CN109683649A - 一种恒流电路 - Google Patents

一种恒流电路 Download PDF

Info

Publication number
CN109683649A
CN109683649A CN201811575849.6A CN201811575849A CN109683649A CN 109683649 A CN109683649 A CN 109683649A CN 201811575849 A CN201811575849 A CN 201811575849A CN 109683649 A CN109683649 A CN 109683649A
Authority
CN
China
Prior art keywords
circuit
current
resistance
constant
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811575849.6A
Other languages
English (en)
Other versions
CN109683649B (zh
Inventor
宋孙浩
张驰
郑天江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201811575849.6A priority Critical patent/CN109683649B/zh
Publication of CN109683649A publication Critical patent/CN109683649A/zh
Application granted granted Critical
Publication of CN109683649B publication Critical patent/CN109683649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供一种恒流电路,包括MCU主控电路、DAC输出电路、差动积分放大电路、差分放大电路、两个PNP三极管、NMOS晶体管、继电器、继电器驱动电路、三极管开关电路与反相放大电路。由于采用两级PNP三极管和NMOS晶体管相结合的方式,有效增大了恒流电流的放大倍数;同时,由于采用差动积分放大电路和差分放大电路,引入了可靠的负反馈控制及电压缓上升保护机制,使得流过负载的恒流电流更平滑、更稳定,线性度更好。

Description

一种恒流电路
技术领域
本发明涉及恒流电路,尤其涉及一种基于MCU主控电路、运算放大器DAC芯片、三极管、MOS管和继电器的恒流输出电路。
背景技术
目前,恒流电路的应用非常广泛,在各式各样的电子设备中作为电路的电流供给源。恒流电路的本质是器件根据输出电流的实时反馈,动态调节电压-电流转换电路的供电电压,从而使输出的电流不断趋于稳定。
在很多电子应用系统中,例如磁悬浮轴承、电磁线圈和大功率LED照明系统的控制电路中,恒流电路作为关键部分之一,其精确度和稳定性直接影响整个系统的运行结果。然而,传统的恒流电路在输出电流较大时,其恒流精度和稳定性会逐步降低,且输出电路损耗变大导致电流的线性度变差,因此在很大程度上限制了其使用范围。
发明内容
针对上述技术现状,本发明的技术目的在于解决恒流电路在输出电流较大时,其恒流精度和稳定性降低从而导致电路功耗增加、恒流线性度变差的缺陷。
为了实现上述技术目的,本发明提供一种恒流电路,用于对负载RL提供恒定电流源,包括MCU主控电路与DAC输出电路,MCU主控电路与DAC输出电路进行通信,DAC输出电路输出模拟电压;
其特征是:还包括差动积分放大电路、差分放大电路、两个PNP三极管(称为第一PNP三极管Q1与第二PNP三极管Q2)、NMOS晶体管、继电器、继电器驱动电路、三极管开关电路与反相放大电路;
所述的MCU主控电路通过端口IO1连接继电器驱动电路,继电器驱动电路的输出端连接继电器的电源负极,继电器的电源正极连接正电源VCC,继电器的常闭接点NC接地(GND),继电器的公共接点COM连接三极管开关电路的输入端;三极管开关电路的输出端连接反相放大电路的输入端;反相放大电路的输出端连接第一PNP三极管Q1的基极(B极);第一PNP三极管Q1的集电极(C极)和第二PNP三极管Q2的集电极(C极)都连接负电源VEE;第一PNP三极管Q1的发射极(E极)连接第二PNP三极管Q2的基极(B极);第二PNP三极管Q2的发射极(E极)通过第九电阻R9连接到NMOS晶体管MOS1的源极(S极);
负载RL的正极接地(GND),负极经过电流采样电阻R7连接到NMOS晶体管MOS1的D极(漏极);恒流电流从RL正极流到RL负极,经过电流采样电阻R7再流到NMOS晶体管MOS1的D极(漏极),如果NMOS晶体管MOS1和两个PNP三极管Q1、Q2都导通,则恒流电流从NMOS晶体管MOS1的D极(漏极)流到NMOS晶体管MOS1的S极(源极),经过限流电阻R9流到PNP三极管Q2的E极(发射极),电流又从PNP三极管Q2的E极(发射极)流到PNP三极管Q2的C极(集电极),而PNP三极管Q2的C极(集电极)连接到负电源VEE,即此时恒流电流全部流入负电源VEE,形成一个完整的电流回路,完成了整个恒流电流信号的放大输出过程;
所述的差动积分放大电路用于将DAC输出电路输出的模拟电压进行放大,放大后的模拟电压经过限流电阻R8输入NMOS晶体管MOS1的G极(栅极);
所述的差分放大电路用于放大电流采样电阻R7两端的电压。
作为优选,所述的DAC输出电路与电压跟随电路1连接,DAC输出电路输出的模拟电压通过电压跟随电路1进行前后级隔离,用以增强DA电压的驱动能力。
作为一种实现方式,所述的差动积分放大电路由第一运算放大器OP1、第一电阻R1、第二电阻R2、第一电容C1和第二电容C2组成;所述的差分放大电路由第二运算放大器OP2、第三电阻R3、第四电阻R4、第五电阻R5以及第六电阻R6组成;
第一电阻R1的一端连接第二运算放大器OP2的输出端,另外一端连接第一运算放大器OP1的反相输入端;
第二电阻R2的一端连接电压跟随电路1的输出端,另一端连接第一运算放大器OP1的同相输入端;
第一电容C1的一端连接第一运算放大器OP1的同相输入端,另一端接地(GND);
第二电容C2的一端连接第一运算放大器OP1的反相输入端,另一端连接第一运算放大器OP1的输出端;
电阻R3一端连接电流采样电阻R7,另一端连接第二运算放大器OP2的同相输入端;
电阻R4一端连接第二运算放大器OP2的同相输入端,另一端接地(GND);
电阻R5一端连接NMOS晶体管MOS1的D极(漏极),另一端连接第二运算放大器OP2的反相输入端;
电阻R6一端连接第二运算放大器OP2的反相输入端,另一端连接第二运算放大器OP2的输出端。
其中,电阻R3和电阻R4的电阻值比值决定了所述差分放大电路的放大倍数。为了使恒流电源的线性度和精度保持一致性,电阻R3和电阻R5的阻值和精度相同,电阻R4和电阻R6的阻值和精度相同。
作为优选,所述供电电压调节系统还包括电压跟随电路2、AD采样电路、限流电阻R10以及电位器Rp1,用于对差分放大电路的输出端电压信号进行比例放大和采样处理;电压跟随电路2的输入端连接第二运算放大器OP2的输出端,电压跟随电路2的输出端通过限流电阻R10和电位器Rp1连接AD采样电路的输入端,AD采样电路的输出端连接到MCU主控电路的AD采样端口。MCU主控电路采集AD采样电路输出的AD信号即可实时监控流过负载RL两端的电流,具体如下:
首先在负载RL正极和地(GND)之间串联一个电流表,用以测量流过RL的电流值IRL。同时,MCU主控电路采集AD采样电路输出的AD信号电压值VAD,通过调节电位器Rp1的阻值,并且对恒流电路中所有电阻选取合适的阻值,根据恒流电路本身的比例放大特性,即可使IRL和VAD这两个数值在整个可调负载电流范围内呈现出固定的比例关系,例如:1:1或者1:10等比值,该比值可以根据实际情况调整。因此,MCU主控电路通过采集AD信号VAD即可按照比例关系推断出当前流过负载RL的电流值,实现实时监控负载RL两端电流的功能。
作为优选,MCU主控电路中还包括电流PID控制算法,用以提升电流输出精度。通过调整电位器Rp1的电阻值,即可改变AD采样信号值与负载RL电流值的显示比例。
本发明中,当MCU主控电路的端口IO1输出高电平时,继电器工作,此时继电器常闭接点NC和继电器公共接点COM之间的连接断开,进而三极管开关电路和反相放大电路都开始进入正常工作状态;此时第一PNP三极管Q1、第二PNP三极管Q2、NMOS晶体管MOS1、第一运算放大器OP1和第二运算放大器OP2都工作在放大区;流过负载RL的恒流电流大小与DAC输出电路的电压值成线性关系。因此,MCU主控电路可以通过调节DAC输出电路的输出电压值来实时控制负载RL的电流值。
当MCU主控电路的端口IO1输出低电平,继电器不工作,此时继电器常闭接点NC和继电器公共接点COM之间连通,三极管开关电路不工作,反相放大电路仍处于正常工作状态;此时第一PNP三极管Q1、第二PNP三极管Q2和第一运算放大器OP1工作在放大区,NMOS晶体管MOS1处于深度饱和状态,第二运算放大器OP2工作在非线性区域,流过负载RL的电流为零。
因此,本发明中,MCU主控电路可以通过设定端口IO1的不同电平值实现打开或关闭负载RL端的电流输出。当端口IO1设定为高电平时,负载RL端有电流输出,此为正常工作状态;当端口IO1设定为低电平时,负载RL端没有电流输出,此时恒流输出电路处于关闭状态。
本发明中,负载RL用于辅助说明整个恒流电路的工作原理,负载RL并不局限于某一个特定类型的负载,可以是磁悬浮轴承、电磁线圈、大功率LED或其他需要恒流驱动的负载。
与现有技术相比,本发明的优点在于:
(1)采用多级PNP三极管和NMOS晶体管相结合的方式,有效增大了恒流电流的放大倍数;同时,采用差动积分放大电路和差分放大电路,引入了可靠的负反馈控制及电压缓上升保护机制,使得流过负载的恒流电流更平滑、更稳定,线性度更好。
(2)MCU主控电路通过设定端口IO1的不同电平值即可实现打开或关闭负载RL端的电流输出。作为优选,本发明在差分放大电路输出端加入电压跟随电路和AD采样电路,可以将负载端流过的电流比例放大后经由MCU主控电路采集,进而能够实时显示负载恒流电流值,更易于实时监控整个恒流电路的状态并且优选引入电流PID控制算法,使大电流恒流输出效果更好。
(3)该恒流电路自身基本无电磁辐射,抗干扰性能良好。通过恒流电路的作用可避免本发明由于外界电磁干扰而引起的电流抖动,使本发明保持稳定的恒流状态。
(4)本发明的应用范围较广,能适用于不同场合的恒流工作环境。
附图说明
图1是本发明实施例1中的恒流电路图。
具体实施方式
下面结合实施例与附图对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
如图1所示,恒流电路包括MCU主控电路、DAC输出电路、电压跟随电路、反相放大电路、AD采样电路、三极管开关电路、继电器、继电器驱动电路、PNP三极管、NMOS晶体管、差动积分放大电路和差分放大电路。
MCU主控电路是整个恒流电路的核心,其采用高性能ARM芯片,通过SPI总线接口与16位DAC输出电路通信并输出高精度模拟电压值,同时采集AD采样电路输入的电压值,并通过端口IO1连接继电器驱动电路以控制继电器的打开和关闭动作。另外,整个恒流电路的逻辑和反馈控制,以及电流PID控制算法都写在MCU中。
DAC输出电路采用高精度16位DAC芯片,通过SPI总线接收来自MCU的控制数据指令并输出相应的高精度DA电压值,通过电压跟随电路1进行前后级隔离,可增强DA电压的驱动能力。
选用增强型NMOS晶体管MOS1,其阈值电压VGS(th)和漏源通态电阻RDS(on)数值越小,则电压-电流转换效率越高,整个恒流电路的功耗越低。
第一运算放大器OP1、第一电阻R1、第二电阻R2、第一电容C1、第二电容C2组成一个差动积分放大电路,用于将电压跟随电路1输出的模拟电压值进行放大,并且采取电压缓上升启动的方式将放大后的电压经过限流电阻R8输入NMOS晶体管MOS1的G极(栅极)。其中,电压跟随器1通过第二电阻R2连接到第一运算放大器OP1的同相输入端,同时第一电容C1从OP1的同相输入端引出接地(GND)。第二电容C2连接第一运算放大器OP1的反相输入端和输出端,电阻R2连接运算放大器OP2的输出端和运算放大器OP1的反相输入端。为了使恒流电源的线性度和精度保持一致性,第一电阻R1和第二电阻R2采用相同阻值和精度的电阻,第一电容C1和第二电容C2采用相同容值和精度的电容。
第二运算放大器OP2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6和电流采样电阻R7组成一个差分放大电路。其中,电流采样电阻R7两端的电势差即是需要差分放大的电压值。第三电阻R3一端接到电流采样电阻R7,另外一端连接第二运算放大器OP2的同相输入端,第四电阻R4一端连接第二运算放大器OP2的同相输入端,另外一端接地(GND)。第五电阻R5一端接到电流采样电阻R7,另外一端连接第二运算放大器OP2的反相输入端,第六电阻R6一端连接第二运算放大器OP2的反相输入端,另外一端连接第二运算放大器OP2的输出端以及第一电阻R1。为了使恒流电源的线性度和精度保持一致性,第三电阻R3和第五电阻R5的阻值和精度必须相同,第四电阻R4和第六电阻R6的阻值和精度必须相同。
在本实施例中,第一运算放大器OP1和第二运算放大器OP2需选用高精度,轨对轨的运算放大器,用以提高整个放大电路的动态性能。
RL为负载,用于辅助说明整个恒流电路的工作原理,可以是磁悬浮轴承、电磁线圈、大功率LED或者其他需要恒流驱动的负载。负载RL的正极接地(GND),负载RL的负极经过电流采样电阻R7连接到NMOS晶体管MOS1的D极(漏极),恒流电流的流向为电流从负载RL正极流到负载RL负极,经过电流采样电阻R7后再流到NMOS晶体管MOS1的D极(漏极)。如果NMOS晶体管MOS1、PNP三极管Q1和PNP三极管Q2都导通,则恒流电流从NMOS晶体管MOS1的D极(漏极)流到NMOS晶体管MOS1的S极(源极),经过R9流到PNP三极管Q2的发射极(E极),电流又从PNP三极管Q2的发射极(E极)流到PNP三极管Q2的集电极(C极),而PNP三极管Q2的集电极(C极)连接到负电源VEE,即此时恒流电流全部流入负电源VEE。这样就形成了一个完整的电流回路,完成了整个恒流电流信号的放大输出过程。在本实施例中,负电源VEE电压值为-5V。
第二PNP三极管Q2的发射极(E极)连接第九电阻R9,第二PNP三极管Q2的基极(B极)连接到PNP三极管Q1的发射极(E极),形成了PNP三极管的二级放大。PNP三极管Q2的集电极(C极)和PNP三极管Q1的集电极(C极)都接到负电源VEE,PNP三极管Q1的基极(B极)连接到反相放大电路的输出端。
MCU主控电路的端口IO1连接到继电器驱动电路,用于控制继电器的打开和关闭。继电器驱动电路输出端连接到继电器的电源负极,继电器电源正极接正电源VCC,继电器常闭接点NC接地(GND),继电器公共接点COM接到三极管开关电路输入端。
在本实施例中,VCC电压为+5V。当端口IO1输出高电平时,继电器工作,此时继电器常闭接点NC和继电器公共接点COM之间的连接断开,进而三极管开关电路和反相放大电路都开始进入正常工作状态;此时PNP三极管Q1、PNP三极管Q2、NMOS晶体管MOS1、第一运算放大器OP1和第二运算放大器OP2都工作在放大区;流过负载RL的恒流电流大小与DAC输出电路的电压值成线性关系。所以MCU主控电路可以通过调节DAC输出电压值来实时控制负载RL的电流值。
如果端口IO1输出低电平,继电器不工作,此时继电器常闭接点NC和继电器公共接点COM之间连通,三极管开关电路不工作,反相放大电路仍处于正常工作状态;此时第一PNP三极管Q1、第二PNP三极管Q2和第一运算放大器OP1工作在放大区,NMOS晶体管MOS1处于深度饱和状态,第二运算放大器OP2工作在非线性区域,此时流过负载RL的电流为零。所以,MCU主控电路通过设定端口IO1的不同电平值就可以打开或关闭负载RL端的电流输出。当端口IO1设定为高电平时,负载RL端有电流输出,此为正常工作状态;当端口IO1设定为低电平时,负载RL端没有电流输出,此时恒流输出电路处于关闭状态。
电压跟随电路2的输入端连接到第二运算放大器OP2的输出端,电压跟随电路2的输出端通过限流电阻R10和电位器Rp1连接到AD采样电路的输入端,AD采样电路的输出端接入MCU主控电路进行AD信号的采集。MCU主控电路采集AD采样电路输出的AD信号即可实时监控流过负载RL两端的电流,具体如下:
首先在负载RL正极和地(GND)之间串联一个电流表,用以测量流过RL的电流值IRL。同时,MCU主控电路采集AD采样电路输出的AD信号电压值VAD,通过调节电位器Rp1的阻值,并且对恒流电路中所有电阻选取合适的阻值,根据恒流电路本身的比例放大特性,即可使IRL和VAD这两个数值在整个可调负载电流范围内呈现出固定的比例关系,例如:1:1或者1:10等比值,该比值可以根据实际情况调整。因此,MCU主控电路通过采集AD信号VAD即可按照比例关系推断出当前流过负载RL的电流值,实现实时监控负载RL两端电流的功能。同时,可在MCU程序中加入电流PID控制算法以提升电流输出精度。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种恒流电路,用于对负载RL提供恒定电流源,包括MCU主控电路与DAC输出电路,MCU主控电路与DAC输出电路进行通信,DAC输出电路输出模拟电压;
其特征是:还包括差动积分放大电路、差分放大电路、第一PNP三极管Q1、第二PNP三极管Q2、NMOS晶体管、继电器、继电器驱动电路、三极管开关电路与反相放大电路;
所述的MCU主控电路通过端口IO1连接继电器驱动电路,继电器驱动电路的输出端连接继电器的电源负极,继电器的电源正极连接正电源VCC,继电器的常闭接点NC接地,继电器的公共接点COM连接三极管开关电路的输入端;三极管开关电路的输出端连接反相放大电路的输入端;反相放大电路的输出端连接第一PNP三极管Q1的基极;第一PNP三极管Q1的集电极和第二PNP三极管Q2的集电极都连接负电源VEE;第一PNP三极管Q1的发射极连接第二PNP三极管Q2的基极;第二PNP三极管Q2的发射极通过第九电阻R9连接到NMOS晶体管MOS1的源极;
负载RL的正极接地,负极经过电流采样电阻R7连接到NMOS晶体管MOS1的漏极;恒流电流从RL正极流到RL负极,经过电流采样电阻R7再流到NMOS晶体管MOS1的漏极;
所述的差动积分放大电路用于将DAC输出电路输出的模拟电压进行放大,放大后的模拟电压经过限流电阻R8输入NMOS晶体管MOS1的栅极;
所述的差分放大电路用于放大电流采样电阻R7两端的电压。
2.如权利要求1所述的恒流电路,其特征是:所述的DAC输出电路输出的模拟电压连接电压跟随电路1。
3.如权利要求1所述的恒流电路,其特征是:所述的差动积分放大电路由第一运算放大器OP1、第一电阻R1、第二电阻R2、第一电容C1和第二电容C2组成;
所述的差分放大电路由第二运算放大器OP2、第三电阻R3、第四电阻R4、第五电阻R5以及第六电阻R6组成;
第一电阻R1的一端连接第二运算放大器OP2的输出端,另外一端连接第一运算放大器OP1的反相输入端;
第二电阻R2的一端连接电压跟随电路1的输出端,另一端连接第一运算放大器OP1的同相输入端;
第一电容C1的一端连接第一运算放大器OP1的同相输入端,另一端接地(GND);
第二电容C2的一端连接第一运算放大器OP1的反相输入端,另一端连接第一运算放大器OP1的输出端;
电阻R3一端连接电流采样电阻R7,另一端连接第二运算放大器OP2的同相输入端;
电阻R4一端连接第二运算放大器OP2的同相输入端,另一端接地(GND);
电阻R5一端连接NMOS晶体管MOS1的漏极(D极),另一端连接第二运算放大器OP2的反相输入端;
电阻R6一端连接第二运算放大器OP2的反相输入端,另一端连接第二运算放大器OP2的输出端。
4.如权利要求3所述的恒流电路,其特征是:第三电阻R3和第五电阻R5的阻值和精度相同。
5.如权利要求3所述的恒流电路,其特征是:第四电阻R4和第六电阻R6的阻值和精度相同。
6.如权利要求1至5中任一权利要求所述的恒流电路,其特征是:MCU主控电路通过设定端口IO1的不同电平值实现打开或关闭负载RL端的电流输出。
7.如权利要求1至5中任一权利要求所述的恒流电路,其特征是:所述供电电压调节系统还包括电压跟随电路2、AD采样电路、限流电阻R10以及电位器Rp1,用于对差分放大电路的输出端电压信号进行比例放大和采样处理;
电压跟随电路2的输入端连接第二运算放大器OP2的输出端,电压跟随电路2的输出端通过限流电阻R10和电位器Rp1连接AD采样电路的输入端,AD采样电路的输出端连接到MCU主控电路的AD采样端口。
8.如权利要求7所述的恒流电路,其特征是:MCU主控电路通过采集AD采样电路输出的AD信号实时监控流过负载RL两端的电流。
9.如权利要求7所述的恒流电路,其特征是:MCU主控电路中包括电流PID控制算法。
10.如权利要求7所述的恒流电路,其特征是:通过调整电位器Rp1的电阻值改变AD采样信号值与负载RL电流值的显示比例。
CN201811575849.6A 2018-12-22 2018-12-22 一种恒流电路 Active CN109683649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811575849.6A CN109683649B (zh) 2018-12-22 2018-12-22 一种恒流电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811575849.6A CN109683649B (zh) 2018-12-22 2018-12-22 一种恒流电路

Publications (2)

Publication Number Publication Date
CN109683649A true CN109683649A (zh) 2019-04-26
CN109683649B CN109683649B (zh) 2020-03-10

Family

ID=66188767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811575849.6A Active CN109683649B (zh) 2018-12-22 2018-12-22 一种恒流电路

Country Status (1)

Country Link
CN (1) CN109683649B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077932A (zh) * 2019-12-23 2020-04-28 中电科仪器仪表(安徽)有限公司 一种卫星帆板电源阵列模拟器及其电压嵌位方法
CN113219316A (zh) * 2021-05-18 2021-08-06 北京轩宇空间科技有限公司 基于负反馈的三极管放大倍数测试电路
CN117559922A (zh) * 2024-01-10 2024-02-13 成都威频通讯技术有限公司 一种基于ad/da的放大器动态电流恒定测控电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203608075U (zh) * 2013-12-17 2014-05-21 武汉永力科技股份有限公司 一种恒流装置
JP2015133298A (ja) * 2014-01-15 2015-07-23 三菱電機株式会社 車載用リレー駆動回路および車載機器
CN105549669A (zh) * 2015-12-29 2016-05-04 吉林大学 一种基于双环负反馈的恒流源装置
CN205302072U (zh) * 2016-01-11 2016-06-08 湖南汽车工程职业学院 一种数控恒流源电路
CN107069424A (zh) * 2017-06-15 2017-08-18 上海理工大学 高功率低功耗可调谐dfb激光器驱动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203608075U (zh) * 2013-12-17 2014-05-21 武汉永力科技股份有限公司 一种恒流装置
JP2015133298A (ja) * 2014-01-15 2015-07-23 三菱電機株式会社 車載用リレー駆動回路および車載機器
CN105549669A (zh) * 2015-12-29 2016-05-04 吉林大学 一种基于双环负反馈的恒流源装置
CN205302072U (zh) * 2016-01-11 2016-06-08 湖南汽车工程职业学院 一种数控恒流源电路
CN107069424A (zh) * 2017-06-15 2017-08-18 上海理工大学 高功率低功耗可调谐dfb激光器驱动装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077932A (zh) * 2019-12-23 2020-04-28 中电科仪器仪表(安徽)有限公司 一种卫星帆板电源阵列模拟器及其电压嵌位方法
CN113219316A (zh) * 2021-05-18 2021-08-06 北京轩宇空间科技有限公司 基于负反馈的三极管放大倍数测试电路
CN113219316B (zh) * 2021-05-18 2022-10-14 北京轩宇空间科技有限公司 基于负反馈的三极管放大倍数测试电路
CN117559922A (zh) * 2024-01-10 2024-02-13 成都威频通讯技术有限公司 一种基于ad/da的放大器动态电流恒定测控电路

Also Published As

Publication number Publication date
CN109683649B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
CN109683649A (zh) 一种恒流电路
CN109470376A (zh) Cmos温度传感器及温度检测方法
CN107102671A (zh) 低功耗快速瞬态响应低压差电压调整器
CN104374484B (zh) 温度感测装置、切换电容装置及其电压积分电路
CN107315439A (zh) 高精度压控电流源电路
CN106301264B (zh) 一种摆率增强型运算放大器
CN108646837A (zh) 一种用于低压差线性稳压器的瞬态响应改善电路
CN109634337B (zh) 一种幅度可调的低温度系数升压电路
CN103107791B (zh) 带宽恒定的增益线性可变增益放大器
CN106941343A (zh) 一种线性可变增益放大器
CN201910785U (zh) 一种pecl电平接口电路
Amourah et al. All digital transistor high gain operational amplifier using positive feedback technique
CN107340795B (zh) 具有开启电压预处理功能的数控恒流源装置
CN101127508A (zh) 面向电流的s类放大电路
CN203423670U (zh) 一种可变增益的模拟加法器
CN107508591A (zh) 一种高线性度的轨至轨电平位移电路
CN204794912U (zh) 一种工业控制系统小信号实时调理电路
CN208299688U (zh) 基于低压h桥的控制电路
CN203465628U (zh) 具有压差补偿的线性恒流源电路
CN202583289U (zh) 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路
CN207586703U (zh) 桥式传感器程控调理电路
CN211044050U (zh) 电阻传感器共模电压稳零电路及电阻式变送器
CN209299133U (zh) 一种限流模块、具有限流功能的降压芯片及降压电路
CN107505976B (zh) 一种全差分电压缓冲器电路
CN206790449U (zh) 一种适用于非线性调节器的失灵电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant