CN109678239B - 一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法 - Google Patents

一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法 Download PDF

Info

Publication number
CN109678239B
CN109678239B CN201811376781.9A CN201811376781A CN109678239B CN 109678239 B CN109678239 B CN 109678239B CN 201811376781 A CN201811376781 A CN 201811376781A CN 109678239 B CN109678239 B CN 109678239B
Authority
CN
China
Prior art keywords
ciprofloxacin
taml
solution
toxicity
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811376781.9A
Other languages
English (en)
Other versions
CN109678239A (zh
Inventor
过伟
王超
倪刘健
金鑫
周绍达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Kaver Science Apparatus Co ltd
Original Assignee
Nanjing Kaver Science Apparatus Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Kaver Science Apparatus Co ltd filed Critical Nanjing Kaver Science Apparatus Co ltd
Priority to CN201811376781.9A priority Critical patent/CN109678239B/zh
Publication of CN109678239A publication Critical patent/CN109678239A/zh
Application granted granted Critical
Publication of CN109678239B publication Critical patent/CN109678239B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/047Standards external

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法,属于有机污染物降解领域,解决了现有的降解方法存在能耗高,操作复杂以及容易形成二次污染等问题。本发明以四酰胺基六甲基苯基环铁(Fe(III)‑TAML)作为催化剂,然后被过氧化氢氧化生成氧化态的TAML(即Fe(IV)‑TAML或Fe(V)‑TAML),氧化态的TAML可以快速氧化环丙沙星。环丙沙星的降解产物毒性通过费氏弧菌的发光抑制率进行评估。毒性评估结果表明Fe(III)‑TAML可以有效降低环丙沙星的毒性,可以作为现有处理环丙沙星的替代方法。

Description

一种高效降解环丙沙星的催化氧化方法及其产物毒性评估 方法
技术领域
本发明属于有机污染物降解领域,更具体地说,涉及一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法。
背景技术
在过去的几十年,抗生素被广泛应用于畜牧业来治疗传染病提高生成速率(Chee-Sanford,J.C.;Aminov,R.I.;Krapac,I.J.;Garrigues-Jeanjean,N.;Mackie,R.I.,Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons andGroundwater Underlying Two Swine Production Facilities.Applied andEnvironmental Microbiology 2001,67,(4),1494-1502;Akyol,
Figure GDA0003199480360000011
Aydin,S.;Ince,O.;Ince,B.,Acomprehensive microbial insight into single-stage and two-stageanaerobic digestion of oxytetracycline-medicated cattle manure.ChemicalEngineering Journal 2016,303,675-684;Akyol,
Figure GDA0003199480360000012
Ince,O.;Cetecioglu,Z.;Alkan,F.U.;Ince,B.,The fate of oxytetracycline in two-phase and single-phaseanaerobic cattle manure digesters and its effects on microbialcommunities.Journal of Chemical Technology&Biotechnology2016,91,(3),806-814;Gu,C.;Karthikeyan,K.G.,Interaction of Tetracycline with Aluminum and IronHydrous Oxides.Environmental Science&Technology 2005,39,(8),2660-2667.)。而且摄入的抗生素只有少量能够被吸收和代谢,从而造成25-75%的抗生素以尿液和排泄物的形式排除体外进入环境(Chee-Sanford,J.C.;Aminov,R.I.;Krapac,I.J.;Garrigues-Jeanjean,N.;Mackie,R.I.,Occurrence and Diversity of Tetracycline ResistanceGenes in Lagoons and Groundwater Underlying Two Swine ProductionFacilities.Applied and EnvironmentalMicrobiology 2001,67,(4),1494-1502;Elmund,G.K.;Morrison,S.M.;Grant,D.W.;Nevins,M.P.,Role of excretedchlortetracycline in modifying the decomposition process in feedlot waste.Bull.Environ.Contam.Toxicol.1971,6,(2),129-132;Gu,C.;Karthikeyan,K.G.,Sorptionof the Antimicrobial Ciprofloxacin to Aluminum and Iron HydrousOxides.Environmental Science&Technology 2005,39,(23),9166-9173.)。由于抗生素的广泛使用以及污水处理厂处理效果不力,这些药物不能够从污水中有效去除,从而其在土壤、底泥和水体中的广泛存在(Kinney,C.A.;Furlong,E.T.;Zaugg,S.D.;Burkhardt,M.R.;Werner,S.L.;Cahill,J.D.;Jorgensen,G.R.,Survey of Organic WastewaterContaminants in Biosolids Destined for Land Application.EnvironmentalScience&Technology 2006,40,(23),7207-7215;Kim,S.-C.;Carlson,K.,Occurrence ofionophore antibiotics in water and sediments of a mixed-landscapewatershed.Water Research 2006,40,(13),2549-2560;Khetan,S.K.;Collins,T.J.,Human Pharmaceuticals in the Aquatic Environment:A Challenge to GreenChemistry.Chemical Reviews 2007,107,(6),2319-2364;Sim,W.-J.;Lee,J.-W.;Lee,E.-S.;Shin,S.-K.;Hwang,S.-R.;Oh,J.-E.,Occurrence and distribution ofpharmaceuticals in wastewater from households,livestock farms,hospitals andpharmaceuticalmanufactures.Chemosphere 2011,82,(2),179-186;Watkinson,A.J.;Murby,E.J.;Kolpin,D.W.;Costanzo,S.D.,The occurrence of antibiotics in anurban watershed:From wastewater to drinking water.Science of The TotalEnvironment2009,407,(8),2711-2723;Zuccato,E.;Calamari,D.;Natangelo,M.;Fanelli,R.,Presence of therapeutic drugs in theenvironment.The Lancet 2000,355,(9217),1789-1790;Batt,A.L.;Bruce,I.B.;Aga,D.S.,Evaluating thevulnerability of surface waters to antibiotic contamination from varyingwastewater treatment plant discharges.Environmental Pollution 2006,142,(2),295-302;Lindsey,M.E.;Meyer,M.;Thurman,E.M.,Analysis of Trace Levels ofSulfonamide and Tetracycline Antimicrobials in Groundwater and Surface WaterUsing Solid-Phase Extraction and Liquid Chromatography/MassSpectrometry.Analytical Chemistry 2001,73,(19),4640-4646.)。抗生素以及其残体的环境暴露有可能会筛选出一批耐药菌群(Boxall,A.B.A.;Rudd,M.A.;Brooks,B.W.;Caldwell,D.J.;Choi,K.;Hickmann,S.;Innes,E.;Ostapyk,K.;Staveley,J.P.;Verslycke,T.;Ankley,G.T.;Beazley,K.F.;Belanger,S.E.;Berninger,J.P.;Carriquiriborde,P.;Coors,A.;DeLeo,P.C.;Dyer,S.D.;Ericson,J.F.;Gagné,F.;Giesy,J.P.;Gouin,T.;Hallstrom,L.;Karlsson,M.V.;Larsson,D.G.J.;Lazorchak,J.M.;Mastrocco,F.;McLaughlin,A.;McMaster,M.E.;Meyerhoff,R.D.;Moore,R.;Parrott,J.L.;Snape,J.R.;Murray-Smith,R.;Servos,M.R.;Sibley,P.K.;Straub,J.O.;Szabo,N.D.;Topp,E.;Tetreault,G.R.;Trudeau,V.L.;Van Der Kraak,G.,Pharmaceuticals andPersonal Care Products in the Environment:What Are the Big Questions?Environmental Health Perspectives 2012,120,(9),1221-1229;Bondarczuk,K.;Markowicz,A.;Piotrowska-Seget,Z.,The urgent need for risk assessment on theantibiotic resistance spread via sewage sludge land application.EnvironmentInternational 2016,87,49-55.),而这些耐药菌群中的能够耐受多种抗生素的超级细菌最受关注(Pearson,H.;hurdles key drug barrier.Nature 2002,418,469;Ndieyira,J.W.;Watari,M.;Barrera,A.D.;Zhou,D.;
Figure GDA0003199480360000041
M.;Batchelor,M.;Cooper,M.A.;Strunz,T.;Horton,M.A.;Abell,C.;Rayment,T.;Aeppli,G.;McKendry,R.A.,Nanomechanical detection of antibiotic–mucopeptide binding in a model forsuperbug drug resistance.Nature Nanotechnology2008,3,691.)。一旦这些耐药微生物进入人和动物体内,将不可避免的引起巨大威胁。
作为最广泛使用的抗生素之一,环丙沙星已被报道可以引起自然水体中耐药菌群的产生(Khetan,S.K.;Collins,T.J.,Human Pharmaceuticals in the AquaticEnvironment:A Challenge to Green Chemistry.Chemical Reviews 2007,107,(6),2319-2364;Serna-Galvis,E.A.;Ferraro,F.;Silva-Agredo,J.;Torres-Palma,R.A.,Degradation of highly consumed fluoroquinolones,penicillins andcephalosporins in distilled water and simulated hospital wastewater by UV254and UV254/persulfate processes.Water Research 2017,122,128-138.)。目前,各种各样的处理手段已被研发去除天然水体和废水中的环丙沙星。常用的氯化消毒工艺能够有效去除环丙沙星,但是处理过程中会伴随着氯代消毒副产物的生成,同样会造成环境污染(ElNajjar,N.H.;Deborde,M.;Journel,R.;Vel Leitner,N.K.,Aqueous chlorination oflevofloxacin:Kinetic and mechanistic study,transformation productidentification andtoxicity.Water Research 2013,47,(1),121-129;Wang,P.;He,Y.-L.;Huang,C.-H.,Oxidation of fluoroquinolone antibiotics and structurallyrelated amines by chlorine dioxide:reaction kinetics,product and pathwayevaluation.water research 2010,44,(20),5989-5998.)。紫外/过硫酸盐体系也被用于降解环丙沙星,但是能耗较高。此外,高铁酸盐体系也被用于降解环丙沙星,但是降解效率强烈依赖于高铁酸盐与环丙沙星的投加比,从而造成高铁酸盐的利用率低,并且会造成铁氧化物泥浆的生成(Feng,M.;Wang,X.;Chen,J.;Qu,R.;Sui,Y.;Cizmas,L.;Wang,Z.;Sharma,V.K.,Degradation of fluoroquinolone antibiotics by ferrate(VI):Effectsof water constituents and oxidized products.Water Research 2016,103,48-57.)。因此,亟需研发一种高效绿色降解环丙沙星的方法。
四酰胺基六甲基苯基环铁(Fe(III)-TAML)作为绿色催化剂(K.Mierzwicki,S.Berski,et al.,AIM and ELF analysis of the H-,Me-,and F-substituted FeIII–TAML complexes,Chemical Physics Letters 507(2011)29-36)被广泛用于降解卤代酚类物质(S.S.Gupta,M.Stadler,et al.,Rapid Total Destruction of Chlorophenols byActivated Hydrogen Peroxide,Science 296(2002)326-328;C.Wang,J.Gao,et al.,Rapid Destruction of Tetrabromobisphenol A by Iron(III)-TetraamidomacrocyclicLigand/Layered Double Hydroxide Composite/H2O2 System,Environmental Science&Technology 51(2017)488-496),有机磷农药(A.Chanda,S.K.Khetan,et al.,TotalDegradation of Fenitrothion and Other Organophosphorus Pesticides byCatalytic Oxidation Employing Fe-TAML Peroxide Activators,Journal of theAmerican Chemical Society 128(2006)12058-12059),偶氮染料(N.Chahbane,D.L.Popescu,et al.,FeIII-TAML-catalyzed green oxidative degradation of theazo dye Orange II by H2O2 and organic peroxides:products,toxicity,kinetics,and mechanisms,Green Chemistry 9(2007)49-57),天然和合成的雌激素(N.W.Shappell,M.A.Vrabel,et al.,Destruction of Estrogens Using Fe-TAML/Peroxide Catalysis,Environmental Science&Technology 42(2008)1296-1300),药物成分舍曲林(L.Q.Shen,E.S.Beach,et al.,Rapid,Biomimetic Degradation in Water of the Persistent DrugSertraline by TAML Catalysts and Hydrogen Peroxide,Environmental Science&Technology 45(2011)7882-7887),以及炸药三硝基甲苯(S.Kundu,A.Chanda,et al.,TAMLActivator/Peroxide-Catalyzed Facile Oxidative Degradation of the PersistentExplosives Trinitrotoluene and Trinitrobenzene in Micellar Solutions,Environmental Science&Technology 47(2013)5319-5326)。Fe(III)-TAML的实际应用浓度很低(0.01到10μM)(J.Wang,H.Sun,et al.,Electrochemical catalysis andstability of tetraamido macrocyclic ligands iron immobilized on modifiedpyrolytic graphite electrode,Catalysis Today 158(2010)263-268),而且目前还没有有关Fe(III)-TAML的毒性报道。因此,Fe(III)-TAML可以作为降解环丙沙星的绿色替代方法。
发明内容
本发明的目的在于提供一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法,以解决上述背景技术中提出的现有降解环丙沙星的方法存在效率低,能耗高,产生氯代副产物和铁氧化物泥浆,容易形成二次污染的问题。
为实现上述目的,本发明提供如下技术方案:一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法,包括以下步骤:
步骤1、将Fe(III)-TAML与环丙沙星混合,搅拌均匀,得混合液;
步骤2、取上述混合液,加入碳酸缓冲盐,加入的碳酸缓冲盐为碳酸钠和碳酸氢钠,摩尔比为1:1,pH=10,搅拌均匀,得碳酸混合液;
步骤3、取上述碳酸混合液,加入过氧化氢启动反应;
步骤4、费氏弧菌培养与保存,费氏弧菌的培养方法为:取冻干粉溶解于2%w/v的NaCl溶液中,待发光菌复苏后,得升菌液,取上述1毫升菌液加入100mL培养液中培养;费氏弧菌的保存方法为:费氏弧菌培养24h后,发光强度高,得菌液;取上述菌液离心去除上层溶液,得分离菌液;用30%甘油,3%w/vNaCl,pH7.0,20mM磷酸缓冲上述分离菌液,重新溶解分散,得溶解液;将上述溶解液分装于2mL灭菌离心管中,置-80℃冰箱中存放;
步骤5、使用培养的费氏弧菌测定上述混合液和上述碳酸混合液的毒性;
优选的,Fe(III)-TAML物质的量为1μM,环丙沙星的物质的量为10μM。
优选的,过氧化氢浓度为1mM。
优选的,费氏弧菌测定上述混合液和上述碳酸混合液的毒性的方法为:将上述混合液和上述碳酸混合液分别与费氏弧菌菌液混合,震荡混匀15分钟,然后采用生物毒性测定仪测定发光强度。
费氏弧菌的培养需要注意操作全程无菌操作,且在无菌操作台中操作。
优选的,环丙沙星母体与降解产物的毒性通过测定费氏弧菌的发光抑制率进行评估。
与现有技术相比,本发明的有益效果是:
1.该高效降解环丙沙星的催化氧化方法及其产物毒性评估方法采用Fe(III)-TAML/H2O2体系降解环丙沙星并使用实验室培养的费氏弧菌评估环丙沙星降解产物的毒性。Fe(III)-TAML/H2O2体系降解环丙沙星相比于其他的方法具有操作简单,效率高,环境友好:不需要专门的设备如UV灯,复杂的反应装置或者昂贵的光催化剂;环丙沙星的去除可以在一小时内完成;费氏弧菌的发光抑制率结果表明,Fe(III)-TAML/H2O2体系降解环丙沙星的产物无毒。因此,本研究主要目的是采用Fe(III)-TAML/H2O2体系降解环丙沙星,阐明降解路径,评估Fe(III)-TAML/H2O2体系降解环丙沙星的产物毒性。
2.该高效降解环丙沙星的催化氧化方法及其产物毒性评估方法利用四酰胺基六甲基苯基环铁有效降解了一种被广泛使用的抗生素。
3.该高效降解环丙沙星的催化氧化方法及其产物毒性评估方法四酰胺基六甲基环铁用量很低,一般为0.1到10μmol/L,而且过氧化氢也是绿色氧化剂,所以不会产生二次污染的环境问题。
4.该高效降解环丙沙星的催化氧化方法及其产物毒性评估方法四酰胺基六甲基环铁/过氧化氢体系在pH(8-10)条件下对环丙沙星始终具备较高的降解效率。
5.该高效降解环丙沙星的催化氧化方法及其产物毒性评估方法除了有效降解抗生素母体外,同时也去除了产物毒性。
附图说明
图1为本发明提出的一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法步骤流程结构示意图;
图2为本发明中Fe(III)-TAML对环丙沙星的降解路径示意图;
图3为本发明中环丙沙星在pH8(a)和10(b)条件下降解动力学曲线;
图4为Fe(III)-TAML降解环丙沙星前后的毒性评估结果。
注:Fe(III)-TAML为四酰胺基六甲基苯基环铁(CAS号为895567-73-4)。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1
用0.5M的碳酸钠和碳酸氢钠溶液、高氯酸和氢氧化钠溶液分别调节含有10μM的环丙沙星反应液pH至8和10,然后分别加入Fe(III)-TAML溶液,其中Fe(III)-TAML的用量为1μM。加入1mM的H2O2开始降解环丙沙星的动力学反应。反应5分钟后,加入1mM的浓HClO4和2mM的甲醇终止反应,然后用高效液相色谱(HPLC)进行反应物与生成物分析,使用外标曲线法进行分析,采集不同浓度的标样的色谱图积分,按外标法定量计算,建立标准曲线。其中,加入浓HClO4的目的是将pH调节至3以下,使得Fe(III)-TAML失去活性;加入甲醇的目的包括萃取环丙沙星及其产物以及淬灭在酸性条件下Fe(III)-TAML脱金属作用释放的Fe3+与H2O2发生的类芬顿反应所产生的羟基自由基。动力学反应以准一级反应描述,模型为Ct/C0=exp(-kobst),该为反应化学反应速率与参与反应或与反应有关的物质的条件(浓度)的关系的动力学方程,具体曲线见图2,拟合得到的kobs见表1。
表1不同pH条件下拟合得到的kobs
Figure GDA0003199480360000111
实施例2
一种提高四酰胺基六甲基苯基环铁降解四溴双酚A效率和重复利用率的方法,其步骤为:
(1)用0.5M的碳酸钠和碳酸氢钠溶液、高氯酸和氢氧化钠溶液分别调节含有10μM的环丙沙星反应液pH至8和10,然后分别加入Fe(III)-TAML溶液,其中Fe(III)-TAML的用量为1μM。加入1mM的H2O2开始降解环丙沙星的动力学反应。反应5分钟后,加入1mM的浓HClO4和2mM的甲醇终止反应,然后用高效液相色谱(HPLC)进行反应物与生成物分析,使用外标曲线法进行分析,采集不同浓度的标样的色谱图积分,按外标法定量计算,建立标准曲线。其中,加入浓HClO4的目的是将pH调节至3以下,使得Fe(III)-TAML失去活性;加入甲醇的目的包括萃取环丙沙星及其产物以及淬灭在酸性条件下Fe(III)-TAML脱金属作用释放的Fe3+与H2O2发生的类芬顿反应所产生的羟基自由基。动力学反应以准一级反应描述,模型为Ct/C0=exp(-kobst),该为反应化学反应速率与参与反应或与反应有关的物质的条件(浓度)的关系的动力学方程,具体曲线见图2,拟合得到的kobs见表1。
(2)采用实验室培养的费氏弧菌评估环丙沙星降解前后的毒性。其步骤为:取冻干粉溶解于2%w/v的NaCl溶液中,待发光菌复苏后,取1毫升菌液于100mL培养液中培养。培养液成份为:1%w/v蛋白胨,3%w/vNaCl,0.1%w/v甘油,0.3%w/v酵母膏于pH7.0,20℃培养24h。操作全程无菌操作,且在无菌操作台中操作。培养24h后,发光菌发光强度高,将培养后的菌液离心去除上层溶液后,用30%甘油,3%w/vNaCl,pH7.0,20mM磷酸缓冲溶液重新溶解分散后,分装于2mL灭菌离心管中,于-80℃冰箱中存放。
(3)用培养好费氏弧菌与环丙沙星降解前后的样品进行混合暴露15min,然后用生物毒性测定仪测定环丙沙星降解前后的样品对费氏弧菌的抑制率,得到毒性评估结果,如图3所示。与环丙沙星反应前的毒性比较,反应后的产物毒性显著降低,费氏弧菌的发光抑制率从94.4%降至6.7%。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (1)

1.一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法,其特征在于,包括以下步骤:
步骤1、将Fe(III)-TAML与环丙沙星混合,搅拌均匀,得混合液;
其中,Fe(III)-TAML物质的量为1μM,环丙沙星的物质的量为10μM;
步骤2、取上述混合液,加入碳酸缓冲盐,搅拌均匀,得碳酸混合液;
其中,碳酸缓冲盐为碳酸钠和碳酸氢钠,摩尔比为1∶1,pH=8;
步骤3、取上述碳酸混合液,加入过氧化氢启动反应;
其中,过氧化氢浓度为1mM;
步骤4、费氏弧菌培养与保存;
其中,费氏弧菌的培养方法为:取冻干粉溶解于2%w/v的NaCl溶液中,待发光菌复苏后,得升菌液;取上述1毫升菌液加入100mL培养液中培养;操作全程无菌操作,且在无菌操作台中操作;
费氏弧菌的保存方法为:费氏弧菌培养24h后,发光强度高,得菌液;取上述菌液离心去除上层溶液,得分离菌液;用30%甘油,3%w/vNaCl,pH7.0,20mM磷酸缓冲上述分离菌液,重新溶解分散,得溶解液;将上述溶解液分装于2mL灭菌离心管中,置-80℃冰箱中存放;
步骤5、使用培养的费氏弧菌测定上述混合液和上述碳酸混合液的毒性:将上述混合液和上述碳酸混合液分别与费氏弧菌菌液混合,震荡混匀15分钟,然后采用生物毒性测定仪测定发光强度;环丙沙星母体与降解产物的毒性通过测定费氏弧菌的发光抑制率进行评估。
CN201811376781.9A 2018-11-19 2018-11-19 一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法 Active CN109678239B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811376781.9A CN109678239B (zh) 2018-11-19 2018-11-19 一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811376781.9A CN109678239B (zh) 2018-11-19 2018-11-19 一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法

Publications (2)

Publication Number Publication Date
CN109678239A CN109678239A (zh) 2019-04-26
CN109678239B true CN109678239B (zh) 2022-11-18

Family

ID=66184884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811376781.9A Active CN109678239B (zh) 2018-11-19 2018-11-19 一种高效降解环丙沙星的催化氧化方法及其产物毒性评估方法

Country Status (1)

Country Link
CN (1) CN109678239B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915759A (zh) * 2010-07-20 2010-12-15 同济大学 基于青海弧菌q67的环境污染物长期微板毒性分析法
CN107445218A (zh) * 2017-08-15 2017-12-08 南京大学 一种提高四酰胺基六甲基苯基环铁稳定性的复合材料及其制备方法和应用方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754206B2 (en) * 2011-06-21 2014-06-17 Council Of Scientific & Industrial Research Metal (III) complex of biuret-amide based macrocyclic ligand as green oxidation catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915759A (zh) * 2010-07-20 2010-12-15 同济大学 基于青海弧菌q67的环境污染物长期微板毒性分析法
CN107445218A (zh) * 2017-08-15 2017-12-08 南京大学 一种提高四酰胺基六甲基苯基环铁稳定性的复合材料及其制备方法和应用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fe-TAML过氧化氢催化剂研究进展以及在消毒中的应用展望;孔令策等;《公共安全中的化学问题研究进展(第二卷)》;20110831;第二卷;11-16 *
相艳等.Fe-TAML®催化剂与过氧化氢催化氧化降解Lipitor® 和 Zoloft®.《中国化学会第二十五届学术年会论文摘要集(上册)》.2006,221. *

Also Published As

Publication number Publication date
CN109678239A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
Liao et al. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge
Liu et al. Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review
Zhang et al. The effects of bio-available copper on macrolide antibiotic resistance genes and mobile elements during tylosin fermentation dregs co-composting
Lin et al. Effects of two ecological earthworm species on tetracycline degradation performance, pathway and bacterial community structure in laterite soil
Xia et al. Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge
Qiu et al. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost
Li et al. Insights into the applications of extracellular laccase-aided humification in livestock manure composting
Vidal et al. Effective removal of the antibiotic Nafcillin from water by combining the Photoelectro-Fenton process and Anaerobic Biological Digestion
Ayre et al. Batch cultivation of microalgae in anaerobic digestate exhibits functional changes in bacterial communities impacting nitrogen removal and wastewater treatment
Guo et al. Fate of antibiotic resistance genes during high-solid anaerobic co-digestion of pig manure with lignite
Zeng et al. The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production
Luo et al. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology
Gallardo-Altamirano et al. Insights into the removal of pharmaceutically active compounds from sewage sludge by two-stage mesophilic anaerobic digestion
Wang et al. Revealing the mechanisms of Triclosan affecting of methane production from waste activated sludge
Obata et al. Resilience and limitations of MFC anodic community when exposed to antibacterial agents
Ren et al. Safety of composts consisting of hydrothermally treated penicillin fermentation residue: Degradation products, antibiotic resistance genes and bacterial diversity
Liu et al. Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment
Caracciolo et al. Environmental fate of antibiotics and resistance genes in livestock waste and digestate from biogas plants
Bao et al. Effect of calcium peroxide dosage on organic matter degradation, humification during sewage sludge composting and application as amendment for Cu (II)-polluted soils
Lu et al. Effects of arginine modified additives on humic acid formation and microbial metabolic functions in biogas residue composting
Zhang et al. Simultaneous reductions in antibiotic, antibiotic resistance genes and nitrogen loss during bioaugmentation tylosin fermentation dregs co-composting
Xie et al. Insights into the beneficial effects of woody peat for reducing abundances of antibiotic resistance genes during composting
Bao et al. Simultaneous passivation of heavy metals and removal of antibiotic resistance genes by calcium peroxide addition during sewage sludge composting
Wang et al. Surfactant aggravated the antibiotic's stress on antibiotic resistance genes proliferation by altering antibiotic solubilization and microbial traits in sludge anaerobic fermentation
Chen et al. Anaerobic co-metabolic degradation of ceftriaxone sodium: Performance and mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant