CN109686574B - 一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法 - Google Patents

一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法 Download PDF

Info

Publication number
CN109686574B
CN109686574B CN201811476489.4A CN201811476489A CN109686574B CN 109686574 B CN109686574 B CN 109686574B CN 201811476489 A CN201811476489 A CN 201811476489A CN 109686574 B CN109686574 B CN 109686574B
Authority
CN
China
Prior art keywords
mno
solution
cnf
preparation
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811476489.4A
Other languages
English (en)
Other versions
CN109686574A (zh
Inventor
张春勇
苏蕾
文颖频
程洁红
夏雨
李钟杰
林贵虹
应琪
江霖
刘凤洁
郑德峰
黄琳娜
舒莉
顾怡华
秦恒飞
朱炳龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN201811476489.4A priority Critical patent/CN109686574B/zh
Publication of CN109686574A publication Critical patent/CN109686574A/zh
Application granted granted Critical
Publication of CN109686574B publication Critical patent/CN109686574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及材料合成技术领域,尤其是一种MnO‑Mn(OH)2/碳纳米纤维复合材料及其制备方法,具体是以静电纺丝法为辅助再经过炭化合成MnO‑Mn(OH)2/CNF的方法。按照以下步骤进行:(1)取一定质量的聚丙烯腈溶于N,N‑二甲基甲酰胺,搅拌均匀得到溶液A;(2)将一定量的锰盐缓慢加入到溶液A中,并充分搅拌形成混合溶液B;(3)将混合溶液B放置于针筒内进行静电纺丝作用;(4)将制得的纳米纤维垫在常温下干燥得到Mn/PAN纳米纤维;(5)将收集到的纳米纤维垫在惰性气体的氛围下煅烧,制得MnO‑Mn(OH)2/CNF。本发明制备流程少,简单易操作并且投资成本低。

Description

一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法
技术领域
本发明涉及材料合成技术领域,具体领域为一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法。
背景技术
电化学电容器或超级电容器是相对于锂离子电池具有高功率密度和寿命的能量存储装置。然而,电极材料的制备是影响超级电容器的性能的关键因素,将新的金属氧化物负载在CNF上,制备电容量大、长寿命、低污染的电极是超级电容器的研究方向。
针对现有技术,如徐继任发表的《C@MnO2复合材料的制备及其超电容性能研究》使用的静电纺丝和水热处理两步法,其生产成本高、操作复杂、不容易实现工业化。如Lin Shi发表的文章《Effect of heating rate on the electrochemical performance of MnOX@CNF nanocomposites as supercapacitor electrodes》中使用的原料为MnCl2,吞食或长期接触严重危害健康且制作出的样品分散不均匀,这将不利于和电解液离子充分接触发生反应。
静电纺丝作为一种新技术,它可制备出直径为纳米级的丝,最小直径可至1纳米,是目前唯一能够直接、连续制备聚合物纳米纤维的方法,在制备纳米纤维领域得到了广泛的应用,被认为是最简单有效的方法之一,已经用这种方法成功地制备了不同的纳米纤维。静电纺丝技术具有简单方便、廉价、对环境无污染等特点。
市售的电化学双层电容器(EDLC)通常使用活性炭作为电极材料,比电容通常受到活性电极表面积和材料活性的限制,而速率能力由电导率和电极的质量传递性质控制。除常规活性炭外,许多其他碳质材料已被广泛研究用于EDLC,如碳纳米管,碳纳米纤维(CNF),石墨烯等。现如今,CNF已经被广泛研究用于EDLC,因为它们具有高比表面积,低成本前体,简单的合成和灵活的性质。
然而,静电纺丝作为用于制造CNF的低成本,可扩展且简单的制造技术而得到广泛研究,并且通过改变喷丝头设计、收集方法、纺丝条件和前体,可以控制纳米纤维结构。
在众多无机功能材料之中,氧化锰类材料由于它自身的安全无毒性、高比容量和较低价格等优点,越来越受人们青睐,而有它制备的电极材料具有比容量高、稳定性高等特点,是作为超级电容器的良好电极材料。高负载量的醋酸锰加入到静电纺丝前体溶液中,显著提高了电极的电化学性能。
发明内容
本发明的目的在于提供一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法。
为实现上述目的,本发明提供如下技术方案:
一种MnO-Mn(OH)2/碳纳米纤维复合材料的制备方法,包括以下步骤:
(1)称取一定质量的聚丙烯腈溶于溶剂中,搅拌均匀得到溶液A;
(2)称取一定质量的锰盐倒入溶液A中,室温下搅拌一段时间,得到混合溶液B;
(3)将混合溶液B放置于针筒内,在一定的电压、流速以及高度内进行静电纺丝作用,在一定温度下干燥,制得Mn/PAN纳米纤维;
(4)将步骤(3)所得纳米纤维垫置于瓷舟中,在通N2的条件下,一定温度下煅烧一段时间,制得样品MnO-Mn(OH)2/CNF。
其中,所述步骤(1)中的溶剂为N,N-二甲基甲酰胺。
其中,所述步骤(2)中的锰盐为氯化锰或者醋酸锰。
其中,所述步骤(1)和步骤(2)中锰离子与聚丙烯腈的质量比为1:0.1~10。
其中,所述步骤(2)中溶液A在搅拌的条件下逐渐加入锰盐。
其中,所述步骤(3)中静电纺丝电压为10~30KV。
其中,所述步骤(3)中静电纺丝流速0.5~6mL/h。
其中,所述步骤(3)中静电纺丝高度为10~30cm。
其中,所述步骤(4)中煅烧的温度550~1600℃。
其中,所述步骤(4)中煅烧的时间为5~20h。
经过大量的实验发现:如果锰离子与聚丙烯腈的质量比1:x,当x<0.3则得出的样品不能完全成丝状,且会产生其他杂质;当x>6时,合成的纳米纤维容易团聚在一起;如果步骤(2)中为MnCl2,若吞食或长期接触严重危害健康且制作出的样品分散不均匀,这将不利于和电解液离子充分接触发生反应;如果步骤(3)中电压低于15kv,流速高于5mL/h,高度高于30cm,喷出的样品受到电场力的作用变小,不能完全成丝状,伴随着溶液滴落;若步骤(3)中的电压高于25kv或流速低于1mL/h,高度低于15cm,会产生电火花,比较危险;若步骤(4)中煅烧温度低于650℃或煅烧时间少于7h,样品不能完全反应,有杂质产生;若步骤(4)中煅烧温度高于1300℃或煅烧时间高于19h,则会使Mn离子分布不均匀,发生团聚。
本发明的有益效果是:本发明以静电纺丝法为辅助再经炭化,生成MnO-Mn(OH)2/CNF,有效生成电容量大、长寿命、低污染的电极材料。并且优化了工艺反应条件,大幅简化了合成工艺和缩减了成本。采用静电纺丝方法可制备出直径为纳米级的丝,是最简单有效的方法之一,而且简单方便、廉价、对环境无污染;并且产品具有其良好的导电导热等性能。
附图说明
图1为实施例1制得的Mn/PAN纳米纤维XRD图。
图2为实施例1制得的Mn/PAN纳米纤维的SEM形貌图。
图3为实施例1制得的MnO-Mn(OH)2/CNF的XRD图。
图4为实施例1制得的MnO-Mn(OH)2/CNF的SEM形貌图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种MnO-Mn(OH)2/碳纳米纤维复合材料的制备方法,包括以下步骤:
(1)称取1.206g的聚丙烯腈溶于12ml N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A。
(2)称取1.334g醋酸锰倒入溶液A中,室温下搅拌3.5h时间,得到混合溶液B。
(3)将混合溶液B放置于针筒内,在15KV电压,流速为1mL/h以及高度15cm的条件下进行静电纺丝作用,在室温下干燥一夜,制得Mn/PAN纳米纤维。
(4)将步骤(3)所得纳米纤维垫置于瓷舟中,在通N2的条件下,从室温逐步加热到850℃,煅烧18.2h,制得样品MnO-Mn(OH)2/CNF。
其中,Mn/PAN纳米纤维的XRD图由图1可知,Mn/PAN纳米纤维结构相图的衍射峰的位置相符,证明所得的样品为较纯的Mn/PAN纳米纤维。
其中,Mn/PAN纳米纤维SEM相貌图如图2所示,从图中可以看出按照实验方法制备的Mn/PAN纳米纤维为管状。
其中,得到MnO/CNF的XRD图,由图3明显发现经过炭化后,在24.5°、35.2°、40.8°、43.6°、50.7°、58.8°、70.4°、74.0°、89.9°处均有相应的衍射峰。
其中,MnO/CNF的SEM相貌图如图4所示,从图中可以看出金属Mn粒子均匀紧密的负载在CNF表面。
实施例2
一种MnO-Mn(OH)2/碳纳米纤维复合材料的制备方法,包括以下步骤:
(1)称取0.303g的聚丙烯腈溶于12ml N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A。
(2)称取1.334g醋酸锰倒入溶液A中,室温下搅拌3.5h时间,得到混合溶液B。
(3)将混合溶液B放置于针筒内,在20KV电压,流速为0.8mL/h以及高度20cm的条件下进行静电纺丝作用,在室温下干燥一夜,制得Mn/PAN纳米纤维。
(4)将步骤(3)所得纳米纤维垫置于瓷舟中,在通N2的条件下,从室温逐步加热到600℃,煅烧15h,制得样品MnO-Mn(OH)2/CNF。
实施例3
一种MnO-Mn(OH)2/碳纳米纤维复合材料的制备方法,包括以下步骤:
(1)称取0.802g的聚丙烯腈溶于12ml N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A。
(2)称取1.334g醋酸锰倒入溶液A中,室温下搅拌3.5h时间,得到混合溶液B。
(3)将混合溶液B放置于针筒内,在15KV电压,流速为1.2mL/h以及高度15cm的条件下进行静电纺丝作用,在室温下干燥一夜,制得Mn/PAN纳米纤维。
(4)将步骤(3)所得纳米纤维垫置于瓷舟中,在通N2的条件下,从室温逐步加热到1000℃,煅烧16h,制得样品MnO-Mn(OH)2/CNF。
实施例4
一种MnO-Mn(OH)2/碳纳米纤维复合材料的制备方法,包括以下步骤:
(1)称取2.002g的聚丙烯腈溶于12ml N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A。
(2)称取1.334g醋酸锰倒入溶液A中,室温下搅拌3.5h时间,得到混合溶液B。
(3)将混合溶液B放置于针筒内,在15KV电压,流速为2mL/h以及高度20cm的条件下进行静电纺丝作用,在室温下干燥一夜,制得Mn/PAN纳米纤维。
(4)将步骤(3)所得纳米纤维垫置于瓷舟中,在通N2的条件下,从室温逐步加热到1200℃,煅烧11h,制得样品MnO-Mn(OH)2/CNF。
实施例5
一种MnO-Mn(OH)2/碳纳米纤维复合材料的制备方法,包括以下步骤:
(1)称取2.500g的聚丙烯腈溶于12ml N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A。
(2)称取1.334g醋酸锰倒入溶液A中,室温下搅拌3.5h时间,得到混合溶液B。
(3)将混合溶液B放置于针筒内,在20KV电压,流速为1mL/h以及高度15cm的条件下进行静电纺丝作用,在室温下干燥一夜,制得Mn/PAN纳米纤维。
(4)将步骤(3)所得纳米纤维垫置于瓷舟中,在通N2的条件下,从室温逐步加热到1500℃,煅烧15h,制得样品MnO-Mn(OH)2/CNF。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (2)

1.一种MnO-Mn(OH)2/碳纳米纤维复合材料的制备方法,其特征在于,包括以下步骤:
(1)称取1.206g的聚丙烯腈溶于12ml N,N-二甲基甲酰胺的溶剂中,搅拌均匀得到溶液A;
(2)称取1.334g醋酸锰倒入溶液A中,室温下搅拌3.5h时间,得到混合溶液B;
(3)将混合溶液B放置于针筒内,在15KV电压,流速为1mL/h以及高度15cm的条件下进行静电纺丝作用,在室温下干燥一夜,制得Mn/PAN纳米纤维;
(4)将步骤(3)所得纳米纤维垫置于瓷舟中,在通N2的条件下,从室温逐步加热到850℃,煅烧18.2h,制得样品MnO-Mn(OH)2/CNF。
2.采用权利要求1所述的制备方法获得的MnO-Mn(OH)2/碳纳米纤维复合材料。
CN201811476489.4A 2018-12-04 2018-12-04 一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法 Active CN109686574B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811476489.4A CN109686574B (zh) 2018-12-04 2018-12-04 一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811476489.4A CN109686574B (zh) 2018-12-04 2018-12-04 一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109686574A CN109686574A (zh) 2019-04-26
CN109686574B true CN109686574B (zh) 2021-12-21

Family

ID=66187012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811476489.4A Active CN109686574B (zh) 2018-12-04 2018-12-04 一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109686574B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085447A (zh) * 2019-04-28 2019-08-02 江苏理工学院 一种Cu-MnO/碳纳米纤维复合材料及其制备方法和应用
CN111223681B (zh) * 2020-01-13 2021-05-21 嘉兴学院 一氧化锰/碳纳米纤维的超级电容器电极材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606654A (zh) * 2012-12-21 2014-02-26 燕山大学 一种碳包覆锰氧化物复合材料的制备方法
JPWO2012133599A1 (ja) * 2012-03-29 2015-02-23 国立大学法人東京農工大学 マンガン化合物とカーボン複合体、その製造方法、この複合体を用いた電極及び電気化学素子
CN108682915A (zh) * 2018-05-29 2018-10-19 江苏理工学院 一种废旧镍钴锰三元锂电池和银镍合金共同处理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021677B (zh) * 2010-10-13 2013-07-03 清华大学 含过渡金属与氮元素的碳纳米纤维的制备方法及其在燃料电池催化剂中的应用
US10396365B2 (en) * 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
CN103606689B (zh) * 2013-11-14 2015-08-19 清华大学 氧化改进型静电纺丝制备碳纳米纤维基非贵金属催化剂的方法
CN104882299A (zh) * 2015-05-13 2015-09-02 扬州大学 一种四氧化三锰/碳基复合纳米电极材料的制备方法
CN105214668A (zh) * 2015-10-28 2016-01-06 北京师范大学 一种高效碳纳米纤维基催化剂及其混纺制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012133599A1 (ja) * 2012-03-29 2015-02-23 国立大学法人東京農工大学 マンガン化合物とカーボン複合体、その製造方法、この複合体を用いた電極及び電気化学素子
CN103606654A (zh) * 2012-12-21 2014-02-26 燕山大学 一种碳包覆锰氧化物复合材料的制备方法
CN108682915A (zh) * 2018-05-29 2018-10-19 江苏理工学院 一种废旧镍钴锰三元锂电池和银镍合金共同处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Electrosorption of manganese dioxide on electrochemically modified carbon fiber nonwoven materials";Varentsov, VK; Varentsova, VI and Bataev, IA;《 RUSSIAN JOURNAL OF APPLIED CHEMISTRY》;20120831;第85卷(第8期);第1220-1224页 *
"静电纺丝法制备MnO/C复合纳米纤维及其储锂性能研究";刘彬;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20161215(第12期);第B020-14页 *

Also Published As

Publication number Publication date
CN109686574A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
Yun et al. Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes
Heo et al. Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning
Cao et al. Lignin-based multi-channels carbon nanofibers@ SnO2 nanocomposites for high-performance supercapacitors
Du et al. Facile carbonaceous microsphere templated synthesis of Co 3 O 4 hollow spheres and their electrochemical performance in supercapacitors
KR100675923B1 (ko) 금속산화물 복합 나노 활성탄소섬유와 이를 이용한전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법
Ji et al. Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material
Fang et al. Anchoring sea urchin-like cobalt-nickel carbonate hydroxide on 3D carbon sponge for electrochemical energy storage
KR101126784B1 (ko) 망간산화물/탄소나노섬유복합재 제조방법 및 그 탄소나노섬유복합재를 포함하는 고용량 하이브리드 슈퍼의사캐패시터용 전극
Yang et al. Highly conductive, porous RuO2/activated carbon nanofiber composites containing graphene for electrochemical capacitor electrodes
Yang et al. Preparation and electrochemical properties of RuO2-containing activated carbon nanofiber composites with hollow cores
He et al. NiWO4/Ni/Carbon composite fibres for supercapacitors with excellent cycling performance
CN106711417A (zh) 一种纳米二氧化钛包覆石墨负极材料的制备方法
CN109399691A (zh) 一种Cu-CuO/碳纳米纤维复合材料及其制备方法
CN109686574B (zh) 一种MnO-Mn(OH)2/碳纳米纤维复合材料及其制备方法
Fernando et al. Flexible free-standing Ni–Mn oxide antenna decorated CNT/nanofiber membrane for high-volumetric capacitance supercapacitors
Xu et al. High-performance supercapacitor based on MnO/carbon nanofiber composite in extended potential windows
CN110808173A (zh) 一种链珠状Cu2O-Mn3O4/NiO复合材料及其制备方法
Yang et al. Controllable preparation of hierarchical NiO hollow microspheres with high pseudo-capacitance
Jeong et al. Relationship between microstructure and electrochemical properties of 2lignin-derived carbon nanofibers prepared by thermal treatment
Jia et al. SiO2 anchored stacked-petal structure CoO-NiO/CNF as electrodes for high-rate-performance supercapacitors
Zhu et al. In situ formation of MnO@ N-doped carbon for asymmetric supercapacitor with enhanced cycling performance
Sun et al. Preparation of amorphous cobalt/carbon nanofibers composite as binder-free and conductive-free electrode materials for high supercapacitor
Wang et al. Porous carbon nanofibers: Preparation and potential applications
Wang et al. Self-assembly 3D needle-like nickel nanostructure growth on carbon fibers by regulating prepare conditions and exploited as bifunctional material
Dubal et al. Electrospun polyacrylonitrile carbon nanofiber for supercapacitor application: a review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190426

Assignee: Jiangsu Ningda environmental protection Co.,Ltd.

Assignor: JIANGSU University OF TECHNOLOGY

Contract record no.: X2023980054656

Denomination of invention: A MnO-Mn (OH) 2/carbon nanofiber composite material and its preparation method

Granted publication date: 20211221

License type: Common License

Record date: 20240103