CN109679101A - 一种铅离子印迹材料的制备方法及其应用 - Google Patents

一种铅离子印迹材料的制备方法及其应用 Download PDF

Info

Publication number
CN109679101A
CN109679101A CN201811591929.0A CN201811591929A CN109679101A CN 109679101 A CN109679101 A CN 109679101A CN 201811591929 A CN201811591929 A CN 201811591929A CN 109679101 A CN109679101 A CN 109679101A
Authority
CN
China
Prior art keywords
lead ion
lead
preparation
room temperature
ion imprinted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811591929.0A
Other languages
English (en)
Inventor
康澍
王倩
兰天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Purkinje General Instrument Co Ltd
Original Assignee
Beijing Purkinje General Instrument Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Purkinje General Instrument Co Ltd filed Critical Beijing Purkinje General Instrument Co Ltd
Priority to CN201811591929.0A priority Critical patent/CN109679101A/zh
Publication of CN109679101A publication Critical patent/CN109679101A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种铅离子印迹材料的制备方法及其应用。一、将1mmol醋酸铅和1~6mmol表面活性剂胶束与1mol高纯水混合,在室温下搅拌1h;二、在步骤一的混合溶液中,加入1~6mmol功能单体,在室温下搅拌1h,形成铅离子配合物;所述功能单体为3‑巯基丙基三甲氧基硅烷;三、将10~20mmol原硅酸四乙酯溶解于2~10ml甲醇中,与步骤二中的配合物混合后,加入2~5mL的氢氧化钠溶液,在室温下磁力搅拌24~48h,再于90℃水浴反应24h,形成聚合物;四、步骤三中形成的聚合物在乙醇溶液中进行索提24h,再用2mol/L硝酸溶液多次洗涤,至洗脱液中未检出铅离子止,最后用高纯水洗至中性,干燥箱干燥。本发明制备的铅离子印迹聚合物,采用分子印迹技术,对铅离子具有特异性选择性。

Description

一种铅离子印迹材料的制备方法及其应用
技术领域
本发明涉及一种铅离子印迹材料的制备方法及其应用,属于铅离子印迹材料的制备方法及其应用技术领域。
背景技术
铅是一种对人体有严重危害的重金属,易通过水、食物等进入人体,并累积引起铅中毒,对神经系统、肾脏、造血系统等有明显的损害。因此,世界卫生组织及各国多次修订食品、环境等样品中的铅污染物限量标准。然而实际样品检测时,由于基体干扰严重,环境中痕量铅的检测一直都是一个重要的研究课题。但是,由于环境样品中铅的含量比较低,并且基体干扰严重,直接测定时即使使用原子吸收(AAS)或者电感耦合等离子体发射光谱(ICP-AES)这样高灵敏的检测仪器也经常不能达到满意的效果。因此,对样品进行合适的前处理就显得十分重要。分子(离子)印迹聚合物具有对目标分子(离子)特定的、专一的特异识别能力、高选择性以及稳定的物理和化学性质,已成为一种用于环境、食品等基体干扰严重的实际样品的前处理及选择性分离富集痕量铅离子的固相萃取新材料。
发明内容
本发明的目的是为了解决上述现有技术存在的问题,进而提供一种铅离子印迹材料的制备方法及其应用。
本发明的目的是通过以下技术方案实现的:
一种铅离子印迹材料的制备方法,
步骤一、将1mmol醋酸铅和1~6mmol表面活性剂胶束与1mol高纯水混合,在室温条件下搅拌1h,得到混合溶液;
步骤二、在步骤一的混合溶液中,加入1~6mmol功能单体,在室温条件下搅拌1h,形成铅离子配合物;所述功能单体为3-巯基丙基三甲氧基硅烷;
步骤三、将10~20mmol原硅酸四乙酯溶解于2~10ml甲醇中,与步骤二中的配合物混合后,加入2~5mL的氢氧化钠溶液,在室温条件下磁力搅拌24~48h,再于90℃水浴反应24h,形成聚合物;
步骤四、步骤三中形成的聚合物在乙醇溶液中进行索提24h,再用2mol/L硝酸溶液多次洗涤,至洗脱液中未检出铅离子止,最后用高纯水洗至中性,干燥箱干燥即可。
所述步骤一中,将1mmol醋酸铅和3mmol表面活性剂胶束与1mol高纯水混合。
所述步骤二中,在步骤一的混合溶液中,加入3.5mmol功能单体。
所述步骤三中,将17mmol原硅酸四乙酯溶解于8ml甲醇中。
本发明的有益效果
1、本发明制备的铅离子印迹聚合物,采用分子印迹技术,对铅离子具有特异性选择性。
2、本发明制备的铅离子印迹聚合物,采用溶胶-凝胶法,得到的聚合物为微球,粒径均匀,避免了研磨导致的识别位点破坏。
3、本发明制备的铅离子印迹聚合物,经再生,可反复利用。
附图说明
图1为铅离子印迹聚合物吸附铅离子等温线图。
图2为铅离子印迹聚合物电镜图。
图3为添加20ppb铅标液的酱油经铅离子印迹聚合物净化前后对比谱图(检测时稀释20倍)。
具体实施方式
下面将结合附图对本发明做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述实施例。
实施例1
铅离子印迹聚合物的制备
(1)将1mmol醋酸铅和1~6mmol表面活性剂胶束与1mol高纯水混合,在室温下搅拌1h;
(2)在步骤(1)的溶液中,加入1~6mmol功能单体,在室温下搅拌1h,形成铅离子配合物;所述功能单体为3-巯基丙基三甲氧基硅烷;
(3)将10~20mmol原硅酸四乙酯溶解于2~10ml甲醇中,与步骤(2)中的溶液混合后,加入2~5mL的氢氧化钠溶液,在室温下磁力搅拌24~48h,再于90℃水浴反应24h,形成聚合物;
(4)步骤(3)中形成的聚合物在乙醇溶液中进行索提24h,再用2mol/L硝酸溶液多次洗涤,至洗脱液中未检出铅离子止,最后用高纯水洗至中性,干燥箱干燥。
本实施例所提供的铅离子印迹聚合物,采用印迹技术与溶胶-凝胶技术相结合的方法,粒径均匀、吸附-脱附速度快、吸附容量大,可用于食品、环境等样品中铅离子污染物的分离富集。
实施例2
铅离子印迹聚合物的吸附容量
准确称取多份100mg的铅离子印迹聚合物于15mL的离心管中,分别加入10mL不同浓度的铅离子溶液(100~600μg/ml),振荡0.5h,离心分离,用原子吸收仪测定上清液中铅离子的浓度。如图1所示,结果表明,铅离子印迹聚合物的吸附容量55.64μg/mg,具有较好的吸附性能。
实施例3
铅离子印迹聚合物的选择性吸附测定
准确称取实施例制备的铅离子印迹聚合物100mg于15mL离心管中,加入10mL含铅离子和竞争离子(如镉离子、汞离子)的溶液,振荡0.5h,离心分离,上清液检测吸附后溶液中铅离子浓度,沉淀物中加入10ml2M硝酸溶液,振荡0.5h,离心分离,取上清液检测洗脱后溶液中铅离子浓度。
表1是铅离子印迹聚合物对不同浓度镉(II)、汞(II)的竞争吸附结果。可以看出,铅离子印迹聚合物对模板铅离子的吸附率远高于其他离子,体现了印迹的效果。
表1铅离子印迹聚合物选择性吸附试验(n=5)
实施例4
富集倍数测定
将实施例制备的铅离子印迹聚合物装填入固相萃取柱中,考察了不同试样体积条件下,铅离子印迹聚合物对铅离子的富集性能。实验中,增加试样溶液的体积,并保持铅离子总量在100μg,在最佳吸附条件下分别过柱,而洗脱均采用10ml的洗脱试剂,收集洗脱液,然后通过对铅离子回收率的测定来研究其富集倍数。结果如表所示,在试样体积1000ml时,铅离子的回收率为100%,表明铅离子印迹聚合物对铅离子具有良好的富集能力,其富集倍数为100。
表1铅离子印迹聚合物对水样中铅离子的富集试验
实施例5
实际样品应用。
称取酱油盲样样品1个,平行5-7份,比较国标法(微波消解后经原子荧光检测)和本方法(铅印迹材料净化富集后经原子荧光检测)的检测结果(盲样真值为0.428mg/kg)。
以上结果表明,铅印迹材料可以用于酱油等高盐样本中铅离子净化富集,由于不需要消解,因此简化了样品前处理,降低了检测成本和检测时间。
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (5)

1.一种铅离子印迹材料的制备方法,其特征在于,
步骤一、将1mmol醋酸铅和1~6mmol表面活性剂胶束与1mol高纯水混合,在室温条件下搅拌1h,得到混合溶液;
步骤二、在步骤一的混合溶液中,加入1~6mmol功能单体,在室温条件下搅拌1h,形成铅离子配合物;所述功能单体为3-巯基丙基三甲氧基硅烷;
步骤三、将10~20mmol原硅酸四乙酯溶解于2~10ml甲醇中,与步骤二中的配合物混合后,加入2~5mL的氢氧化钠溶液,在室温条件下磁力搅拌24~48h,再于90℃水浴反应24h,形成聚合物;
步骤四、步骤三中形成的聚合物在乙醇溶液中进行索提24h,再用2mol/L硝酸溶液多次洗涤,至洗脱液中未检出铅离子止,最后用高纯水洗至中性,干燥箱干燥即可。
2.根据权利要求1所述的铅离子印迹材料的制备方法,其特征在于,所述步骤一中,将1mmol醋酸铅和3mmol表面活性剂胶束与1mol高纯水混合。
3.根据权利要求1所述的铅离子印迹材料的制备方法,其特征在于,所述步骤二中,在步骤一的混合溶液中,加入3.5mmol功能单体。
4.根据权利要求1所述的铅离子印迹材料的制备方法,其特征在于,所述步骤三中,将17mmol原硅酸四乙酯溶解于8ml甲醇中。
5.一种权利要求1所述方法制备的铅离子印迹材料的应用。
CN201811591929.0A 2018-12-25 2018-12-25 一种铅离子印迹材料的制备方法及其应用 Pending CN109679101A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811591929.0A CN109679101A (zh) 2018-12-25 2018-12-25 一种铅离子印迹材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811591929.0A CN109679101A (zh) 2018-12-25 2018-12-25 一种铅离子印迹材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN109679101A true CN109679101A (zh) 2019-04-26

Family

ID=66188332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811591929.0A Pending CN109679101A (zh) 2018-12-25 2018-12-25 一种铅离子印迹材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109679101A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268118A (ja) * 1998-01-26 1999-10-05 Mitsui Chem Inc ポリオレフィン多孔フィルムおよびその製造方法なら びに電池用セパレータフィルム
CN105085924A (zh) * 2014-04-24 2015-11-25 北京普析通用仪器有限责任公司 金属离子印迹聚合物及其制备方法与应用
CN106496418A (zh) * 2016-10-31 2017-03-15 四川理工学院 一种磁性壳聚糖铅离子印迹聚合物及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268118A (ja) * 1998-01-26 1999-10-05 Mitsui Chem Inc ポリオレフィン多孔フィルムおよびその製造方法なら びに電池用セパレータフィルム
CN105085924A (zh) * 2014-04-24 2015-11-25 北京普析通用仪器有限责任公司 金属离子印迹聚合物及其制备方法与应用
CN106496418A (zh) * 2016-10-31 2017-03-15 四川理工学院 一种磁性壳聚糖铅离子印迹聚合物及其制备方法

Similar Documents

Publication Publication Date Title
Ghaedi et al. Simultaneous preconcentration and determination of copper, nickel, cobalt, lead, and iron content using a surfactant-coated alumina
Huang et al. Speciation of inorganic tellurium from seawater by ICP‐MS following magnetic SPE separation and preconcentration
Kagaya et al. A solid phase extraction using a chelate resin immobilizing carboxymethylated pentaethylenehexamine for separation and preconcentration of trace elements in water samples
Yousefi et al. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination
Karadaş et al. Synthesis and application of a new functionalized resin for use in an on-line, solid phase extraction system for the determination of trace elements in waters and reference cereal materials by flame atomic absorption spectrometry
Shahat et al. Colorimetric determination of some toxic metal ions in post-mortem biological samples
Huang et al. Magnetic immobilization of amine-functionalized magnetite microspheres in a knotted reactor for on-line solid-phase extraction coupled with ICP-MS for speciation analysis of trace chromium
Rahmi et al. Preparation of monolithic chelating adsorbent inside a syringe filter tip for solid phase microextraction of trace elements in natural water prior to their determination by ICP-MS
Li et al. Magnetic solid phase extraction for the determination of trace antimony species in water by inductively coupled plasma mass spectrometry
Taher et al. Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their determination by electrothermal atomic absorption spectrometry
CN110385116A (zh) 一种磁性纳米复合材料及其制备和应用
Rao et al. Styrene–divinyl benzene copolymers: synthesis, characterization, and their role in inorganic trace analysis
Kara et al. Preconcentration and determination of trace elements with 2, 6-diacetylpyridine functionalized Amberlite XAD-4 by flow injection and atomic spectroscopy
CN104292381B (zh) 一种荧光离子印迹探针的制备及其应用
Ince et al. Solid phase extraction and preconcentration of cobalt in mineral waters with PAR-loaded Amberlite XAD-7 and flame atomic absorption spectrometry
Cui et al. Magnetic solid-phase extraction of trace-level mercury (II) ions using magnetic core-shell nanoparticles modified with thiourea-derived chelating agents
Abbaszadeh et al. Speciation analysis of inorganic arsenic in food and water samples by electrothermal atomic absorption spectrometry after magnetic solid phase extraction by a novel MOF-199/modified magnetite nanoparticle composite
Fei et al. In-tube solid-phase microextraction with a hybrid monolithic column for the preconcentration of ultra-trace metals prior to simultaneous determination by ICP-MS
Cui et al. Ionic liquid-based magnetic solid phase extraction coupled with inductively coupled plasma-optical emission spectrometry for the determination of Cu, Cd, and Zn in biological samples
Shokri et al. In situ emulsification microextraction using a dicationic ionic liquid followed by magnetic assisted physisorption for determination of lead prior to micro-sampling flame atomic absorption spectrometry
Tashkhourian et al. Sodium dodecyl sulfate coated alumina modified with a new Schiff's base as a uranyl ion selective adsorbent
Guo et al. Dual dispersive extraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of trace REEs in water and sediment samples
Gharehbaghi et al. Dispersive magnetic solid phase extraction based on an ionic liquid ferrofluid
Che et al. Ultra-trace detection and efficient adsorption removal of multiple water-soluble volatile organic compounds by fluorescent sensor array
Ghaedi et al. A solid phase extraction procedure for Fe3+, Cu2+ and Zn2+ ions on 2-phenyl-1H-benzo [d] imidazole loaded on Triton X-100-coated polyvinyl chloride

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190426

RJ01 Rejection of invention patent application after publication