔顺微夹钳的压电陶瓷3输出位移通过桥式放大机构2将位移进行放大,桥式放大机构2两侧的位移输出端通过连接铰链5将桥式放大机构2的位移输出传递到相应的杠杆支臂4上,杠杆支臂4将放大位移传递给相应的夹持臂6上,从而将放大位移传递给两个钳口8,实现50倍量级的放大倍数。

Claims (5)

1.一种压电驱动的被动柔顺微夹钳,所述压电驱动的被动柔顺微夹钳包括基座(1)、桥式放大机构(2)、压电陶瓷(3)、两个杠杆支臂(4)、两个连接铰链(5)、两个夹持臂(6)、两个测力应变片(7)和两个钳口(8),桥式放大机构(2)为四框体结构,桥式放大机构(2)的上下端为桥式放大机构(2)的位移输入端,桥式放大机构(2)的两侧中部为桥式放大机构(2)的位移输出端,桥式放大机构(2)每侧的位移输出端为双层结构,压电陶瓷(3)竖直设置在桥式放大机构(2)内部且压电陶瓷(3)的两端与桥式放大机构(2)的上下端相接触,桥式放大机构(2)的位移输出端两侧均竖直设置有两个杠杆支臂(4),桥式放大机构(2)的位移输出端分别通过一个连接铰链(5)与同侧的杠杆支臂(4)的下部连接,两个夹持臂(6)并列设置且位于桥式放大机构(2)的正上方,每个杠杆支臂(4)的上部与相邻的一个夹持臂(6)连接,每个夹持臂(6)的上端设置有一个钳口(8),两个钳口(8)相对设置,每个夹持臂(6)上设置有一个测力应变片(7);
其特征在于:夹持臂(6)为平行四边形结构,每个夹持臂(6)的平行四边形结构内侧壁上设置有测力应变片(7),夹持臂(6)刚度小于等于开环位置控制的最大误差与被夹持物最大承受力的比值,公式如下:
Figure FDA0003269457050000011
其中K为夹持臂刚度,E为开环位置控制的最大误差,F为被夹持物最大承受力。
2.根据权利要求1所述的压电驱动的被动柔顺微夹钳,其特征在于:连接铰链(5)为片状连接铰链。
3.根据权利要求1所述的压电驱动的被动柔顺微夹钳,其特征在于:桥式放大机构(2)的下部通过两个内六角螺栓安装在基座(1)上。
4.根据权利要求1或2任意一项所述的压电驱动的被动柔顺微夹钳,其特征在于:每个连接铰链(5)的一端通过两个内六角螺栓与对应的杠杆支臂(4)连接,每个连接铰链(5)的另一端通过两个内六角螺栓与桥式放大机构(2)相应的位移输出端连接。
5.根据权利要求1所述的压电驱动的被动柔顺微夹钳,其特征在于:基座(1)的两侧对称加工有两个安装通孔(1-1)。
CN201910214587.9A 2019-03-20 2019-03-20 一种压电驱动的被动柔顺微夹钳 Active CN109732563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910214587.9A CN109732563B (zh) 2019-03-20 2019-03-20 一种压电驱动的被动柔顺微夹钳

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910214587.9A CN109732563B (zh) 2019-03-20 2019-03-20 一种压电驱动的被动柔顺微夹钳

Publications (2)

Publication Number Publication Date
CN109732563A CN109732563A (zh) 2019-05-10
CN109732563B true CN109732563B (zh) 2021-12-28

Family

ID=66371077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910214587.9A Active CN109732563B (zh) 2019-03-20 2019-03-20 一种压电驱动的被动柔顺微夹钳

Country Status (1)

Country Link
CN (1) CN109732563B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110936352B (zh) * 2019-12-02 2024-05-03 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种具有搓动功能的压电微夹钳
CN111203852B (zh) * 2020-01-16 2021-07-13 南京理工大学 一种正应力电磁驱动微夹持器
CN111571621B (zh) * 2020-05-11 2021-09-03 宁波大学 一种结构一体化钳指平动式柔顺机构压电微夹钳
CN114619423B (zh) * 2022-01-27 2023-11-21 华南理工大学 一种跨尺度微小零件自适应柔顺装配机构
CN117944086B (zh) * 2024-03-26 2024-05-28 华东交通大学 一种具有可调最大钳口的压电驱动柔顺夹持机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103298A (ja) * 2000-09-29 2002-04-09 National Institute Of Advanced Industrial & Technology 電子顕微鏡
CN1535799A (zh) * 2003-04-10 2004-10-13 哈尔滨工业大学 一种平面并联压电智能杆机构
CN100999077A (zh) * 2006-12-28 2007-07-18 中国科学院合肥物质科学研究院 一种多用途形状自适应机器人手爪及工作方法
CN103331588A (zh) * 2013-06-18 2013-10-02 北京航空航天大学 一种具有夹持及搓动功能的微夹钳装置
CN105366634A (zh) * 2015-10-20 2016-03-02 天津大学 压电驱动双臂式高速引线线夹
CN108000486A (zh) * 2017-08-03 2018-05-08 宁波大学 三自由度柔顺压电微夹持器
CN108406738A (zh) * 2018-02-27 2018-08-17 天津大学 一种二自由度微夹持器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103298A (ja) * 2000-09-29 2002-04-09 National Institute Of Advanced Industrial & Technology 電子顕微鏡
CN1535799A (zh) * 2003-04-10 2004-10-13 哈尔滨工业大学 一种平面并联压电智能杆机构
CN100999077A (zh) * 2006-12-28 2007-07-18 中国科学院合肥物质科学研究院 一种多用途形状自适应机器人手爪及工作方法
CN103331588A (zh) * 2013-06-18 2013-10-02 北京航空航天大学 一种具有夹持及搓动功能的微夹钳装置
CN105366634A (zh) * 2015-10-20 2016-03-02 天津大学 压电驱动双臂式高速引线线夹
CN108000486A (zh) * 2017-08-03 2018-05-08 宁波大学 三自由度柔顺压电微夹持器
CN108406738A (zh) * 2018-02-27 2018-08-17 天津大学 一种二自由度微夹持器

Also Published As

Publication number Publication date
CN109732563A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
CN109732563B (zh) 一种压电驱动的被动柔顺微夹钳
CN109129411B (zh) 集成夹持力传感器和夹爪位移传感器的微夹钳
Wang et al. A monolithic compliant piezoelectric-driven microgripper: Design, modeling, and testing
CN108962336B (zh) 一种基于压电驱动的二维并联柔性微动平台
Wang et al. Design of a piezoelectric-actuated microgripper with a three-stage flexure-based amplification
Chen et al. A compliant dual-axis gripper with integrated position and force sensing
Lyu et al. Recent design and development of piezoelectric-actuated compliant microgrippers: A review
Das et al. A novel compliant piezoelectric actuated symmetric microgripper for the parasitic motion compensation
CN104647347B (zh) 基于柔性铰链放大的压电微夹钳
CN108000486B (zh) 三自由度柔顺压电微夹持器
CN109249416B (zh) 夹爪为光纤布拉格光栅且可夹持力自传感的微夹钳
CN109909976B (zh) 具有三级运动放大机构的对称式空间立体微机械手
CN109231152B (zh) 利用光纤Fabry-Perot干涉仪测量夹持力和夹爪位移的微夹钳
CN105619377B (zh) 一种基于柔顺机构的空间微夹持器
CN111299996B (zh) 一种微夹持机器人
CN103331748A (zh) 基于压电陶瓷驱动的小型化柔性微夹钳
Lyu et al. Design and development of a novel piezoelectrically actuated asymmetrical flexible microgripper
CN104925738B (zh) 基于柔性铰链放大的压电微动平台
Das et al. Characterization of a compact piezoelectric actuated microgripper based on double-stair bridge-type mechanism
JP2009156725A (ja) 薄膜試験片構造体、その製造方法、その引張試験方法及び引張試験装置
CN109366459B (zh) 利用光纤布拉格光栅测量夹持力和夹爪位移的微夹钳
Sun et al. Design and analysis of a large-range precision micromanipulator
CN115805540A (zh) 一种恒力微夹钳
CN109129410B (zh) 夹爪为光纤Fabry-Perot干涉仪且可夹持力自传感的微夹钳
CN110148436A (zh) 一种大行程、可转动的三自由度并联柔性微动平台

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant