CN109713896B - High-gain boost converter with inverse square characteristic and its control method - Google Patents
High-gain boost converter with inverse square characteristic and its control method Download PDFInfo
- Publication number
- CN109713896B CN109713896B CN201910010387.1A CN201910010387A CN109713896B CN 109713896 B CN109713896 B CN 109713896B CN 201910010387 A CN201910010387 A CN 201910010387A CN 109713896 B CN109713896 B CN 109713896B
- Authority
- CN
- China
- Prior art keywords
- boost
- diode
- node
- winding
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 20
- 239000003990 capacitor Substances 0.000 claims abstract description 63
- 238000004804 winding Methods 0.000 claims description 55
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000007423 decrease Effects 0.000 abstract description 5
- 230000008859 change Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本发明公开一种具有反比平方特性的高增益boost变换器,包括耦合电感网络、输入滤波电感Lin、箝位升压电路和功率开关管S,输入滤波电感Lin输入侧连接输入电源Vin,输出侧连接箝位升压电路,耦合电感网络的输入侧连接箝位升压电路的升压电容C1,输出端连接功率开关管S的漏极和箝位升压电路,功率开关管S的栅极连接控制信号电压Vgs,功率开关管S的源极与输入电源Vin的负极相连,箝位升压电路的输出端就是boost变换器的输出端,负载连接在boost变换器的输出端。利用本变换器占空比的微小变化,就会引起增益的大幅增加或者降低,耦合电感匝比越小,电压增益越高。
The invention discloses a high-gain boost converter with inverse square characteristic, comprising a coupled inductor network, an input filter inductor L in , a clamping boost circuit and a power switch S, the input side of the input filter inductor L in is connected to an input power supply V in , the output side is connected to the clamp boost circuit, the input side of the coupled inductor network is connected to the boost capacitor C 1 of the clamp boost circuit, the output end is connected to the drain of the power switch S and the clamp boost circuit, the power switch S The gate is connected to the control signal voltage V gs , the source of the power switch S is connected to the negative of the input power supply V in , the output of the clamp boost circuit is the output of the boost converter, and the load is connected to the output of the boost converter end. The small change of the duty cycle of the converter will cause a substantial increase or decrease of the gain. The smaller the turns ratio of the coupled inductor, the higher the voltage gain.
Description
技术领域technical field
本发明涉及一种具有反比平方特性的高增益boost变换器及其控制方法,属于电力电子变换器技术领域。The invention relates to a high-gain boost converter with inverse proportional square characteristic and a control method thereof, belonging to the technical field of power electronic converters.
背景技术Background technique
近年来,满足局部范围电能供应的直流微网系统受到越来越多的关注,特别的,可再生能源领域的光伏发电、风力发电等系统作为直流电源,更加成为研究的热点。这些电源系统存在着共性的缺点,即输出电压偏低,通过逆变后难以输出工频交流电,这就需要升压直流变换器实现电压的提升。常见的升压技术包括耦合电感、开关电容等,采用耦合电感实现电压提升的变换器,一般输出电压随着耦合电感匝比的增加而增加,同时,占空比的变化无法实现增益的大幅增加。但是,过高的匝比会带来一些问题:漏感、寄生电容等参数会增加,容易引起电压和电流尖峰,这严重降低了系统的性能。In recent years, DC micro-grid systems that meet local power supply have received more and more attention. In particular, photovoltaic power generation, wind power generation and other systems in the field of renewable energy, as DC power sources, have become more research hotspots. These power systems have a common disadvantage, that is, the output voltage is low, and it is difficult to output power frequency alternating current after inversion, which requires a boost DC converter to increase the voltage. Common boost technologies include coupled inductors, switched capacitors, etc. For converters that use coupled inductors to boost voltage, generally the output voltage increases with the increase in the turns ratio of the coupled inductors. At the same time, the change in duty cycle cannot achieve a substantial increase in gain. . However, an excessively high turns ratio will bring some problems: parameters such as leakage inductance and parasitic capacitance will increase, and it is easy to cause voltage and current spikes, which seriously degrades the performance of the system.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是提供一种具有反比平方特性的高增益boost变换器及其控制方法,占空比的微小变化,就会引起增益的大幅增加或者降低,耦合电感匝比越小,电压增益越高。The technical problem to be solved by the present invention is to provide a high-gain boost converter with an inverse square characteristic and a control method thereof. A small change in the duty cycle will cause a substantial increase or decrease in the gain, and the smaller the turns ratio of the coupled inductor, The higher the voltage gain.
为了解决所述技术问题,本发明采用的技术方案是:一种具有反比平方特性的高增益boost变换器,包括耦合电感网络、输入滤波电感Lin、箝位升压电路和功率开关管S,输入滤波电感Lin输入侧连接输入电源Vin,输出侧连接箝位升压电路,耦合电感网络的输入侧连接箝位升压电路的升压电容C1,输出端连接功率开关管S的漏极和箝位升压电路,功率开关管S的栅极连接控制信号电压Vgs,功率开关管S的源极与输入电源Vin的负极相连,箝位升压电路的输出端就是boost变换器的输出端,负载连接在boost变换器的输出端。In order to solve the technical problem, the technical solution adopted in the present invention is: a high-gain boost converter with an inverse square characteristic, comprising a coupled inductor network, an input filter inductor L in , a clamping boost circuit and a power switch tube S, Input filter inductor L in The input side is connected to the input power supply V in , the output side is connected to the clamp boost circuit, the input side of the coupled inductor network is connected to the boost capacitor C 1 of the clamp boost circuit, and the output end is connected to the drain of the power switch S The gate of the power switch S is connected to the control signal voltage V gs , the source of the power switch S is connected to the negative pole of the input power supply V in , and the output of the clamp boost circuit is the boost converter The output terminal of the load is connected to the output terminal of the boost converter.
进一步的,所述耦合电感网络包括耦合电感第一绕组N2、耦合电感第二绕组N1,箝位升压电路包括第一升压二级管D1、第二升压二极管D2、第三升压二极管D4、第一箝位二极管Dc、输出二极管Do、第一升压电容C1、第二升压电容C2、第一箝位电容Cc、输出电容Co;输入滤波电感Lin、第二升压二极管D2、第一箝位二极管Dc和第一箝位电容Cc串联成支路1,第一升压电容C1、耦合电感第一绕组N2、第二升压电容C2和输出二极管Do串联成支路2,支路1与支路2并联后输入端与输入电源Vin的正极相连,输出端通过输出电容Co与输入电源Vin的负极相连;输入滤波电感Lin与第二升压二极管D2正极之间的结点称为结点1,第二升压二极管D2负极与第一箝位二极管Dc正极之间的结点称为结点2,第一箝位二极管Dc负极与第一箝位电容Cc之间的结点称为结点3,第一升压电容C1与耦合电感第一绕组N2之间的结点称为结点4,耦合电感第一绕组N2与第二升压电容C2之间的结点称为结点5,第二升压电容C2和输出二极管Do正极之间的结点称为结点6,第一升压二极管连接在结点1与结点4之间,其正极连接结点1,负极连接结点4,耦合电感第二绕组N1连接在结点2和结点5之间,并且功率开关管S的漏极连接至结点2,第三升压二极管D4连接在结点3和结点6之间,其正极连接结点3,负极连接结点6。Further, the coupled inductor network includes a coupled inductor first winding N 2 , a coupled inductor second winding N 1 , and the clamp boost circuit includes a first boost diode D 1 , a second boost diode D 2 , a second
进一步的,负载R并联在输出电容Co两端。Further, the load R is connected in parallel with both ends of the output capacitor C o .
进一步的,所述功率开关管S为MOS管。Further, the power switch tube S is a MOS tube.
本发明还公开了一种上述高增益boost变换器的控制方法,具体包括以下步骤:S01)、控制boost变换器处于开关模态1,对应时刻为[t0,t1],实现方法为:t0时刻开通功率开关管S,D1、Dc、Do反向偏置,D2、D4正向偏置,耦合电感第一绕组漏感电流和耦合电感第二绕组电流iN1上升,第二升压二极管电流上升,第三升压二极管电流上升,功率开关管电流iS上升,输出电容Co为负载供电;S02)、控制boost变换器处于开关模态2,对应时刻为[t1,t2],实现方法为:t1时刻,功率开关管S关断,开关模态1结束,开关模态2开始,D2、D4反向偏置,D1、Dx、Do正向偏置,耦合电感第一绕组漏感电流和耦合电感第二绕组电流iN1下降;第一箝位二极管电流下降,输出二极管电流上升,第一升压二极管电流下降,输入电源Vin、输入滤波电感Lin、耦合电感第一绕组N2、耦合电感第二绕组N1和第二升压电容C2共同转移能量到输出电容Co和负载R;S03)、控制boost变换器处于开关模态3,对应时刻为[t2,t3],实现方法为:t2时刻,第一箝位二极管电流下降至零,开关模态2结束,开关模态3开始,功率开关管S保持关断,D2、Dc、D4反向偏置,D1、Do正向偏置,耦合电感第一绕组漏感电流输出二极管电流和第一升压二极管电流下降,同时,输入电源Vin、输入滤波电感Lin、耦合电感第一绕组N2、耦合电感第二绕组N1和第二升压电容C2共同转移能量到输出电容Co和负载R;S04)、导通功率开关管S,新的开关周期开始,boost变换器继续执行从开关模态1至开关模态3的工作过程。The invention also discloses a control method for the above-mentioned high-gain boost converter, which specifically includes the following steps: S01), controlling the boost converter to be in
进一步的,高增益boost变换器的增益M为:其中D为功率开关管的导通占空比,N=N2/N1为耦合电感第一绕组与耦合电感第二绕组的匝数比。Further, the gain M of the high-gain boost converter is: D is the on-duty ratio of the power switch tube, and N=N 2 /N 1 is the turns ratio between the first winding of the coupled inductor and the second winding of the coupled inductor.
本发明的有益效果:本发明所述boost变换器增益高,占空比的微小变换就能引起增益的大幅增加或者降低,具有反比平方特性,耦合电感匝比越小,电压增益越高,有效的降低了耦合电感漏感和寄生电容对变换器性能的影响,功率开关管电压应力低。Beneficial effects of the present invention: the boost converter of the present invention has high gain, and a small change of duty cycle can cause a substantial increase or decrease of the gain, and has an inverse square characteristic. The influence of the leakage inductance of the coupled inductor and the parasitic capacitance on the performance of the converter is reduced, and the voltage stress of the power switch tube is low.
附图说明Description of drawings
图1为具有反比平方特性的高增益boost变换器的电路原理图;Fig. 1 is the circuit schematic diagram of the high gain boost converter with inverse proportional square characteristic;
图2为具有反比平方特性的高增益boost变换器的模态图;Fig. 2 is the modal diagram of the high gain boost converter with inverse square characteristic;
图3(a)为具有反比平方特性的高增益boost变换器开关模态1的等效电路图;Fig. 3 (a) is the equivalent circuit diagram of high gain boost
图3(b)为具有反比平方特性的高增益boost变换器开关模态2的等效电路图;Figure 3(b) is an equivalent circuit diagram of a high-gain boost
图3(c)为具有反比平方特性的高增益boost变换器开关模态3的等效电路图;Fig. 3 (c) is the equivalent circuit diagram of high-gain boost
图4为耦合电感匝比和占空比对所提的升压变换器增益的影响。Figure 4 shows the effect of coupled inductor turns ratio and duty cycle on the boost converter gain.
图5为当输入电压Vin=38V,电压增益M为13,耦合电感匝比为1.8,输出功率为500W的Pspice仿真波形。Fig. 5 is when the input voltage V in =38V, the voltage gain M is 13, the coupling inductor turns ratio is 1.8, and the output power is 500W Pspice simulation waveform.
图中标号说明:Vin为直流电压源,S为功率开关管,耦合电感第一绕组N2、耦合电感第二绕组N1;第一升压二极管D1、第二升压二极管D2、第三升压二极管D4、第一箝位二极管Dc、输出二极管Do、第一升压电容C1、第二升压电容C2、第一箝位电容Cc、输出电容Co,R为负载,LM为磁化电感,Lk为耦合电感漏感。Description of the symbols in the figure: V in is the DC voltage source, S is the power switch tube, the first winding N 2 of the coupled inductor, the second winding N 1 of the coupled inductor; the first boost diode D 1 , the second boost diode D 2 , The third boost diode D 4 , the first clamp diode D c , the output diode D o , the first boost capacitor C 1 , the second boost capacitor C 2 , the first clamp capacitor C c , the output capacitor C o , R is the load, L M is the magnetizing inductance, and L k is the coupled inductance leakage inductance.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步的说明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
本实施例公开一种具有反比平方特性的高增益boost变换器,如图1所示,包括包括耦合电感网络、输入滤波电感Lin、箝位升压电路和功率开关管S,耦合电感网络包括耦合电感第一绕组N2、耦合电感第二绕组N1,箝位升压电路包括第一升压二级管D1、第二升压二极管D2、第三升压二极管D4、第一箝位二极管Dc、输出二极管Do、第一升压电容C1、第二升压电容C2、第一箝位电容Cc、输出电容Co。This embodiment discloses a high-gain boost converter with inverse square characteristic. As shown in FIG. 1 , it includes a coupled inductor network, an input filter inductor L in , a clamp boost circuit and a power switch S. The coupled inductor network includes The first winding N 2 of the coupled inductor, the second winding N 1 of the coupled inductor, the clamp boost circuit includes a first boost diode D 1 , a second boost diode D 2 , a third boost diode D 4 , a first
输入滤波电感Lin、第二升压二极管D2、第一箝位二极管Dc和第一箝位电容Cc串联成支路1,第一升压电容C1、耦合电感第一绕组N2、第二升压电容C2和输出二极管Do串联成支路2,支路1与支路2并联后输入端与输入电源Vin的正极相连,输出端通过输出电容Co与输入电源Vin的负极相连。The input filter inductor L in , the second boost diode D 2 , the first clamping diode D c and the first clamping capacitor C c are connected in series to form a
输入滤波电感Lin与第二升压二极管D2正极之间的结点称为结点1,第二升压二极管D2负极与第一箝位二极管Dc正极之间的结点称为结点2,第一箝位二极管Dc负极与第一箝位电容Cc之间的结点称为结点3,第一升压电容C1与耦合电感第一绕组N2之间的结点称为结点4,耦合电感第一绕组N2与第二升压电容C2之间的结点称为结点5,第二升压电容C2和输出二极管Do正极之间的结点称为结点6,第一升压二极管连接在结点1与结点4之间,其正极连接结点1,负极连接结点4,耦合电感第二绕组N1连接在结点2和结点5之间,第三升压二极管D4连接在结点3和结点6之间,其正极连接结点3,负极连接结点6。The junction between the input filter inductor L in and the anode of the second boost diode D 2 is called
功率开关管S的漏极连接至结点2,功率开关管的源极连接至输入电源Vin的负极,栅极连接变换器控制信号电压Vgs,通过变换器控制信号电压Vgs控制功率开关管的通断,从而使boost工作在不同的开关模态,实现对电压的提升。The drain of the power switch S is connected to the
本实施例中,输出电容Co具有滤波的作用,输出电容Co即为变换器的输出端,负载R并接在变换器的输出端。In this embodiment, the output capacitor C o has the function of filtering, the output capacitor C o is the output end of the converter, and the load R is connected to the output end of the converter in parallel.
本实施例中,所述功率开关管S为MOS管。In this embodiment, the power switch transistor S is a MOS transistor.
实施例2Example 2
本实施例公开一种实施例1所述高增益boost变换器的控制方法,本控制方法就是使boost变换器达到图2所示的模态图,图2表示了高增益boost变换器控制信号电压Vgs、耦合电感第一绕组漏感电流耦合电感第二绕组电流iN1,第一升压二极管电流第二升压二极管电流第三升压二极管电流第一箝位二极管电流输出二极管电流功率开关管电流is的波形,本控制方法使boost变换器的工作过程分为3个开关模态,分别为开关模态1至开关模态3,具体描述如下:This embodiment discloses a control method for the high-gain boost converter described in
开关模态1,对应图2中的[t0,t1],等效电路如图3(a)所示,t0时刻开通功率开关管S,D1、Dc、Do反向偏置,D2、D4正向偏置,耦合电感第一绕组漏感电流和耦合电感第二绕组电流iN1上升;第二升压二极管电流上升,第三升压二极管电流上升,功率开关管电流iS上升,输出电容Co为负载供电。
开关模态2,对应图2中的[t1,t2],等效电路如图3(b)所示,t1时刻,功率开关管S关断,开关模态1结束,开关模态2开始,D2、D4反向偏置,D1、Dx、Do正向偏置,耦合电感第一绕组漏感电流和耦合电感第二绕组电流iN1下降;第一箝位二极管电流下降,输出二极管电流上升,第一升压二极管电流下降。输入电源Vin、输入电感、耦合电感第一绕组N2、耦合电感第二绕组N1和第二升压电容C2共同转移能量到输出电容Co和负载R,t2时刻,第一箝位二极管电流下降至零,开关模态2结束。
开关模态3,对应图2中的[t2,t3],等效电路如图3(c)所示,t2时刻,第一箝位二极管电流下降至零,开关模态2结束,开关模态3开始,功率开关管S保持关断,D2、Dc、D4反向偏置,D1、Do正向偏置,耦合电感第一绕组漏感电流输出二极管电流和第一升压二极管电流下降。同时,输入电源Vin、输入电感、耦合电感第一绕组N2、耦合电感第二绕组N1和第二升压电容C2共同转移能量到输出电容Co和负载R。
当功率开关管S导通时,新的开关周期开始,boost变换器继续执行从开关模态1至开关模态3的工作过程。When the power switch tube S is turned on, a new switching cycle begins, and the boost converter continues to perform the work process from switching
由模态1,电感Lin和线圈N1的电压表达式为:From
VLin=Vin,NVN1=Vin+VC1+VN1,VN1+VCc+Vo=VC2,V Lin =V in , NV N1 =V in +V C1 +V N1 , V N1 +V Cc +V o =V C2 ,
由模态2和3,电感Lin的电压表达式为:From
VLin=VC1,V Lin =V C1 ,
由模态2和3,线圈N1的电压表达式为:From
Vin+VC1+VN1=VCc+NVN1+Vo,V in +V C1 +V N1 =V Cc +NV N1 +V o ,
VN1=VCc+VC2,V N1 =V Cc +V C2 ,
NVN1+VO=Vin+VC1+VC2,NV N1 +V O =V in +V C1 +V C2 ,
结合模态1、2和3,对电感Lin和线圈N1应用伏秒平衡原理,Combining
推导得出以下电压表达式:The following voltage expressions are derived:
最后,由上述分析可得增益表达式为:Finally, the gain expression obtained from the above analysis is:
其中D为功率开关管的导通占空比,N=N2/N1为耦合电感第一绕组与耦合电感第二绕组的匝数比。 D is the on-duty ratio of the power switch tube, and N=N 2 /N 1 is the turns ratio between the first winding of the coupled inductor and the second winding of the coupled inductor.
在传统的耦合电感类型的高增益直流变换器中,电压增益与占空比和耦合电感匝比的关系为:电压增益随着耦合电感匝比的增加而显著提升,呈近似正比例关系,但是,耦合电感的匝比并不能无限的提升,当耦合电感匝比较大时,耦合电感漏感和寄生电容会严重影响变换器的性能;或者,电压增益随着占空比的增加而增加,呈近似正比例关系。In the traditional high-gain DC converter of coupled inductor type, the relationship between the voltage gain and the duty cycle and the coupled inductor turns ratio is: the voltage gain increases significantly with the increase of the coupled inductor turns ratio, which is approximately proportional, but, The turns ratio of the coupled inductor cannot be increased infinitely. When the turns ratio of the coupled inductor is large, the leakage inductance and parasitic capacitance of the coupled inductor will seriously affect the performance of the converter; or, the voltage gain increases with the increase of the duty cycle, which is approximately proportional relationship.
在本实施例所述变换器中,耦合电感匝比越小,变换器的增益反而提升,呈近似反比例关系,这就有效的降低了耦合电感漏感和寄生电容对变换器性能的影响;随着占空比的增加,电压增益显著增加,呈近似的平方正比关系。反比特性和平方特性同时结合在了一个变换器中。如图4所示,进一步展示了所提变换器在匝比和占空比上的优势。In the converter described in this embodiment, the smaller the turns ratio of the coupled inductance is, the gain of the converter is increased instead, and the relationship is approximately inversely proportional, which effectively reduces the influence of the coupled inductance leakage inductance and parasitic capacitance on the performance of the converter; As the duty cycle increases, the voltage gain increases significantly, in an approximate square proportional relationship. Both inverse and square properties are combined in one converter. As shown in Fig. 4, the advantages of the proposed converter in terms of turns ratio and duty cycle are further demonstrated.
下面通过具体的Pspice仿真实例说明采用本发明结构的有益效果:The beneficial effects of adopting the structure of the present invention are described below through specific Pspice simulation examples:
如图5所示,输入电压Vin=38V,电压增益M为13,耦合电感匝比为1.8,输出功率为500W,各个器件的电流波形如图所示,有效的验证了前述理论的准确性。从图中可以看出,第一箝位二极管自然关断,这可以有效的提高效率。As shown in Figure 5, the input voltage V in = 38V, the voltage gain M is 13, the coupled inductor turns ratio is 1.8, and the output power is 500W. The current waveforms of each device are shown in the figure, which effectively verifies the accuracy of the foregoing theory. . As can be seen from the figure, the first clamping diode is naturally turned off, which can effectively improve the efficiency.
以上描述的仅是本发明的基本原理和优选实施例,本领域技术人员根据本发明做出的改进和替换,属于本发明的保护范围。The above descriptions are only the basic principles and preferred embodiments of the present invention, and improvements and substitutions made by those skilled in the art according to the present invention belong to the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910010387.1A CN109713896B (en) | 2019-01-04 | 2019-01-04 | High-gain boost converter with inverse square characteristic and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910010387.1A CN109713896B (en) | 2019-01-04 | 2019-01-04 | High-gain boost converter with inverse square characteristic and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109713896A CN109713896A (en) | 2019-05-03 |
CN109713896B true CN109713896B (en) | 2020-09-29 |
Family
ID=66260772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910010387.1A Active CN109713896B (en) | 2019-01-04 | 2019-01-04 | High-gain boost converter with inverse square characteristic and its control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109713896B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111092548B (en) * | 2019-12-24 | 2021-04-27 | 燕山大学 | A High Gain Cuk DC Converter with Inductor Capacitor Switching Network |
CN111181400A (en) * | 2020-03-18 | 2020-05-19 | 苏州市职业大学 | High-transformation-ratio DC/DC conversion circuit and control method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI238589B (en) * | 2004-05-21 | 2005-08-21 | Wai Zheng Zhong | High step-up converter with coupled-inductor by way of bi-direction energy transmission |
CN107659144A (en) * | 2017-10-19 | 2018-02-02 | 金陵科技学院 | Boosting unit converter built in inductance |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6822427B2 (en) * | 2002-05-01 | 2004-11-23 | Technical Witts, Inc. | Circuits and circuit elements for high efficiency power conversion |
CN203645540U (en) * | 2013-11-14 | 2014-06-11 | 华南理工大学 | High Efficiency and High Gain DC-DC Converter with Coupled Inductor |
CN105471253B (en) * | 2015-11-24 | 2018-07-06 | 哈尔滨工业大学 | T-shaped coupling inductance network boost converter |
CN107070217B (en) * | 2017-05-08 | 2019-05-10 | 广东工业大学 | A High Gain PWM DC Boost Converter Based on Coupled Inductors |
CN108111014A (en) * | 2017-11-30 | 2018-06-01 | 东南大学 | Mixed symmetry active boost network transformation device |
-
2019
- 2019-01-04 CN CN201910010387.1A patent/CN109713896B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI238589B (en) * | 2004-05-21 | 2005-08-21 | Wai Zheng Zhong | High step-up converter with coupled-inductor by way of bi-direction energy transmission |
CN107659144A (en) * | 2017-10-19 | 2018-02-02 | 金陵科技学院 | Boosting unit converter built in inductance |
Also Published As
Publication number | Publication date |
---|---|
CN109713896A (en) | 2019-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104734547B (en) | A boost unit Z-source inverter | |
CN105471253B (en) | T-shaped coupling inductance network boost converter | |
CN103944397A (en) | Boost type isolated DC/DC converter and control method thereof | |
CN107517003A (en) | An output floating input parallel high-gain Boost conversion circuit and switching method | |
CN103618449A (en) | Three-winding coupling inductance double tube boost converter with charge pump | |
CN102290985A (en) | Coupling inductor based voltage boosting and reducing direct current (DC) converter | |
CN103618444B (en) | The two-tube booster converter of three winding coupling inductance ZVS/ZCS | |
CN107346939B (en) | A Quasi-Z Source DC/DC Converter | |
CN107979283A (en) | cascade boost converter based on asymmetric boosting unit | |
CN103887987B (en) | A kind of multiple multiplication of voltage high-gain high-frequency rectification isolated converter based on switching capacity | |
CN103904923B (en) | High-gain high frequency based on mixed-rectification brachium pontis and switching capacity boosting rectification isolated converter | |
CN103929065A (en) | Bidirectional Isolated DC/DC Converter Based on Three-winding Transformer | |
CN110504833A (en) | A High Gain Boost Converter Based on Active Network | |
CN104283419A (en) | A Quadratic High-Gain Boost Converter with Switched Capacitor and Coupled Inductor | |
CN109713896B (en) | High-gain boost converter with inverse square characteristic and its control method | |
CN103595257A (en) | Isolation type direct-current buck converter with soft switching function and control method of isolation type direct-current buck converter | |
CN103066841A (en) | Voltage-multiplying DC converter based on charge pump capacitor | |
CN104052271B (en) | Z-source high-gain direct current boost converter | |
CN106972751B (en) | Double-tube Z-source direct-current voltage converter | |
CN104300780B (en) | Large power non-isolation DC/DC soft switching circuit | |
CN108599560B (en) | Two-capacitor-clamped multi-bootstrap cascaded DC-DC converter for photovoltaic systems | |
CN206698116U (en) | A kind of high-gain DC voltage changer for reducing switching tube current stress | |
CN217087767U (en) | Ultrahigh-gain DC/DC boost converter | |
CN206698115U (en) | A kind of two-tube Z sources DC voltage converter | |
CN104201894B (en) | Voltage-multiplying high frequency rectification isolated transformer based on switched capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |