CN109707001B - 基于流致振动原理的供水高含沙水体取水装置 - Google Patents

基于流致振动原理的供水高含沙水体取水装置 Download PDF

Info

Publication number
CN109707001B
CN109707001B CN201910028591.6A CN201910028591A CN109707001B CN 109707001 B CN109707001 B CN 109707001B CN 201910028591 A CN201910028591 A CN 201910028591A CN 109707001 B CN109707001 B CN 109707001B
Authority
CN
China
Prior art keywords
water
flow
vibration
taking
water taking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910028591.6A
Other languages
English (en)
Other versions
CN109707001A (zh
Inventor
龚家国
范严伟
余弘婧
王晓星
伊丽
赵勇
王庆明
翟家齐
翟正丽
王英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Water Resources and Hydropower Research
Original Assignee
China Institute of Water Resources and Hydropower Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Water Resources and Hydropower Research filed Critical China Institute of Water Resources and Hydropower Research
Priority to CN201910028591.6A priority Critical patent/CN109707001B/zh
Publication of CN109707001A publication Critical patent/CN109707001A/zh
Application granted granted Critical
Publication of CN109707001B publication Critical patent/CN109707001B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Flow Control (AREA)

Abstract

本发明涉及基于流致振动原理的供水高含沙水体取水装置,特别涉及一种确保水质水量的供水水源地的优化配置系统,属于水源技术领域。装置包括取水系统、振动自持系统、输水系统和监测控制系统。本发明利用“流致振动”原理和渗滤式取水相结合的取水方式,装置具有一定的自持、自净能力,保障取水水质稳定。“流致振动”调节装置与四周透水取水板连接,在水流作用下发生震动,做到从浑浊的洪水中取到干净的水,同时取水装置由于震动,能够迅速“抖落”取水过程中附着的泥土,并可实时监测控制和检修,以防止泥沙沉积附着,保证取水效率不降低,同时保证了取水水质。

Description

基于流致振动原理的供水高含沙水体取水装置
技术领域
本发明涉及基于流致振动原理的供水高含沙水体取水装置,特别涉及一种确保水质水量的供水水源地的优化配置系统,属于水源技术领域。
背景技术
雅加达-万隆地区地处赤道附近的爪哇岛,降雨丰沛,水资源量丰富;然而,该地区属于火山岛地形,山高坡陡,比降大,地形破碎,地质活跃,土壤为火山灰土,植被遭到破坏,水土流失严重。随着经济社会的发展,居民生活用水需求不断增长,同时由于城市的不断扩张,城市边缘沿河道或沟道不断上溯,现有水源地多在流域中下游,形成人高水低的局面,集中供水耗能不断增加。分布式地表水供水水源系统能更好的应对当地对于水质和水量的要求。
我国部分地区降水丰沛,水资源量较大,但地形复杂破碎,水土流失严重,不具备建设大型水源地的条件,且山区居民分散,供水需求分散,人高水低等造成的饮用水难以保障问题突出。
综上所述,此类地区具有水资源丰富、地形复杂破碎、比降大、水土流失严重、难以建设集中式水源地、供水需求分散以及人高水低的特点。生活方式和地理条件等因素的限制,导致此类地区不具备建设大型水源地的条件;取用水中泥沙含量较高,水质很差,原有集中式的供水水源无法满足城市发展所带来对供水水源水质和水量的要求,且由于水文特点以及地形地貌等因素的影响,无法建立更多的集中式供水水源,严重影响人民的生活以及经济社会的发展。
发明内容
本发明的目的是为了解决不具备建设大型水源地条件的山区水源泥沙含量大的问题,提供基于“流致振动”原理的供水高含沙水体取水装置。该装置的研发基于“流致振动”原理,具有自净自持力较强的特点,以保证取水水质。
本发明的目的是通过下述技术方案实现的。
基于流致振动原理的高含沙水体取水装置,包括取水系统、振动自持系统、输水系统和监测控制系统。
每个小水库中安装取水装置,多个取水装置通过管路联通,使得上游被过滤的水通过管路外接取水或者流入下游小水库中。
取水系统包括桩基、透水板、支撑骨架。多块透水板构成一个空间,内部通过多条支撑骨架牢固支撑,桩基位于空间底部,需保证空间顶部带有倾斜角度、空间底面高于死水位、所述透水板之间软连接,保证透水板能够震动同时防止砂砾进入取水系统;震动自持系统包括长连杆、短连杆和振动柱。长连杆的一端与振动柱固定连接,另一端与支撑骨架通过铰链连接,支撑骨架与透水板通过短连杆连接;示意图可参考图4;输水系统包括管路和电磁阀,电磁阀置于管路上,用于控制水流流量和流速;监测控制系统包括摄像头、太阳能电池板、可调开度电磁阀、输水管道压力传感器、流量计和控制软件平台,用于系统的监测、控制和检修。
所述空间顶部的倾斜角度大于40°。
在上游流入的管路与向下游流出的管路之间设置旁通管,旁通管上布置有电磁阀;通过调节电磁阀来控制进入取水装置的水流流量和流速;
工作过程:取水装置整体置于水中,且需保证建设在小水库的死库容水位之上,用桩基支撑;水流通过透水板进入取水装置,然后在重力作用下从出水口流出;此时能够过滤掉泥沙等颗粒物;振动柱在水流作用下发生左右摆动,从而通过铰链带动透水板震动,抖落高含沙水体渗透取水过程中沉积在透水板表面的泥沙,摆动幅度和频率由通过调节电磁阀开度调控的水流流速和涡动强度决定。并通过检测控制系统实时监控。
检修过程:根据水库的相对位置,从上游水库到下游水库以此进行检修。检修有两种状态:一是增大过流强度,加大透水板的摆动幅度,使透水板表面表保持清洁,确保透水板的透水效率;二是关闭向下游流出管路和旁通管上的电磁阀,利用上下游高差大的地理条件,使得取水装置内部的压力大于外部的水压,水流从装置内部反向流出,此时水流的情况可参考图6,实现取水装置的反冲洗。检修过程可通过摄像头进行监控,实时确定装置的运行状态。
串(并)联取水装置:取水装置的串并联情况需参考水库群的布局情况。
工作原理:用的是“流致振动”原理和渗滤式取水相结合的取水方式,其中“流致振动”原理为流体流经柱体表面,会在柱体后方形成交替性的旋涡脱落,旋涡的脱落会进一步在柱体表面产生周期性的脉动作用力,当柱体为弹性安装时,这种作用力会导致柱体产生周期性振动。示意图可参考图5。
有益效果
本发明的基于流致振动原理的供水高含沙水体取水装置,利用“流致振动”原理和渗滤式取水相结合的取水方式,装置具有一定的自持、自净能力,保障取水水质稳定。“流致振动”调节装置与四周透水取水板连接,在水流作用下发生震动,做到从浑浊的洪水中取到干净的水,同时取水装置由于震动,能够迅速“抖落”取水过程中附着的泥土,并可实时监测控制和检修,以防止泥沙沉积附着,保证取水效率不降低,同时保证了取水水质。
附图说明
图1为上游最初的取水构筑物示意图;
图2为下游取水构筑物图示;
图3为下游管道细节图;
图4为装置振动结构详图;
图5为流致振动原理细节图;
图6为反冲洗结构示意图;
图7为万隆小流域坝系工程示例图;
图8为万隆小流域水库群取水示意图;
其中,1—桩基;2—透水板;3—支撑骨架;4—长连杆;5—短连杆;6—振动柱;7—电磁阀。
具体实施方式
为了更好的说明本发明的目的和优点,下面结合附图和实例对发明内容做进一步说明。
实施例1
万隆小流域流域坝系工程
前提:万隆地区地处赤道附近火山环抱的高原盆地之中,海拔较高,终年高温多雨,地形破碎,坡降很大,地质活跃,土壤多为火山灰土,植被破坏严重,极易发生水土流失,基于当地的气候地形条件,建立集中式供水水源难度极大;且万隆地区人口较多,城市发展速度较快,取用水水质污染严重,当地现有的供水水源技术不足以支撑人民的生产生活的需水以及对水质的要求。
根据上述情况对该地区进行分析,以万隆地区一个3万人口的小城镇为例,以期通过工程系统改善存在的问题,具体步骤如下:
步骤一、确定供水目标和需水规模
调查可知城镇人口为3万人,人均用水量为185L/d·人,人口增长率为1.28%,大坝的设计年限为20年,由此可知城镇的生产生活现状用水量555万m3,20年后需水量为716万m3;2017年印度尼西亚的人均GDP为1万元,印度尼西亚的万元GDP用水量为350m3/万元,考虑经济增长的因素,经济增长率为5%,由此可知城镇工业现状用水量1050万m3,20年后的工业需水量2946万m3;查资料可知,当地生态用水定额为1L/m2·d,当地的面积为3km2,故当地的生态需水量为108万m3
由此可知当地的现状实际需水量为1714万m3,20年后的需水量为3770万m3
步骤二、确定工程工程范围和供水能力
如图7所示为万隆地区两个小流域多个水库串、并联示意图,两个小流域的面积为分别为1.61km2和15.29km2,流域水库的控制面积共为6.67km2,根据淤地坝总的控制面积和降雨—产流情况计算最大可供水量,根据万隆地区年降水状况可知当地平均年降水量为1838.3mm,根据供水保证率要求达到95%可求得水库的可供水量。则可求得小流域的水资源量为6057万m3,水库可供水量5755万m3
由步骤一和步骤二可知,小流域的水资源量和工程可供水量远大于当地的需水量,可以建立合适的工程措施足以满地对于水量的要求。
步骤三、工程应用与运行
在步骤一、二的基础上建造多个小水库,在同一条沟道建造多个串联小水库或者不同沟道、不同小流域建造小水库实现并联,形成水库群;并根据水量平衡原理对水库群进行联合调度,汛期降雨量大,能保证小水库供水量充足,但易发生洪水,坝型需选择带有溢流堰,使洪水能自动下泄;平水期甚至枯水期取水由水库的总有效水库的存水保障供水,保证取用水量的稳定;在取水方面采用具有一定自持、自净能力的基于“流致振动”原理的取水装置进行小水库的取水,尤其汛期洪水带来的水质波动,通过取水装置保障水质稳定;并实时监控,定期进行维护检修。
步骤四、确定区域水质保障体系
采用生态清洁小流域综合治理技术,从山顶到河谷以此建设“生态修复、生态治理、生态保护”三道防线,从根源改善当地水土流失状况和水污染问题,使流域清水长流。
基于流致振动原理的供水高含沙水体取水装置,包括取水系统、振动自持系统、输水系统和监测控制系统。
每个小水库中安装取水装置,多个取水装置通过管路联通,使得上游被过滤的水通过管路外接取水或者流入下游小水库中。
取水系统包括桩基、透水板、支撑骨架。多块透水板构成一个空间,内部通过多条支撑骨架牢固支撑,桩基位于空间底部,需保证空间顶部带有倾斜角度、空间底面高于死水位、所述透水板之间软连接,保证透水板能够震动同时防止砂砾进入取水系统;震动自持系统包括长连杆、短连杆和振动柱。长连杆的一端与振动柱固定连接,另一端与支撑骨架通过铰链连接,支撑骨架与透水板通过短连杆连接;示意图可参考图4;输水系统包括管路和电磁阀,电磁阀置于管路上,用于控制水流流量和流速;监测控制系统包括摄像头、太阳能电池板、可调开度电磁阀、输水管道压力传感器、流量计和控制软件平台,用于系统的监测、控制和检修。
所述空间顶部的倾斜角度大于40°。
在上游流入的管路与向下游流出的管路之间设置旁通管,旁通管上布置有电磁阀;通过调节电磁阀来控制进入取水装置的水流流量和流速;
工作过程:基于“流致振动”原理的取水装置进行水库取水时,水流通过透水板进入取水装置,然后在重力作用下从出水口流出;此时能够过滤掉泥沙等颗粒物;振动柱在水流作用下发生左右摆动,从而通过铰链带动透水板震动,抖落高含沙水体渗透取水过程中沉积在透水板表面的泥沙;图3的旁通管的电磁阀可调节其开度,以此来控制进入取水装置的水流流量和流速。摆动幅度和频率由通过调节电磁阀开度调控的水流流速和涡动强度决定;并可通过监测控制系统实时监控。
检修过程:对取水装置进行检修时,根据水库的相对位置,从上游水库到下游水库以此进行检修。检修有两种状态,一是增大过流强度,加大透水板的摆动幅度,使透水板表面表保持清洁,确保透水板的透水效率;二是关闭向下游流出管路和旁通管上的电磁阀,利用上下游高差大的地理条件,使得取水装置内部的压力大于外部的水压,水流从装置内部反向流出,此时水流的情况可参考图6,实现取水装置的反冲洗。检修过程可通过摄像头进行监控,实时确定装置的情况。
串(并)联取水装置:取水装置的串并联情况需参考水库群的布局情况。根据图7水库的布局情况和图8所示的取水装置线路,最上游小水库有①③⑦其取水装置参考图1,小水库②③④⑤⑥的取水装置参考图2;由图7可知其中一个小流域上小水库①②和③④分别串联后并联,然后汇入小水库⑤中,下游两个小水库⑤和⑥形成串联;另一流域上仅小水库⑦,不同流域的小水库①②③④⑤⑥和⑦并联,一块为城镇供水。
工作原理:用的是“流致振动”原理和渗滤式取水相结合的取水方式,其中“流致振动”原理为流体流经柱体表面,会在柱体后方形成交替性的旋涡脱落,旋涡的脱落会进一步在柱体表面产生周期性的脉动作用力,当柱体为弹性安装时,这种作用力会导致柱体产生周期性振动。其示意图可参考图5.
结果表征:建立水库群之后,用基于“流致振动”原理的取水装置进行水库取水为城镇的日供水能力为15.8万m3,水中的泥沙颗粒明显减少,使取水水质情况得到了明显的改善,解决了当地水质差的问题;采用生态清洁小流域治理技术,有效地控制了水土流失,从根本上改善当地的生态状况。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.基于流致振动原理的供水高含沙水体取水装置,其特征在于:包括取水系统、振动自持系统、输水系统和监测控制系统;取水系统包括桩基、透水板、支撑骨架;多块透水板构成一个空间,内部通过多条支撑骨架牢固支撑,桩基位于空间底部,需保证空间顶部带有倾斜角度、空间底面高于死水位、所述透水板之间软连接,保证透水板能够震动同时防止砂砾进入取水系统;震动自持系统包括长连杆、短连杆和振动柱;长连杆的一端与振动柱固定连接,另一端与支撑骨架通过铰链连接,支撑骨架与透水板通过短连杆连接;输水系统包括管路和电磁阀,电磁阀置于管路上,用于控制水流流量和流速;监测控制系统包括摄像头、太阳能电池板、可调开度电磁阀、输水管道压力传感器、流量计和控制软件平台,用于系统的监测、控制和检修;
多个取水装置通过管路串联或并联,在上游流入的管路与向下游流出的管路之间设置旁通管,旁通管上布置有电磁阀;通过调节电磁阀来控制进入取水装置的水流量和流速;
所述空间顶部的倾斜角度大于40°;
所述取水装置的去泥沙过程为:取水装置整体置于水中,且需保证建设在小水库的死库容水位之上,用桩基支撑;水流通过透水板进入取水装置,然后在重力作用下从出水口流出;此时能够过滤掉泥沙等颗粒物;振动柱在水流作用下发生左右摆动,从而通过铰链带动透水板震动,抖落高含沙水体渗透取水过程中沉积在透水板表面的泥沙,摆动幅度和频率由通过调节电磁阀开度调控的水流流速和涡动强度决定;并通过检测控制系统实时监控;
所述取水装置的检修过程为:根据水库的相对位置,从上游水库到下游水库以此进行检修;检修有两种状态:一是增大过流强度,加大透水板的摆动幅度,使透水板表面表保持清洁,确保透水板的透水效率;二是关闭向下游流出管路和旁通管上的电磁阀,利用上下游高差大的地理条件,使得取水装置内部的压力大于外部的水压,水流从装置内部反向流出,实现取水装置的反冲洗;检修过程可通过摄像头进行监控,实时确定装置的运行状态;
所述取水装置的工作原理为:用的是流致振动原理和渗滤式取水相结合的取水方式,其中流致振动原理为流体流经柱体表面,会在柱体后方形成交替性的旋涡脱落,旋涡的脱落会进一步在柱体表面产生周期性的脉动作用力,当柱体为弹性安装时,这种作用力会导致柱体产生周期性振动。
CN201910028591.6A 2019-01-11 2019-01-11 基于流致振动原理的供水高含沙水体取水装置 Active CN109707001B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910028591.6A CN109707001B (zh) 2019-01-11 2019-01-11 基于流致振动原理的供水高含沙水体取水装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910028591.6A CN109707001B (zh) 2019-01-11 2019-01-11 基于流致振动原理的供水高含沙水体取水装置

Publications (2)

Publication Number Publication Date
CN109707001A CN109707001A (zh) 2019-05-03
CN109707001B true CN109707001B (zh) 2024-03-19

Family

ID=66259998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910028591.6A Active CN109707001B (zh) 2019-01-11 2019-01-11 基于流致振动原理的供水高含沙水体取水装置

Country Status (1)

Country Link
CN (1) CN109707001B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967157B (zh) * 2020-08-14 2023-10-20 中国水利水电科学研究院 考虑分期多目标函数的水库群水沙优化调度方法及系统

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121432A (ja) * 1996-10-18 1998-05-12 Kozaburo Hayashi 河川構造
JP3153956B2 (ja) * 1998-04-20 2001-04-09 宏 五十嵐 地下水用取水装置と循環式水処理方法と循環式水処理装置
KR20030010328A (ko) * 2001-07-26 2003-02-05 박원우 해중 저수 및 급수 장치
CN1470719A (zh) * 2002-07-22 2004-01-28 张福增 动态水资源开发技术系统
KR20060106437A (ko) * 2005-04-08 2006-10-12 주식회사 한진중공업 투수파브릭 소재로 전체를 감싼 조립식 유공블록을 이용한빗물저장 및 이용장치의 월류수의 지하 침투장치
RU2310726C1 (ru) * 2006-05-04 2007-11-20 Федеральное государственное унитарное предприятие "Дальневосточный научно-исследовательский институт гидротехники и мелиораций" (ФГУП ДальНИИГиМ) Плавающий водозабор-осветлитель
CN102070245A (zh) * 2010-12-03 2011-05-25 河海大学 河道生态净污型正方体框体及其构建组合挡坝方法
CN102942252A (zh) * 2012-11-23 2013-02-27 杭州银江环保科技有限公司 组合式生态净化笼
KR20140076701A (ko) * 2012-12-13 2014-06-23 서울대학교산학협력단 무동력 다목적 빗물 저류침투 시스템
JP2014206016A (ja) * 2013-04-15 2014-10-30 山大機電株式会社 河川における取水装置
CN104874591A (zh) * 2015-06-11 2015-09-02 揭阳市绿源环保处理有限公司 建筑余泥处理工艺及系统
CN205151804U (zh) * 2015-10-31 2016-04-13 成都易态科技有限公司 取水装置及其构成的水生产系统
CN105649137A (zh) * 2015-11-25 2016-06-08 长沙建益新材料有限公司 一种高效组合式雨水收集模块及其预埋施工方法
CN105668838A (zh) * 2016-04-11 2016-06-15 徐州工程学院 一种搅拌振动净水装置及其工作方法
CN106930363A (zh) * 2015-12-31 2017-07-07 廖理纯 一种开口井及其建造方法
CN106977024A (zh) * 2017-05-12 2017-07-25 长沙理工大学 一种适用于南海疏浚工程的悬浮物净化装置
CN206399938U (zh) * 2017-01-06 2017-08-11 蔡建成 配水装置及大坝水质监测系统
CN107476379A (zh) * 2017-09-26 2017-12-15 中国水利水电科学研究院 一种沙化河岸防风固沙林带的灌溉方法和系统
CN206837644U (zh) * 2017-03-21 2018-01-05 中国海洋大学 一种新型污水处理装置
CN108178242A (zh) * 2017-12-29 2018-06-19 上海市建工设计研究总院有限公司 自然水体净化装置与安装方法
CN108862922A (zh) * 2018-07-23 2018-11-23 徐州工程学院 一种用于含重金属污水处理中有源协同振动装置
CN209854826U (zh) * 2019-01-11 2019-12-27 中国水利水电科学研究院 基于流致振动原理的供水高含沙水体取水装置

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121432A (ja) * 1996-10-18 1998-05-12 Kozaburo Hayashi 河川構造
JP3153956B2 (ja) * 1998-04-20 2001-04-09 宏 五十嵐 地下水用取水装置と循環式水処理方法と循環式水処理装置
KR20030010328A (ko) * 2001-07-26 2003-02-05 박원우 해중 저수 및 급수 장치
CN1470719A (zh) * 2002-07-22 2004-01-28 张福增 动态水资源开发技术系统
KR20060106437A (ko) * 2005-04-08 2006-10-12 주식회사 한진중공업 투수파브릭 소재로 전체를 감싼 조립식 유공블록을 이용한빗물저장 및 이용장치의 월류수의 지하 침투장치
RU2310726C1 (ru) * 2006-05-04 2007-11-20 Федеральное государственное унитарное предприятие "Дальневосточный научно-исследовательский институт гидротехники и мелиораций" (ФГУП ДальНИИГиМ) Плавающий водозабор-осветлитель
CN102070245A (zh) * 2010-12-03 2011-05-25 河海大学 河道生态净污型正方体框体及其构建组合挡坝方法
CN102942252A (zh) * 2012-11-23 2013-02-27 杭州银江环保科技有限公司 组合式生态净化笼
KR20140076701A (ko) * 2012-12-13 2014-06-23 서울대학교산학협력단 무동력 다목적 빗물 저류침투 시스템
JP2014206016A (ja) * 2013-04-15 2014-10-30 山大機電株式会社 河川における取水装置
CN104874591A (zh) * 2015-06-11 2015-09-02 揭阳市绿源环保处理有限公司 建筑余泥处理工艺及系统
CN205151804U (zh) * 2015-10-31 2016-04-13 成都易态科技有限公司 取水装置及其构成的水生产系统
CN105649137A (zh) * 2015-11-25 2016-06-08 长沙建益新材料有限公司 一种高效组合式雨水收集模块及其预埋施工方法
CN106930363A (zh) * 2015-12-31 2017-07-07 廖理纯 一种开口井及其建造方法
CN105668838A (zh) * 2016-04-11 2016-06-15 徐州工程学院 一种搅拌振动净水装置及其工作方法
CN206399938U (zh) * 2017-01-06 2017-08-11 蔡建成 配水装置及大坝水质监测系统
CN206837644U (zh) * 2017-03-21 2018-01-05 中国海洋大学 一种新型污水处理装置
CN106977024A (zh) * 2017-05-12 2017-07-25 长沙理工大学 一种适用于南海疏浚工程的悬浮物净化装置
CN107476379A (zh) * 2017-09-26 2017-12-15 中国水利水电科学研究院 一种沙化河岸防风固沙林带的灌溉方法和系统
CN108178242A (zh) * 2017-12-29 2018-06-19 上海市建工设计研究总院有限公司 自然水体净化装置与安装方法
CN108862922A (zh) * 2018-07-23 2018-11-23 徐州工程学院 一种用于含重金属污水处理中有源协同振动装置
CN209854826U (zh) * 2019-01-11 2019-12-27 中国水利水电科学研究院 基于流致振动原理的供水高含沙水体取水装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姚熊亮.结构动力学.哈尔滨工程大学出版社,2017,第8.1节. *

Also Published As

Publication number Publication date
CN109707001A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN209854826U (zh) 基于流致振动原理的供水高含沙水体取水装置
CN101260661B (zh) 农田排涝防旱的自动排灌方法及系统
CN108665114A (zh) 一种基于虚拟联系的平原河网面源污染水质响应计算方法
CN109636246B (zh) 一种分布式地表水供水水源系统
CN207567736U (zh) 淤地坝蓄水智能缓释装置
CN101830564A (zh) 植物塘床合建式人工湿地污水处理系统
CN107190838A (zh) 一种地下阶梯式链状雨水调蓄水池
CN109707001B (zh) 基于流致振动原理的供水高含沙水体取水装置
CN101806050A (zh) 管束式发电用自然引水装置及引水方法
CN204982778U (zh) 一种高效净化调节人工湖系统
CN117023832B (zh) 初期雨水治理系统和方法
CN205076891U (zh) 一种多级自由组合式水平潜流人工湿地污染水处理单元
CN107574799A (zh) 一种水资源蓄存及综合利用系统
CN207243686U (zh) 一种高架桥雨水处理系统
CN204703118U (zh) 一种景观湖池底自洁和水循环综合利用装置
CN104975644B (zh) 道路初期雨水专管储存系统
CN108147618A (zh) 一种无动力滨河水生态保持净化处理系统
CN106284496B (zh) 一种滨海地区雨水收集系统
CN208201770U (zh) 一种用于市政工程中水利设施的自动泥沙导除结构
CN209011283U (zh) 一种海绵城市新型雨水分流系统
CN102557236B (zh) 兼具污染物削减与景观利用的缓流河道侧沟修复系统
Xu et al. Integrated river restoration in a mountainous city and case study
CN202465356U (zh) 兼具污染物削减与景观利用的缓流河道侧沟修复系统
CN206034601U (zh) 一种用于滨海地区的雨水收集系统
Velychko et al. Hydrological Assessment of the Water Replenishment Possibility of the Uzh River Urbanized Floodplain on the Example of Bozdosky Park, Ukraine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant