CN109684484A - 一种swot指标体系构建系统 - Google Patents

一种swot指标体系构建系统 Download PDF

Info

Publication number
CN109684484A
CN109684484A CN201811515375.6A CN201811515375A CN109684484A CN 109684484 A CN109684484 A CN 109684484A CN 201811515375 A CN201811515375 A CN 201811515375A CN 109684484 A CN109684484 A CN 109684484A
Authority
CN
China
Prior art keywords
keyword
word
text data
speech
index system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811515375.6A
Other languages
English (en)
Other versions
CN109684484B (zh
Inventor
石进
韩进
金鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201811515375.6A priority Critical patent/CN109684484B/zh
Publication of CN109684484A publication Critical patent/CN109684484A/zh
Application granted granted Critical
Publication of CN109684484B publication Critical patent/CN109684484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/289Phrasal analysis, e.g. finite state techniques or chunking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/205Parsing
    • G06F40/216Parsing using statistical methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明涉及一种SWOT指标体系构建系统,其包括:关键词提取模块,对文本数据集的关键词提取;映射模块,关键词聚类和SWOT指标体系映射;以及权重建议生成模块,生成指标体系权重建议。清晰地列出影响目标实施的优势、劣势、机会和威胁因素,并加以综合分析,将影响目标实施的复杂因素明朗化,决策者可以清楚地掌握目标实施中可能存在的风险与机遇,从而提高决策的准确性。

Description

一种SWOT指标体系构建系统
技术领域
本发明涉及终端集中存储领域,具体为一种SWOT指标体系构建系统。
背景技术
SWOT分析方法(其中Strengths:内部优势因素,Weakness:内部弱势因素,Opportunities:外部机遇因素,Threats:外部威胁因素)是一种经典的竞争情报分析工具,由哈佛商学院的K.J.安德鲁斯于1971年在其《公司战略概念》一书中提出。该方法的主要内容是围绕着分析目标进行广泛地调查与信息收集,然后对收集到的信息予以分析,判断影响目标的外部机遇及外部威胁,目标实施的内部优势和劣势四方面因素。SWOT分析方法既可以进行简单的初步分析,定性地了解分析目标的总体概况,同时也可以实现目标的战略策略形成,实施或控制决策。
由于SWOT分析方法从分析目标总体出发,可以清晰地列出影响目标实施的优势、劣势、机会和威胁因素,并加以综合分析,将影响目标实施的复杂因素明朗化,决策者可以清楚地掌握目标实施中可能存在的风险与机遇,从而提高决策的准确性。因此SWOT分析方法现已成为现代政府部门、企业在管理与决策中最为常用的分析工具,得到了广泛的应用与研究。
基于上述技术问题需要设计一种新的SWOT指标体系构建系统。
发明内容
本发明的目的是提供一种SWOT指标体系构建系统。
为了解决上述技术问题,本发明提供了一种SWOT指标体系构建系统,包括:
关键词提取模块,对文本数据集的关键词提取;
映射模块,关键词聚类和SWOT指标体系映射;以及
权重建议生成模块,生成指标体系权重建议。
进一步,所述关键词提取模块适于对文本数据集的关键词提取,即
停用词过滤,对采集的文本数据集进行中文分词之后,通过积累挑选形成的停用词表,过滤文本数据中的停用词;
特定词过滤,通过搜索引擎对词进行搜索,对于搜索结果少于阈值的词,判断其为特定词,然后将特定词过滤;
关键词提取,通过改进的TF/IDF算法进行关键词提取。
进一步,所述改进的TF/IDF算法为:
式1
式2 Wi={W|TF/IDF(wi)>η};
式3 W=∪Wi
式4
式中,TF/IDF(wi)为标号为i的文本数据中词w的TF/IDF权值;TF(wi)为词w在标号为i的文本数据中出现的频数;N为文本数据集包含的文本数据数;d为包含词w的文本数据数;
所述通过改进的TF/IDF算法进行关键词提取的方法包括:
通过式1计算出文本数据集中每个文本数据中包含的关键词的TF/IDF权值;
根据各文本数据中关键词的TF/IDF权值按大小进行排序;
提取权值大于阈值η的关键词形成标号为i的文本数据的关键词集合Wi,所有文本数据的Wi集合汇总为文本数据集的关键词W集合;
针对W集合中的关键词两两配对,计算比值C;
式4中TFsum(Wa)指某关键词a在W集合中出现的频数累加和,TFsum(Wb)是指某关键词b在W集合中出现的频数累加和,G(Wa)是指该关键词a在搜索引擎中获取的检索页面结果数;G(Wb)是指该关键词b在搜索引擎中获取的检索页面结果数;比值C为一对关键词a和b的TFsum值与G值的乘积的比值,并且按比值的结果对W集合中的关键词排序,并按顺序显示以对关键词加以修正。
进一步,所述映射模块适于关键词聚类和SWOT指标体系映射,即
依据中国分类主题词表,实现对关键词的初次分类,对照中国分类主题词表,将当前文本数据集中提取出的关键词进行分类,建立初始的关键词分类结构;
针对初步分类后,剩余的在中国分类主题词表中无法对应分类的关键词,依据词的近义程度作为词与词的距离度量,采用K_MEANS聚类方法对剩余关键词进行聚类;
在终端辅助聚类完成之后,再将聚类后的关键词分类展现并修正;
经过对关键词聚类的重复迭代以及对聚类后的关键词分类修正后,根据聚类后的词类的分类信息,将词类映射成对应地指标,即
建立SWOT分析的指标体系。
进一步,所述权重建议生成模块适于生成指标体系权重建议,即
基于影响指标体系权重判断的因素构建指标体系权重建议的生成公式;
所述影响指标体系权重判断的因素包括:
词类包含的关键词的词量:通过分析关键词聚类过程中生成的各词类所包含的关键词数量,以判断该词类所映射生成指标权重,即关键词数量越多的词类其对应的指标权重越大;
词类包含的关键词的词频:为词类中包含的所有关键词在文本数据集中出现的频次累计和;以及
词类包含的关键词的时效性:为一个词类包含的关键词在时间维度上的词频统计显示出该关键词在时间维度上被关注的程度。
进一步,所述指标体系权重建议的生成公式为:
式中,R(W)为一个词类对应的指标权重建议;i从1到K为该词类中包含的关键词数,依次对该类中所有关键词进行计算;j从1到d为包括该词类中某个词w的文本数据,依次对包含该词w的所有文本数据进行计算;遍历包含词w的文本数据,分别计算第j个包含词w的时间衰减函数;TF(wj)为词w在文本数据j中出现的频次;e-μ(t-tc)为时间衰减函数;μ为衰减常数;t为该文本数据出现的时间;tc为当前时刻;
计算各词类的R(W)权重建议值之后生成指标权重建议。
本发明的有益效果是,本发明通过关键词提取模块,对文本数据集的关键词提取;映射模块,关键词聚类和SWOT指标体系映射;以及权重建议生成模块,生成指标体系权重建议,实现了清晰地列出影响目标实施的优势、劣势、机会和威胁因素,并加以综合分析,将影响目标实施的复杂因素明朗化,决策者可以清楚地掌握目标实施中可能存在的风险与机遇,从而提高决策的准确性。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的SWOT指标体系构建系统的原理框图;
图2是本发明的SWOT指标体系构建系统的工作流程图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
图1是本发明的SWOT指标体系构建系统的原理框图。
如图1所示,本实施例供了一种SWOT指标体系构建系统,包括:
关键词提取模块,基于终端对文本数据集的关键词提取;
映射模块,关键词聚类和SWOT指标体系映射;以及
权重建议生成模块,生成指标体系权重建议;
在本实施中,终端可以但不限于采用计算机,以对SWOT指标体系的构建进行辅助;关键词的自动提取和聚类,有效节省了专家人力资源,并在一定程度上避免了SWOT体系构建过程中人为干扰因素的影响。
终端可以包括存储器、存储控制器、处理器、外设接口、显示触摸屏。
存储器、存储控制器、处理器、外设接口、显示触摸屏各元件相互之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可以通过一条或多条通讯总线或信号线实现电性连接。关键词提取模块、映射模块以及权重建议生成模块可以包括至少一个可以软件或固件的形式存储于存储器中或固化在终端的操作系统中的软件模块。
其中,存储器可以是,但不限于,随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(Programmable Read-OnlyMemory,PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM),电可擦除只读存储器(Flectric Erasable Programmable Read-Only Memory,EEPROM)等。其中,存储器用于存储程序,处理器在接收到执行指令后,执行所述程序。处理器以及其他可能的组件对存储器的访问可以在存储控制器的控制下进行。
处理器可能是一种集成电路芯片,具有信号的处理能力。上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(NetworkProcessor,NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
外设接口将各种输入/输出装置耦合至处理器以及存储器。在一些实施例中,外设接口、处理器以及存储控制器可以在单个芯片中实现,在其他一些实施例中,他们可以分别由独立的芯片实现。
显示触摸屏用于接收外部的触摸操作,并将外部操作发送给处理器处理,从而将外部表示的操作转化为相应控制指令。
可以理解,图1所示的结构仅为示意,终端还可以包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。图1中所示的各组件可以采用硬件、软件或者其组合实现。
图2是本发明的SWOT指标体系构建系统的工作流程图。
如图2所示,在本实施例中,所述关键词提取模块适于对文本数据集的关键词提取,即停用词过滤,对终端采集的文本数据集进行中文分词之后,通过积累挑选形成的停用词表,过滤文本数据中的停用词,所述停用词可以但不限于是语气助词、虚词以及数量词等;特定词过滤,通过搜索引擎对词进行搜索,对于搜索结果少于阈值的词,判断其为特定词,然后将特定词过滤,所述特定词可以但不限于是地名、人名等指向性很强的特定词;不同于停用词,特定词难以通过定制词表来进行过滤,在相关的研究工作中,很多实用词分类推理来实现特定词的归类,判断词是否是地名、人名等,但是这种推断存在一定的不可靠性;使用搜索引擎,如Google、百度等,来判断特定词;例如Google每次搜索时都会显示搜索的结果数,使用特定词进行搜索会得到较少的搜索页面数,因此对于搜索结果少于一定阈值的词,可以判断其为特定词,予以过滤;Google的检索特定词可以通过Google的算法来自动完成;关键词提取,通过改进的TF/IDF算法进行关键词提取;TF/IDF算法是目前主流的关键词提取算法,TF(Term Frequency:词频),指的是某个词在某个文本中出现的次数,IDF(Inverse Document Frequency:逆文档频率)。
在本实施例中,在本实施例中,所需要实现的是面向整个文本数据集提取出该集合中的关键词,传统的TF/IDF算法是针对某一个文档来提取该文档中的关键词,因此对传统TF/IDF算法进行改进;所述改进的TF/IDF算法为:
式1
式2 Wi={W|TF/IDF(wi)>η};
式3 W=∪Wi
式4
式中,TF/IDF(wi)为标号为i的文本数据中词w的TF/IDF权值;TF(wi)为词w在标号为i的文本数据中出现的频数;N为文本数据集包含的文本数据数;d为包含词w的文本数据数;
所述通过改进的TF/IDF算法进行关键词提取的方法包括:通过式1计算出文本数据集中每个文本数据中包含的关键词的TF/IDF权值;根据各文本数据中关键词的TF/IDF权值按大小进行排序;提取权值大于阈值η的关键词形成标号为i的文本数据的关键词集合Wi,所有文本数据的Wi集合汇总为文本数据集的关键词W集合;针对W集合中的关键词两两配对,计算比值C;式4中TFsum(Wa)指某关键词a在W集合中出现的频数累加和,TFsum(Wb)是指某关键词b在W集合中出现的频数累加和,G(Wa)是指该关键词a在搜索引擎中获取的检索页面结果数;G(Wb)是指该关键词b在搜索引擎中获取的检索页面结果数;比值C为一对关键词a和b的TFsum值与G值(G值与TFsum的表现形式一样,指的是一对关键词在搜索引擎中获取的检索页面结果数)的乘积的比值,并且按比值的结果对W集合中的关键词排序,并按顺序显示以对关键词加以修正。
在本实施例中,所述映射模块适于关键词聚类和SWOT指标体系映射,即依据中国分类主题词表,实现对关键词的初次分类,对照中国分类主题词表,将当前文本数据集中提取出的关键词进行分类,建立初始的关键词分类结构;针对初步分类后,剩余的在中国分类主题词表中无法对应分类的关键词,依据词的近义程度作为词与词的距离度量,采用K_MEANS聚类方法对剩余关键词进行聚类;在终端辅助聚类完成之后,再将聚类后的关键词分类展现并修正,所述修正的方法可以但不限于通过人工进行修正;经过关键词聚类的重复迭代以及对聚类后的关键词分类修正后,根据聚类后的词类的分类信息,将词类映射成对应地指标,即建立SWOT分析的指标体系。
在本实施例中,所述权重建议生成模块适于生成指标体系权重建议,即基于影响指标体系权重判断的因素构建指标体系权重建议的生成公式;指标体系中各指标对于分析结果的支持度是不一样,即有些指标是主要因素,而有些指标则为次要因素,本实施例通过三个影响指标体系权重判断的因素来生成权重建议;所述影响指标体系权重判断的因素包括:
词类包含的关键词的词量:通过分析关键词聚类过程中生成的各词类所包含的关键词数量,来判断该词类所映射生成指标权重,即关键词数量越多的词类其对应的指标权重越大;词类包含的关键词的词频:除了关键词数量之外,词类所包含的关键词词频也是该词类映射的指标的权重判断依据,词类包含的关键词词频即该词类中包含的所有关键词在文本数据集中出现的频次累计和;词类包含的关键词的时效性:关键词在某个时间段中出现的频率,通过开源数据采集到的文本数据集都带有时间属性,文本数据中的词也附加有该文本数据的时间属性,在分析与提取关键词的时候并未考察词的时间属性,而一个词类包含的关键词在时间维度上的词频统计显示出该关键词在时间维度上被关注的程度,即该词类包含的关键词的时效性也是判断其对应指标权重的要素。
在本实施例中,所述指标体系权重建议的生成公式为:
式中,R(W)为一个词类对应的指标权重建议;i从1到K为该词类中包含的关键词数,依次对该类中所有关键词进行计算;,从1到d为包括该词类中某个词w的文本数据,依次对包含该词w的所有文本数据进行计算;遍历包含词w的文本数据,分别计算第j个包含词w的时间衰减函数;TF(wj)为词w在文本数据j中出现的频次;e-μ(t-tc)为时间衰减函数;μ为衰减常数;t为该文本数据出现的时间;tc为当前时刻;计算各词类的R(W)权重建议值之后生成指标权重建议。
综上所述,本发明通过关键词提取模块,对文本数据集的关键词提取;映射模块,关键词聚类和SWOT指标体系映射;以及权重建议生成模块,生成指标体系权重建议,实现了清晰地列出影响目标实施的优势、劣势、机会和威胁因素,并加以综合分析,将影响目标实施的复杂因素明朗化,决策者可以清楚地掌握目标实施中可能存在的风险与机遇,从而提高决策的准确性。
本发明通过关键词提取模块、关键词聚类与指标体系映射模块和权重建议生成模块相配合,实现了关键词的自动提取和聚类,有效节省了专家人力资源,并在一定程度上避免了SWOT体系构建过程中人为干扰因素的影响。
通过第一次迭代用以获取SWOT分析目标相关的关键词并对关键词进行聚类,第二次迭代的目标将关键词类映射成SWOT的评估指标,最后一部分,在SWOT评估指标生成之后,通过算法生成SWOT指标权重的建议。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (6)

1.一种SWOT指标体系构建系统,其特征在于,包括:
关键词提取模块,对文本数据集的关键词提取;
映射模块,关键词聚类和SWOT指标体系映射;以及
权重建议生成模块,生成指标体系权重建议。
2.根据权利要求1所述的SWOT指标体系构建系统,其特征在于,
所述关键词提取模块适于对文本数据集的关键词提取,即
停用词过滤,对采集的文本数据集进行中文分词之后,通过积累挑选形成的停用词表,过滤文本数据中的停用词;
特定词过滤,通过搜索引擎对词进行搜索,对于搜索结果少于阈值的词,判断其为特定词,然后将特定词过滤;
关键词提取,通过改进的TF/IDF算法进行关键词提取。
3.如权利要求2所述的SWOT指标体系构建系统,其特征在于,
所述改进的TF/IDF算法为:
式1
式2 Wi={W|TF/IDF(wi)>η};
式3 W=∪Wi
式4
式中,TF/IDF(wi)为标号为i的文本数据中词w的TF/IDF权值;TF(wi)为词w在标号为i的文本数据中出现的频数;N为文本数据集包含的文本数据数;d为包含词w的文本数据数;
所述通过改进的TF/IDF算法进行关键词提取的方法包括:
通过式1计算出文本数据集中每个文本数据中包含的关键词的TF/IDF权值;
根据各文本数据中关键词的TF/IDF权值按大小进行排序;
提取权值大于阈值η的关键词形成标号为i的文本数据的关键词集合Wi,所有文本数据的Wi集合汇总为文本数据集的关键词W集合;
针对W集合中的关键词两两配对,计算比值C;
式4中TFsum(Wa)指某关键词a在W集合中出现的频数累加和,TFsum(Wb)是指某关键词b在W集合中出现的频数累加和,G(Wa)是指该关键词a在搜索引擎中获取的检索页面结果数;G(Wb)是指该关键词b在搜索引擎中获取的检索页面结果数;比值C为一对关键词a和b的TFsum值与G值的乘积的比值,并且按比值的结果对W集合中的关键词排序,并按顺序显示以对关键词加以修正。
4.如权利要求3所述的SWOT指标体系构建系统,其特征在于,
所述映射模块适于关键词聚类和SWOT指标体系映射,即
依据中国分类主题词表,实现对关键词的初次分类,对照中国分类主题词表,将当前文本数据集中提取出的关键词进行分类,建立初始的关键词分类结构;
针对初步分类后,剩余的在中国分类主题词表中无法对应分类的关键词,依据词的近义程度作为词与词的距离度量,采用K_MEANS聚类方法对剩余关键词进行聚类;
在终端辅助聚类完成之后,再将聚类后的关键词分类展现并修正;
经过对关键词聚类的重复迭代以及对聚类后的关键词分类修正后,根据聚类后的词类的分类信息,将词类映射成对应地指标,即
建立SWOT分析的指标体系。
5.如权利要求4所述的SWOT指标体系构建系统,其特征在于,
所述权重建议生成模块适于生成指标体系权重建议,即
基于影响指标体系权重判断的因素构建指标体系权重建议的生成公式;
所述影响指标体系权重判断的因素包括:
词类包含的关键词的词量:通过分析关键词聚类过程中生成的各词类所包含的关键词数量,以判断该词类所映射生成指标权重,即关键词数量越多的词类其对应的指标权重越大;
词类包含的关键词的词频:为词类中包含的所有关键词在文本数据集中出现的频次累计和;
词类包含的关键词的时效性:为一个词类包含的关键词在时间维度上的词频统计显示出该关键词在时间维度上被关注的程度。
6.如权利要求5所述的SWOT指标体系构建系统,其特征在于,
所述指标体系权重建议的生成公式为:
式中,R(W)为一个词类对应的指标权重建议;i从1到K为该词类中包含的关键词数,依次对该类中所有关键词进行计算;j从1到d为包括该词类中某个词w的文本数据,依次对包含该词w的所有文本数据进行计算;遍历包含词w的文本数据,分别计算第j个包含词w的时间衰减函数;TF(wj)为词w在文本数据j中出现的频次;e-μ(t-tc)为时间衰减函数;μ为衰减常数;t为该文本数据出现的时间;tc为当前时刻;
计算各词类的R(W)权重建议值之后生成指标权重建议。
CN201811515375.6A 2018-12-11 2018-12-11 一种swot指标体系构建系统 Active CN109684484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811515375.6A CN109684484B (zh) 2018-12-11 2018-12-11 一种swot指标体系构建系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811515375.6A CN109684484B (zh) 2018-12-11 2018-12-11 一种swot指标体系构建系统

Publications (2)

Publication Number Publication Date
CN109684484A true CN109684484A (zh) 2019-04-26
CN109684484B CN109684484B (zh) 2023-06-09

Family

ID=66186519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811515375.6A Active CN109684484B (zh) 2018-12-11 2018-12-11 一种swot指标体系构建系统

Country Status (1)

Country Link
CN (1) CN109684484B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532357A (zh) * 2019-09-04 2019-12-03 深圳前海微众银行股份有限公司 Esg评分体系的生成方法、装置、设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008143A (zh) * 2014-05-09 2014-08-27 启秀科技(北京)有限公司 基于数据挖掘的职业能力指标体系构建方法
CN105469196A (zh) * 2015-11-18 2016-04-06 山东科技大学 一种矿井建设项目过程后评价的综合评价方法及系统
US20180129703A1 (en) * 2016-11-04 2018-05-10 Sap Se Method and system for retrieval of data
CN108062306A (zh) * 2017-12-29 2018-05-22 国信优易数据有限公司 一种营商环境评价的指标体系构建系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008143A (zh) * 2014-05-09 2014-08-27 启秀科技(北京)有限公司 基于数据挖掘的职业能力指标体系构建方法
CN105469196A (zh) * 2015-11-18 2016-04-06 山东科技大学 一种矿井建设项目过程后评价的综合评价方法及系统
US20180129703A1 (en) * 2016-11-04 2018-05-10 Sap Se Method and system for retrieval of data
CN108062306A (zh) * 2017-12-29 2018-05-22 国信优易数据有限公司 一种营商环境评价的指标体系构建系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532357A (zh) * 2019-09-04 2019-12-03 深圳前海微众银行股份有限公司 Esg评分体系的生成方法、装置、设备及可读存储介质
CN110532357B (zh) * 2019-09-04 2024-03-12 深圳前海微众银行股份有限公司 Esg评分体系的生成方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN109684484B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
Huang et al. Keyphrase extraction using semantic networks structure analysis
US6826576B2 (en) Very-large-scale automatic categorizer for web content
CN105260359B (zh) 语义关键词提取方法及装置
EP2998884B1 (en) Security information management system and security information management method
CN109657070A (zh) 一种终端辅助swot指标体系的构建方法
CN108829658A (zh) 新词发现的方法及装置
US20070288442A1 (en) System and a program for searching documents
CN109635296A (zh) 新词挖掘方法、装置计算机设备和存储介质
CN105117397B (zh) 一种基于本体的医学文档语义关联检索方法
WO2008134172A1 (en) Web spam page classification using query-dependent data
CN106021418B (zh) 新闻事件的聚类方法及装置
CN110569273A (zh) 一种基于相关性排序的专利检索系统及方法
CN102012915A (zh) 一种文档共享平台的关键词推荐方法及系统
CN102073684A (zh) 搜索日志的挖掘方法和装置以及页面搜索的方法和装置
CN109766441A (zh) 文本分类方法、装置及系统
CN102375813A (zh) 搜索引擎排重系统及方法
CN108319672A (zh) 基于云计算的移动终端不良信息过滤方法及系统
CN103942268A (zh) 搜索与应用相结合的方法、设备以及应用接口
CN107743128A (zh) 一种基于首页关联域名和同服务ip的非法网站挖掘方法
CN106844482A (zh) 一种基于搜索引擎的检索信息匹配方法及装置
US20150347590A1 (en) System and method for performing a pattern matching search
CN104424399B (zh) 一种基于病毒蛋白质本体的知识导航的方法、装置
CN107092665A (zh) 一种数据检索系统及检索方法
CN109684484A (zh) 一种swot指标体系构建系统
KR101920683B1 (ko) 단일 클래스 기반의 데이터 수집 장치 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant