CN109654696B - 防直吹空调的控制方法、装置、存储介质及计算机设备 - Google Patents
防直吹空调的控制方法、装置、存储介质及计算机设备 Download PDFInfo
- Publication number
- CN109654696B CN109654696B CN201811639619.1A CN201811639619A CN109654696B CN 109654696 B CN109654696 B CN 109654696B CN 201811639619 A CN201811639619 A CN 201811639619A CN 109654696 B CN109654696 B CN 109654696B
- Authority
- CN
- China
- Prior art keywords
- personnel
- distance
- air conditioner
- person
- determining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000009434 installation Methods 0.000 claims abstract description 71
- 230000000694 effects Effects 0.000 claims abstract description 52
- 230000002265 prevention Effects 0.000 claims abstract description 34
- 230000033001 locomotion Effects 0.000 claims description 43
- 230000003068 static effect Effects 0.000 claims description 14
- 230000006698 induction Effects 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 13
- 230000033228 biological regulation Effects 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 4
- 238000007664 blowing Methods 0.000 abstract description 52
- 230000002829 reductive effect Effects 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 230000001276 controlling effect Effects 0.000 description 79
- 230000007246 mechanism Effects 0.000 description 38
- 238000012937 correction Methods 0.000 description 35
- 230000000875 corresponding effect Effects 0.000 description 35
- 238000001514 detection method Methods 0.000 description 31
- 230000001105 regulatory effect Effects 0.000 description 25
- 230000035945 sensitivity Effects 0.000 description 23
- 230000008859 change Effects 0.000 description 21
- 230000002596 correlated effect Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004134 energy conservation Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/79—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/77—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
- F24F2120/12—Position of occupants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本发明实施例公开了一种防直吹空调的控制方法、装置、存储介质及计算机设备,属于空调技术领域。该控制方法包括:通过红外热释电传感器获取设定区域内的人员存在状态,当人员存在状态表征设定区域内存在人员时,根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离,根据设定导风板角度,或,设定导风板角度和设定风机转速控制空调。采用本实施例所提供的技术方案,基于红外热释电传感器所获取的模糊的位置信息,可达到防直吹的效果,降低了制造成本。
Description
技术领域
本发明涉及空调技术领域,特别涉及一种防直吹空调的控制方法、装置存储介质及计算机设备。
背景技术
红外热释电传感器的核心元件是热释电探测元,只有当该热释电探测元收到非恒定的红外线照射时,所产生的温度变化导致其表面电机的电荷密度发生变化,从而产生热释电电流。基于红外热释电传感器的工作原理,其只能检测到变化的红外信号,即,当红外热释电传感器用在空调上,以检测人员存在的情况时,仅在人员运动时,红外热释电传感器才会检测到人员存在的结果。
在现有技术中,采用旋转热释电传感器的方式,以使得热释电传感器与静止的人员产生相对运动,可准确地检测到人员存在状态,进而对空调进行控制,以保证用户获取较佳的使用体验。但是其需要增加旋转热释电传感器的装置,增加了空调的制造成本。
发明内容
本发明实施例提供了一种防直吹空调的控制方法,通过红外热释电传感器所获取的模糊的位置信息,即可达到防直吹的效果,降低了制造成本。
为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种防直吹空调的控制方法。
在一种可选的实施例中,所述防直吹空调的控制方法,包括:
通过红外热释电传感器获取设定区域内的人员存在状态;
当所述人员存在状态表征所述设定区域内存在人员时,根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离;
根据空调的安装高度、所述设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于所述设定偏向距离;
根据所述设定导风板角度,或,所述设定导风板角度和所述设定风机转速控制空调。
在一种可选的实施方式中,所述通过红外热释电传感器获取设定区域内的人员存在状态,包括:
通过两个或多个红外热释电传感器获取两个或多个所述设定区域的人员存在状态;
确定出所述设定偏向距离,包括:
当两个或多个所述设定区域的人员存在状态依次表征存在人员时,根据两个或多个所述设定区域的人员存在状态确定出人员运动状态;
根据所述人员运动状态和所述第二时刻确定出设定偏向距离。
在一种可选的实施方式中,根据所述人员运动状态和所述第二时刻确定出设定偏向距离,包括:
获取所述设定区域在待调温空间中的相对位置;
根据所述相对位置和所述人员运动状态确定出人员移动轨迹;
根据所述人员移动轨迹和所述第二时刻确定出预设控制模式;
在所述预设控制模式中确定出设定偏向距离。
在一种可选的实施方式中,所述预设控制模式包括防直吹效果不同的两个或多个不同的设定偏向距离。
根据本发明实施例的第二方面,提供一种防直吹空调的控制装置。
在一种可选的实施例中,所述防直吹空调的控制装置包括:
第一七获取模块,用于通过红外热释电传感器获取设定区域内的人员存在状态;
第一八确定模块,用于当所述人员存在状态表征所述设定区域内存在人员时,根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离;
第一九确定模块,用于根据空调的安装高度、所述设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于所述设定偏向距离;
第一四控制模块,用于根据所述设定导风板角度,或,所述设定导风板角度和所述设定风机转速控制空调。
在一种可选的实施方式中,所述第一七获取模块具体用于:
通过两个或多个红外热释电传感器获取两个或多个所述设定区域的人员存在状态;
所述第一八确定模块具体用于:
当两个或多个所述设定区域的人员存在状态依次表征存在人员时,根据两个或多个所述设定区域的人员存在状态确定出人员运动状态;
根据所述人员运动状态和所述第二时刻确定出设定偏向距离。
在一种可选的实施方式中,根据所述人员运动状态和所述第二时刻确定出设定偏向距离,包括:
获取所述设定区域在待调温空间中的相对位置;
根据所述相对位置和所述人员运动状态确定出人员移动轨迹;
根据所述人员移动轨迹和所述第二时刻确定出预设控制模式;
在所述预设控制模式中确定出设定偏向距离。
在一种可选的实施方式中,所述预设控制模式包括防直吹效果不同的两个或多个不同的设定偏向距离。
根据本发明实施例的第三方面,提供一种计算机设备。
在一种可选的实施例中,所述计算机设备,包括存储器、处理器及存储在所述存储器上并可被所述处理器运行的程序,所述处理器执行所述程序时实现前述的防直吹空调的控制方法。
根据本发明实施例的第四方面,提供一种存储介质。
在一种可选的实施例中,所述存储介质存储有计算机程序,当所述计算机程序被处理器执行时实现前述的防直吹空调的控制方法。
采用本发明实施例的有益效果是:基于红外热释电传感器实现了防直吹的效果,降低了空调的制造成本。当红外热释电传感器设定区域内存在用户时,控制空调的导风板的角度,以使其送风方向与人员之间的距离大于等于设定偏向距离,该设定偏向距离可保证人员处于空气的剧烈流动范围之外。当人员在设定区域时,送风方向与人员之间的最小距离也大于等于设定偏向距离,例如控制空调向设定区域的距离空调最远的一侧的方向送风时,若人员在设定区域的距离空调最远的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离;或,控制空调向设定区域的距离空调最近的一侧的方向送风时,若人员在设定区域的距离空调最近的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离。当送风方向和人员之间的距离为设定偏向距离时,人员可体验无风感,进一步地,当送风方向和人员之间的垂直距离大于设定偏向距离时,空调出风口必然不会吹到人员,从而在红外热释电传感器的基础上实现了防直吹的效果,降低了空调的制造成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种红外热释电传感器的结构示意图;
图2是根据一示例性实施例示出的一种检测装置的结构示意图;
图3是根据一示例性实施例示出的一种检测装置的结构示意图;
图4是根据一示例性实施例示出的一种网格状菲涅尔透镜的俯视示意图;
图5是根据一示例性实施例示出的一种可转向红外热释电传感器和可转向的测距装置的结构示意图;
图6是根据一示例性实施例示出的一种防直吹空调的控制方法的流程示意图;
图7是根据一示例性实施例示出的一种防直吹空调的控制装置的方框示意图;
图8是根据一示例性实施例示出的一种计算机设备的方框示意图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
关于红外热释电传感器,如图1所示,其一般包括:
滤光片11,用于形成设定频率的光通路;
热释电敏感元件12;
由场效应管等构成的前置放大电路,该前置放大电路的输入端与热释电敏感元件的输出端连接,用于放大热释电敏感元件的输出电流;
与放大电路连接的引线13,作为热释电传感器的输出端;和,
用于封装上述部件的封帽14。
其中,热释电敏感元件类似于一个以热释电晶体为电介质的平板电容器,该电介质的介电系数受温度影响,当热释电敏感元件两极之间的温度差出现变化时,导致热释电敏感元件两极的电荷密度发生改变,从而产生了电流。进一步地,热释电敏感元件两极之间的温度之所以会发生变化,是因为热释电敏感元件的一极接收到了变化的红外线,变化的红外线之间所差异的能量使得该极的温度发生变化。红外热释电传感器用于感应到设定区域中的红外线的变化,即,红外线热释电传感器可检测到设定区域中人员存在状态,却不能检测到人员在设定区域中的具体位置。
在本文中,基于红外热释电传感器的上述特征,在控制方法方面进行了改进,使得红外热释电传感器在防直吹空调中得到了很好的应用。
根据本发明实施例的第一方面,提供一种防直吹空调的控制方法。
在一种可选的实施例中,防直吹空调的控制方法包括:
通过红外热释电传感器获取设定区域内的人员存在状态;
当人员存在状态表征设定区域内存在人员时,根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据设定导风板角度控制空调。
当红外热释电传感器设定区域内存在用户时,控制空调的导风板的角度,以使其送风方向与人员之间的距离大于等于设定偏向距离,该设定偏向距离可保证人员处于空气的剧烈流动范围之外。当人员在设定区域时,送风方向与人员之间的最小距离也大于等于设定偏向距离,例如控制空调向设定区域的距离空调最远的一侧的方向送风时,若人员在设定区域的距离空调最远的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离;或,控制空调向设定区域的距离空调最近的一侧的方向送风时,若人员在设定区域的距离空调最近的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离。当送风方向和人员之间的距离为设定偏向距离时,人员可体验无风感,进一步地,当送风方向和人员之间的垂直距离大于设定偏向距离时,空调出风口必然不会吹到人员,从而在红外热释电传感器的基础上实现了防直吹的效果,降低了空调的制造成本。
关于步骤:通过红外热释电传感器获取设定区域内的人员存在状态,人员存在状态包括人员存在和人员不存在两种情况。可用红外热释电传感器的输出信号表征人员存在状态,例如,红外热释电传感器在未检测到人员时,其输出信号为低电平,当红外热释电传感器检测到人员时,其输出信号为高电平;或者,当为检测到人员时,红外热释电传感器输出高电平,当检测到人员时,红外热释电传感器输出低电平。每一个红外热释电传感器具有设定的检测区域,该检测区域与地面/墙面之间可形成一个封闭的区域,该封闭的区域为上述设定区域,或,红外热释电传感器的检测范围与地面/墙面相交的平面为设定区域。当红外热释电传感器检测的人员,即表明人员位于该设定区域内。
关于步骤:当人员存在状态表征设定区域内存在人员时,根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离。当空调安装完成之后,空调的安装高度即为定值,可由用户或安装/维护人员将空调的安装高度输入控制器中。
当设定区域为平面区域时,设定区域与空调之间的第一距离包括:设定区域的距离空调最近的边缘与空调之间的距离,或,设定区域的距离空调最远的边缘与空调之间的距离,或,设定区域的设定中心与空调之间的距离。关于设定区域的设定中心与空调之间的距离,可以是设定区域的中心,可以是设定区域的重心。当设定区域为红外热释电传感器的检测范围与地面/墙面之间相交的平面,且该红外热释电传感器设置在空调上时,该设定区域为一个椭圆形,其长轴的顶点与空调之间的距离,即为设定区域的距离空调最近的边缘与空调之间的距离,或,为设定区域的距离空调最远的边缘与空调之间的距离。
上述内容在设定区域的角度解释了第一距离。在空间结构方面,可选地,第一距离包括:空调在水平面的投影与设定区域之间的距离,或,空调与设定区域之间的直线距离。其中,空调在水平面的投影与设定区域之间的距离,包括:空调在水平面的投影,与设定区域的距离空调最近的边缘之间的距离;或,空调在水平面的投影,与设定区域的距离空调最远的边缘之间的距离;或,空调在水平面投影,与设定区域的设定中心之间的距离。空调与设定区域之间的直线距离,包括:空调与设定区域的距离空调最近的边缘之间的直线距离;或,空调与设定区域的距离空调最远的边缘之间的直线距离;或,空调与设定区域的设定中心之间的直线距离。在测量空调与设定区域之间的距离时,可将空调视为一个点,将设定区域视为一个平面,通过上述对第一距离的解释,将点与平面之间的距离,转化为点与点之间的距离,便于测量。
当空调向设定区域的距离空调最近一侧方向送风时,上述步骤可实施为:当人员存在状态表征设定区域内存在人员时,根据空调的安装高度和设定区域与空调之间的第一距离确定出设定导风板角度;当空调向设定区域的距离空调最远一侧方向送风时,上述步骤可实施为:当人员存在状态表征设定区域内存在人员时,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度。
关于设定人员高度,当仅利用红外热释电传感器获取人员存在状态时,一般无法获取所有使用空调的人员的具体身高,此时,该设定人员身高可由用户或安装人员/维护人员设置,设定人员高度与所有使用空调的人员相关,可选地,设定人员高度用于表征所有使用空调的人员的最大身高,可保证所有使用空调的人员均避免空调的直吹;或,设定人员高度用于表征所有使用空调的人员的平均身高,空调的送风方向便不会偏离设定区域中的人员太远,可保证使用空调的所有人员的设定区域内,均能体验到较佳的调温效果。可选地,该设定人员高度为设定高度与预置高度之和,其中,设定高度可由用户或安装人员/维护人员设置,通过加入预置高度,确保空调的送风方向与人员之间的距离大于等于设定偏向距离,以实现防直吹的效果。
可选地,步骤:根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,包括:
根据第一距离和安装高度与设定人员高度的第一高度差,确定出设定方向与竖直方向的第一角度;
根据第一角度确定出设定导风板角度。
上述步骤中的设定方向为空调出风方向的设定方向,即,空调的吹向设定方向。第一角度为以竖直方向为起点,设定导风板角度为以空调关闭状态下,导风板的默认状态为起点,可见,第一角度和和设定导风板角度之间的存在预设角度差,该预设角度差为空调在关机状态下,导风板的默认角度和竖直方向之间的角度。故,步骤:根据第一角度确定出设定导风板角度,可实施为:根据第一角度和预设角度差确定出设定导风板角度,包括:以第一角度和预设角度差之和作为第一角度,或,以第一角度和预设角度差之差作为第一角度。采用上述技术方案,使得空调的出风方向指向人员的头顶上方,空调的出风方向不会吹向人员的身体的任何部分,防直吹效果好。
在前文中关于第一距离的内容中可知,第一距离测量规则包括:空调与设定区域的水平距离,和,空调与设定区域的直线距离。设定区域中的取点方式不同,第一距离还包括三种:空调与设定区域的距离空调最近的边缘与空调之间的距离,和,空调与设定区域的距离空调最远的边缘与空调之间的距离,和,空调与设定区域的设定中心与空调之间的距离。
第一距离的测量规则之后,根据设定区域的三种不同的取点方式可获取三种不同的第一距离,根据这三种不同的第一距离即可获取三种不同的设定导风板角度,进一步地,即可获取三种不同的偏向距离,该偏向距离为空调的送风方向与人员之间的垂直距离,提高设定人员高度,以保证上述三种不同的偏向距离均大于等于设定偏向距离。当空调的安装高度,设定人员高度不变时,当第一距离为设定区域的距离空调最近的边缘与空调之间的距离时,实际中空调的出风方向与人员之间的垂直距离为第一偏向距离;当第一距离为设定区域的距离空调最远的边缘与空调之间的距离时,实际中空调的出风方向与人员之间的垂直距离与空调之间的距离我第二偏向距离;当第一距离为设定区域的设定中心与空调之间的距离时,实际中空调的出风方向与人员之间的垂直距离为第三偏向距离。那么,第一偏向距离小于第三偏向距离,第三偏向距离小于第二偏向距离。偏向距离越大,防直吹效果越好,同时,调节设定区域中的温度的效果越差;偏向距离越小,防直吹效果越差,同时,调节设定区域中的温度效果越好。
关于步骤:通过红外热释电传感器获取设定区域内的人员存在状态,在一般的红外热释电传感器中,当红外热释电传感器的型号确定以后,其检测范围便已被确定,在此基础上,若该红外热释电传感器的安装位置再确定以后,则该红外热释电传感器的可以检测的区域便已确定,该红外热释电传感器可检测的该区域即为设定区域;在现有红外热释电传感器中,还有通过改变其输入信号以调节其检测范围的红外热释电传感器。
为了改变红外热释电的检测范围,本文中的提出了一种可变焦的红外热释电传感装置,如图2所示。该装置包括驱动机构21、透镜22和红外热释电传感器10,驱动机构用于驱动透镜,以改变透镜与红外传感器的热释电敏感元件之间的距离。驱动机构的动力源可以是伺服电机、步进电机、液压气缸中的任意一个,驱动机构可通过螺杆、传动带中的人任意一个。
在一种可选的实施方式中,空调包括驱动机构、透镜和红外传感器,驱动机构用于驱动透镜,以改变透镜与红外传感器的热释电敏感元件之间的距离。
在此基础上,步骤:通过红外热释电传感器获取设定区域内的人员存在状态,可实施为:
根据设定策略控制驱动机构以调节透镜与红外传感器的热释电敏感元件之间的距离;
获取透镜与红外传感器之间的第四距离;
根据第四距离确定出设定区域。
可选地,上述设定策略为:透镜与红外传感器的热释电敏感元件之间的距离在设定的距离范围内,或,调节透镜的移动速度为设定速度。
进一步地,在一种可选实施方式中,防直吹空调的控制方法包括:
根据设定策略控制驱动机构以调节透镜与红外传感器的热释电敏感元件之间的距离;
当通过红外传感器的输出信号确定出存在人员时,获取透镜与红外传感器之间的第四距离;
根据第四距离确定出设定区域;
根据空调与设定区域的第一距离和空调的安装高度,或,空调与设定区域的第一距离、空调的安装高度、设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据设定导风板角度控制空调。
当红外热释电传感器设定区域内存在用户时,控制空调的导风板的角度,以使其送风方向与人员之间的距离大于等于设定偏向距离,该设定偏向距离可保证人员处于空气的剧烈流动范围之外。当人员在设定区域时,送风方向与人员之间的最小距离也大于等于设定偏向距离,例如控制空调向设定区域的距离空调最远的一侧的方向送风时,若人员在设定区域的距离空调最远的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离;或,控制空调向设定区域的距离空调最近的一侧的方向送风时,若人员在设定区域的距离空调最近的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离。当送风方向和人员之间的距离为设定偏向距离时,人员可体验无风感,进一步地,当送风方向和人员之间的垂直距离大于设定偏向距离时,空调出风口必然不会吹到人员,从而在红外热释电传感器的基础上实现了防直吹的效果,降低了空调的制造成本。
关于步骤:当通过红外传感器的输出信号确定出存在人员时,获取透镜与红外传感器之间的第四距离,当驱动机构采用伺服电机提供动力时,通过伺服电机驱动器的反馈即可获取伺服电机的转动的角度,即可根据伺服电机转动的角度推算出在伺服电机的驱动下,透镜所移动的距离;另外,在透镜处于初始位置时,透镜与红外热释电传感器的热释电敏感元件之间的距离为已知距离,在该已知距离的基础上,即可根据伺服电机转动的角度获取透镜与红外热释电传感器的热释电敏感元件之间的第四距离。同样地,当驱动机构采用步进电机提供动力时,根据步进电机所接收的脉冲数量即可获取步进电机所转动的角度,进而获取透镜与红外热释电传感器的热释电敏感元件之间距离。
在一种可选的实施方式中,步骤:根据第四距离确定出设定区域,包括:
根据第四距离确定出对应检测角度;
根据检测角度、红外热释电传感器的安装高度、红外热释电传感器的安装角度确定出设定区域。
随着透镜的移动,不同区域的红外线即可聚焦在红外热释电传感器的热释电敏感元件上,红外热释电传感器所能检测的区域的大小发生变化,主要体现为:第四距离越小,越大检测角度的景象可聚焦在红外热释电传感器的热释电敏感元件上,红外热释电传感器所能检测的区域越大;第四距离越小,越小角度的景象可聚焦在红外热释电传感器的热释电敏感元件上,红外热释电传感器所能检测的区域越小。在红外热释电传感器的安装位置确定以后,红外热释电传感器与地面之间的距离为已知定值,红外热释电传感器的安装角度为已知角度,再根据检测角度,利用三角函数即可确定出设定区域。通过上述步骤,即可获取变化中的设定区域。应当理解的是,获取变化中的设定区域,包括获取设定区域的边界。
当设定区域为可变的区域后,第一距离即为可变的距离,在一种可选的实施方式中,在步骤:根据空调与设定区域的第一距离和空调的安装高度,或,空调与设定区域的第一距离、空调的安装高度、设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离之前,还包括:
根据设定红外热释电传感器和空调的相对位置关系和设定区域确定出空调与设定区域的第一距离。
可实时获取变化的第一距离,以便于获取更加准确的设定导风板角度,实现防直吹的效果。设定区域的边界为已知,红外热释电传感器与空调的相对位置包括红外热释电传感器与空调之间的距离,和,红外热释电传感器与空调之间连线与参照线之间的角度,该参照线可为待调温空间中的任意水平面上的一条直线。
当设定区域为已知的不变的区域时,设定偏向距离无需变化即可实现防直吹的技术效果。当设定区域为变化的区域时,例如设定区域的面积发生变化,若设定偏向距离不改变,存在空调的出风直吹设定区域中的人员的情况,例如,当以设定区域的距离空调最近的边缘的与空调之间的距离为第一距离,且空调向设定区域的距离空调最远的一侧方向送风时,在设定区域的面积增大时,空调的送风方向存在指向设定区域的风险,若空调的送风方向指向设定区域,则设定区域的局部中,无法避免空调直吹。本文中提出了对应的解决方案,在一种可选的实施方式中,第四距离与设定偏向距离反相关。在设定区域的面积发生变化时,也能保证实现防直吹的技术效果。第四距离越大,则设定区域越大,对应地,若想避免本段提及的上述技术问题,需要增加设定偏向距离。
在红外热释电传感器中,热释电敏感元件类似于一个以热释电晶体为电介质的平板电容器,该电介质的介电系数受温度影响,当热释电敏感元件两极之间的温度差发生变化时,导致热释电敏感元件两极的电荷密度发生改变,从而产生了电流。进一步地,热释电敏感元件两极之间的温度之所以会发生变化,是因为热释电敏感元件的一极接收到了变化的红外线,变化的红外线之间所差异的能量使得该极的温度发生变化。可见,红外热释电传感器用于感应到设定区域中的红外线的变化,即,红外线热释电传感器可检测到设定区域中运动的人员。
在一种可选的实施方式中,防直吹空调的控制方法包括:
控制驱动机构,以使透镜与红外热释电传感器的热释电敏感元件之间的距离在第一设定距离范围内变动;
获取设定区域内的人员存在状态;
当人员存在状态为人员存在时,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据设定导风板角度控制空调。
上述驱动机构、透镜和红外热释电传感器如图2中所示。上述第一设定距离与红外热释电传感器的热释电敏感元件的敏感度相关,红外热释电传感器的热释电敏感元件的敏感度指的是红外热释电传感器的热释电敏感元件的敏感度的热惯性,热释电敏感元件的敏感度的热惯性越大,热释电敏感元件的敏感度越低;热释电敏感元件的敏感度的热惯性越小,热释电敏感元件的敏感度的热惯性越高。红外热释电传感器的热释电敏感元件的敏感度越高,第一设定距离越小;红外热释电传感器的热释电敏感元件的敏感度越低,第一设定距离越大。采用上述步骤,当设定区域中的人员静止时,也可实现防直吹的技术效果。设定区域中的静止的人员,所辐射的红外线为恒定的红外线,当透镜与热释电传感器的热释电敏感元件之间的距离发生变动时,热释电敏感元件上所聚焦的景象对应的区域发生变化,即,同一区域所辐射的红外线,随着透镜与热释电传感器的热释电敏感元件之间的距离的改变,该红外线通过透镜在热释电敏感元件上的聚焦位置发生偏移,从而改变热释电敏感元件的局部温度,热释电敏感元件的输出电流发生变化,红外热释电传感器的输出信号发生改变,即可检测到设定区域中静止的人员。
一般情况下,若设定区域中存在人员,控制空调根据防直吹模式运行;若设定区域中不存在人员,则控制空调根据默认模式运行,以实现调温的效果,或,若设定区域中不存在人员,则控制空调停止运行,以实现节能。
在一种可选的实施方式中,步骤:控制驱动机构,以使透镜与红外热释电传感器的热释电敏感元件之间的距离在第一设定距离范围内变动,获取设定区域内的人员存在状态,包括:
在第二时间内,控制驱动机构持续运动;
通过红外热释电传感器获取设定区域内的第一人员存在状态;
在第三时间内,控制驱动机构始终静止;
通过红外热释电传感器获取设定区域内的第二人员存在状态;
根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态。
通过上述步骤,可获取设定区域中真实的人员存在状态。在一些应用场景中,设定区域中存在红外干扰源,例如设定区域中存在电视机、冰箱等其他家用电器,这些家用电器在使用过程中,温度会升高,辐射出与人员所辐射的红外线近似的红外线,干扰了空调的识别过程。
在上述步骤中,第一人员存在状态对应于设定区域中静止的类人体红外线辐射源,若设定区域中存在类人体红外线辐射源,则第一人员存在状态为人员存在;第二人员存在状态对应于设定区域中运动的人员,若设定区域中存在运动的人员,在第二人员存在状态为人员存在。
在一种可选的实施方式中,步骤:根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态,包括:
当第一人员存在状态为人员存在时,若第一时刻前第一时间段内,第二人员存在状态为人员存在,则实际人员存在状态为人员存在。
第一时刻为确定出第一人员存在状态为人员存在的时刻。通过上述步骤,在设定区域中存在类人体红外线辐射源时,实现智能判断实际人员存在状态,即,智能判断真实的人员存在状态,以对空调进行准确的控制。当第二人员存在状态为人员存在时,包括两种情况:人员进入设定区域,和,人员离开设定区域。若人员进入设定区域后,人员难以在设定区域内始终不动,在第一时间段之内,人员大概率地会移动,在人员移动前,空调始终运行与防直吹模式;若人员离开设定区域后,第一时间段后,空调退出防直吹模式,根据默认模式运行或停止运行。上述在第一时间段,可以是人员集中注意力的平均时间,故,在第一时间段之内,人员大概率地会移动。
在一种可选的实施方式中,在步骤:获取设定区域内的人员存在状态之前,还包括:
根据设定策略控制驱动机构以调节透镜与红外传感器的热释电敏感元件之间的距离;
当人员存在状态为人员存在时,还包括:
获取透镜与红外传感器之间的第四距离;
根据第四距离确定出设定区域。
采用上述步骤,可在更大的范围内确定出实际人员存在状态。
为了识别出设定区域中的静止的人员,还可采取以下实施方式:
在一种可选的实施方式中,防直吹空调的控制方法,包括:
控制第二驱动机构,以使菲涅尔透镜在第二设定角度内旋转;
通过红外热释电传感器获取设定区域的人员存在状态;
当人员存在状态为人员存在时,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据设定导风板角度控制空调。
如图3所示,上述空调包括第二驱动机构31、菲涅尔透镜32和红外热释电传感器10,菲涅尔透镜的焦点位于红外热释电传感器的热释电敏感元件上,第二驱动机构用于驱动菲涅尔透镜旋转。上述菲涅尔透镜为网格状菲涅尔透镜,如图4所示。
可选地,菲涅尔透镜在第二设定角度往复旋转。第二设定角度与红外热释电传感器的热释电敏感元件的敏感度相关,红外热释电传感器的热释电敏感元件的敏感度指的是红外热释电传感器的热释电敏感元件的敏感度的热惯性,热释电敏感元件的敏感度的热惯性越大,热释电敏感元件的敏感度越低;热释电敏感元件的敏感度的热惯性越小,热释电敏感元件的敏感度的热惯性越高。红外热释电传感器的热释电敏感元件的敏感度越高,第二设定角度越小;红外热释电传感器的热释电敏感元件的敏感度越低,第二设定角度越大。可选地,菲涅尔透镜在第二设定角度往复旋转。可选地,当第二设定角度为360°时,则菲涅尔透镜成按照设定角速度持续旋转(区别与上述往复旋转)。可选地,菲涅尔透镜旋转的角速度与红外热释电传感器的热释电敏感元件的敏感度正相关,红外热释电传感器的热释电敏感元件的敏感度越小,设定角速度越小;红外热释电传感器的热释电敏感元件的敏感度越大,设定角速度越大,以保证红外热释电传感器的热释电敏感元件对变化的红外线产生对应的变化。
采用上述步骤,当设定区域中的人员静止时,也可实现防直吹的技术效果。设定区域中的静止的人员,所辐射的红外线为恒定的红外线,在菲涅尔透镜旋转时,由于菲涅尔透镜为网格状菲涅尔透镜,同一区域所辐射的红外线,会周期性地聚焦在该红外线通过透镜在热释电敏感元件上,从而改变热释电敏感元件的局部温度,热释电敏感元件的输出电流发生变化,红外热释电传感器的输出信号发生改变,即可检测到设定区域中静止的人员。
一般情况下,若设定区域中存在人员,控制空调根据防直吹模式运行;若设定区域中不存在人员,则控制空调根据默认模式运行,以实现调温的效果,或,若设定区域中不存在人员,则控制空调停止运行,以实现节能。
在一种可选的实施方式中,步骤:控制第二驱动机构,以使菲涅尔透镜在第二设定角度内旋转,通过红外热释电传感器获取设定区域的人员存在状态,包括:
在第四时间内,控制第二驱动机构持续运动;
通过红外热释电传感器获取设定区域内的第一人员存在状态;
在第五时间内,控制第二驱动机构始终静止;
通过红外热释电传感器获取设定区域内的第二人员存在状态;
根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态。
通过上述步骤,可获取设定区域中真实的人员存在状态。在一些应用场景中,设定区域中存在红外干扰源,例如设定区域中存在电视机、冰箱等其他家用电器,这些家用电器在使用过程中,温度会升高,辐射出与人员所辐射的红外线近似的红外线,干扰了空调的识别过程。
在上述步骤中,第一人员存在状态对应于设定区域中静止的类人体红外线辐射源,若设定区域中存在类人体红外线辐射源,则第一人员存在状态为人员存在;第二人员存在状态对应于设定区域中运动的人员,若设定区域中存在运动的人员,在第二人员存在状态为人员存在。
在一种可选的实施方式中,步骤:根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态,包括:
当第一人员存在状态为人员存在时,若第一时刻前第一时间段内,第二人员存在状态为人员存在,则实际人员存在状态为人员存在。
第一时刻为确定出第一人员存在状态为人员存在的时刻。通过上述步骤,在设定区域中存在类人体红外线辐射源时,实现智能判断实际人员存在状态,即,智能判断真实的人员存在状态,以对空调进行准确的控制。当第二人员存在状态为人员存在时,包括两种情况:人员进入设定区域,和,人员离开设定区域。若人员进入设定区域后,人员难以在设定区域内始终不动,在第一时间段之内,人员大概率地会移动,在人员移动前,空调始终运行与防直吹模式;若人员离开设定区域后,第一时间段后,空调退出防直吹模式,根据默认模式运行或停止运行。上述在第一时间段,可以是人员集中注意力的平均时间,故,在第一时间段之内,人员大概率地会移动。
在一种可选的实施方式中,防直吹空调的控制方法包括:
通过静态感应的第一红外热释电传感器获取设定区域的第一人员存在状态;
通过动态感应的第二红外热释电传感器获取设定区域的第二人员存在状态;
当根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态为设定区域内存在人员时,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据设定导风板角度控制空调。
静态感应的第一红外热释电传感器指的是可感应设定区域中静止的红外线辐射源的装置,例如图2或图3所示的装置/空调上的装置。动态感应的第二红外热释电传感器指的是可感应设定区域中运动的红外线辐射源的红外热释电传感器。
通过上述步骤,可获取设定区域中真实的人员存在状态。在一些应用场景中,设定区域中存在红外干扰源,例如设定区域中存在电视机、冰箱等其他家用电器,这些家用电器在使用过程中,温度会升高,辐射出与人员所辐射的红外线近似的红外线,干扰了空调的识别过程。
在上述步骤中,第一人员存在状态对应于设定区域中静止的类人体红外线辐射源,若设定区域中存在类人体红外线辐射源,则第一人员存在状态为人员存在;第二人员存在状态对应于设定区域中运动的人员,若设定区域中存在运动的人员,在第二人员存在状态为人员存在。
关于步骤:根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态,在一种可选的实施方式中,该步骤包括:
当第一人员存在状态为人员存在时,若第一时刻前第一时间段内,第二人员存在状态为人员存在,则实际人员存在状态为人员存在。
第一时刻为确定出第一人员存在状态为人员存在的时刻。通过上述步骤,在设定区域中存在类人体红外线辐射源时,实现智能判断实际人员存在状态,即,智能判断真实的人员存在状态,以对空调进行准确的控制。当第二人员存在状态为人员存在时,包括两种情况:人员进入设定区域,和,人员离开设定区域。若人员进入设定区域后,人员难以在设定区域内始终不动,在第一时间段之内,人员大概率地会移动,在人员移动前,空调始终运行与防直吹模式;若人员离开设定区域后,第一时间段后,空调退出防直吹模式,根据默认模式运行或停止运行。上述在第一时间段,可以是人员集中注意力的平均时间,故,在第一时间段之内,人员大概率地会移动。
在一种可选的实施方式中,当根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态为设定区域内不存在人员时,控制空调进入默认送风模式,或,控制空调关机。其中默认送风模式,包括上下扫风、左右扫风等,可对设定区域内的温度进行较佳的调节。当控制空调关机时,即可实现节能。
在一种可选的实施方式中,防直吹空调的控制方法还包括:
根据设定区域与空调之间的第一距离确定出室内机的风机转速;
根据风机转速控制空调。
当待调温空间的空间较大时,空调送出的风不易受到待调温空间的内壁的影响;当待调温空间的空间较小时,空调送出的风容易受到待调温空间的内壁的影响,导致空调送出的风容易吹到人员身上,虽然没有直接对设定区域的人员吹风,但是设定区域的人员还是被因待调温空间的内壁的阻挡而形成的风吹到,降低了防直吹效果。采用上述步骤,依据第一距离调整室内风机的转速,保证了防直吹实质的技术效果。
可选地,第一距离与风机转速正相关。可选地,步骤:根据设定区域与空调之间的第一距离确定出室内机的风机转速,包括:根据第一距离确定出对应的修正转速,根据修正转速和初始的风机转速获取修正后的风机转速。关于修正转速,该修正转速与第一距离对应,可存储在数据库中,通过在数据库中检索第一距离即可获取该修正转速。将初始的风机转速与修正转速做加/减运算,即可获取修正后的风机转速。可选地,当第一距离大于设定距离时,在初始的风机转速的基础上加上修正转速,获取修正后的风机转速,或,当第一距离大于设定距离时,修正转速为正数,初始的风机转速与修正转速相加,即可获取修正后的风机转速;当第一距离小于设定距离时,在初始的风机转速的基础上减去修正转速,获取修正后的风机转速,或,当第一距离小于设定距离时,修正转速为负数,初始的风机转速与修正转速相加,即可获取修正后的风机转速。通过上述步骤,即可获取更加准确的风机转速。
在一种可选的实施方式中,防直吹空调的控制方法包括:
通过红外热释电传感器获取设定区域内的人员存在状态;
当人员存在状态表征设定区域内存在人员时,调整红外热释电传感器检测的设定区域;
当人员存在状态的变化周期小于设定周期时,根据空调的安装高度、设定区域的边沿与空调之间的第六距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据设定导风板角度控制空调。
当红外热释电传感器设定区域内存在用户时,控制空调的导风板的角度,以使其送风方向与人员之间的距离大于等于设定偏向距离,该设定偏向距离可保证人员处于空气的剧烈流动范围之外。当人员在设定区域时,送风方向与人员之间的最小距离也大于等于设定偏向距离,例如控制空调向设定区域的距离空调最远的一侧的方向送风时,若人员在设定区域的距离空调最远的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离;或,控制空调向设定区域的距离空调最近的一侧的方向送风时,若人员在设定区域的距离空调最近的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离。当送风方向和人员之间的距离为设定偏向距离时,人员可体验无风感,进一步地,当送风方向和人员之间的垂直距离大于设定偏向距离时,空调出风口必然不会吹到人员,从而在红外热释电传感器的基础上实现了防直吹的效果,降低了空调的制造成本。
另外,采用上述步骤,还提高了所获取的设定区域的边沿与空调之间的第六距离的准确性。
上述第六距离为前文中的第一距离的实施方式之一,其获取方式与获取对应的第一距离的实施方式相同。上述调整红外热释电传感器检测的设定区域,包括以下实施方式:调整透镜与热释电敏感元件之间的距离,调整红外热释电传感器的检测方向(例如该红外热释电传感器为可转动的红外热释电传感器)。
在一种可选的实施方式中,步骤:调整红外热释电传感器检测的设定区域,包括:
控制可转向的红外热释电传感器的驱动机构,以移动红外热释电传感器检测的设定区域;或,
控制驱动透镜的驱动机构,以调整透镜与红外热释电传感器的热释电敏感元件之间的距离。
在一种可选的实施方式中,步骤:调整红外热释电传感器检测的设定区域,包括:
根据第一趋势调整红外热释电传感器检测的设定区域;
当人员存在状态变化时,根据与第一趋势相反的第二趋势调整红外热释电传感器检测的设定区域。
以便于保证人员位于设定区域的边缘处,提高所获取的第六距离的准确性。上述第一趋势和第二趋势均为设定区域改变的趋势,包括:当移动设定区域时,移动设定区域的方向的趋势;和,当调整设定区域的面积时,增加或减小设定区域的面积的趋势。
在一种可选的实施方式中,步骤:根据第一趋势调整红外热释电传感器检测的设定区域之后,若人员存在状态在第六时间后未发生变化,则根据第二趋势调整红外热释电传感器检测的设定区域。
在一种可选的实施方式中,当第一趋势和第二趋势切换,降低调整红外热释电传感器检测的设定区域的速度,便于快速地使得人员位于设定区域的边界,即,快速地使得人员存在状态发生周期性变动。
上述人员存在状态发生周期性变动,包括:人员存在状态的变动周期,小于等于设定周期。
在一种可选的实施方式中,空调包括可转向红外热释电传感器和可转向测距装置,控制方法包括:
控制可转向红外热释电传感器根据设定搜索策略搜索待调温区域内的所有区域;
通过可转向热释电红外传感器获取人员所在的第一区域;
通过可转向测距装置获取第一区域的移动的人员与空调的第三距离;
根据空调的安装高度、第三距离,或,空调的安装高度、第三距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据设定导风板角度控制空调。
上述可转向红外热释电传感器51和可转向测距装置52如图5所示。通过上述步骤,可获得人员的具体位置,进而确定出更加准确的设定导风板角度,送风方向与人员之间的距离位置在相对固定的偏向距离,在保证防直吹效果的基础上,还能提高调节温度的能力,用户具有较佳的使用体验。
在一种可选的实施方式中,步骤空调的安装高度、第三距离和设定人员高度确定出设定导风板角度,包括:根据第三距离和安装高度与设定人员高度的第一高度差,确定出设定方向与竖直方向的第一角度,根据第一角度确定出设定导风板角度。
根据图5可知,该可转向红外热释电传感器为水平转向红外热释电传感器,即,该可转向红外热释电传感器的旋转面为水平面。
在一种可选的实施方式中,步骤:通过可转向红外热释电传感器获取人员所在的第一区域之后,包括:
调整可转向红外热释电传感器的检测区域;
当人员存在状态的变化周期小于设定周期时,通过可转向测距装置获取第一区域的移动的人员与空调的第三距离。
通过可转向红外热释电传感器初步获取人员的位置,便于可转向测距装置快速寻找到人员。
在一种可选的实施方式中,步骤:调整可转向红外热释电传感器的检测区域,包括:
根据第一趋势调整可转向红外热释电传感器的检测区域;
当人员存在状态变化时,根据与第一趋势相反的第二趋势调整可转向红外热释电传感器的检测区域。
通过可转向红外热释电传感器初步获取人员的位置,人员的位置即为可转向红外热释电传感器的检测区域的边缘。
在一种可选的实施方式中,步骤:通过可转向测距装置获取第一区域的移动的人员与空调的第三距离,包括:
获取可转向红外热释电传感器的第一旋转角度;
根据第一旋转角度确定出可转向测距装置的第二旋转角度;
根据第二旋转角度控制可转向测距装置旋转。
采用上述步骤,可转向测距装置可快速寻找到人员并进行测距。可转向红外热释电传感器的检测角度为已知角度,根据第一旋转角度和可转向红外热释电传感器的检测角度即可确定出第二旋转角度。可选地,第一旋转角度加上可转向红外热释电传感器的检测角度,以获取第二旋转角度;可选地,第一旋转角度减去可转向红外热释电传感器的检测角度,以获取第二旋转角度。
在一种可选的实施方式中,防直吹空调的控制方法包括:
通过两个或多个红外热释电传感器获取两个或多个设定区域的人员存在状态;
当两个或多个设定区域的人员存在状态依次表征存在人员时,根据两个或多个设定区域的人员存在状态确定出人员运动状态;
根据人员运动状态确定出设定偏向距离;
根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据设定导风板角度控制空调。
上述人员的运动状态指的是人员移动速度的快慢,在普遍情况下,当人员移动速度快时,人员可承受较大速度的风;当人员的移动速度慢时,人员可承受较小速度的风,上述“人员移动速度快”和“人员移动速度慢”相对,上述“较大速度的风”和“较小速度的风”是相对的。若人员移动速度慢,而设定偏向距离较小,则人员将感受到较大强度的风。在上述步骤中,可根据人员的移动速度获取对应的设定偏向距离,以使得人员感受到可承受范围内的风,当人员处于移动状态时,仍可实现较佳的防直吹效果。
关于步骤:通过两个或多个红外热释电传感器获取两个或多个设定区域的人员存在状态,在一种可选的实施方式,每一个设定区域对应着两个红外热释电传感器,一个为静态感应的红外热释电传感器,另一个为动态感应的红外热释电传感器。
关于:两个或多个设定区域的人员存在状态依次表征存在人员,每个红外热释电传感器均对应一个设定区域,不同的红外热释电传感器所对应的设定区域之间相邻,或,交叉。每个传感器均可获取其对应的设定区域中的人员存在状态,例如第三红外热释电传感器用于获取第三设定区域的第三人员存在状态,第四红外热释电传感器用于获取第四设定区域的第四人员存在状态,当第三人员存在状态由人员存在变化为人员不存在,对应地,第四人员存在状态由人员不存在变化为人员存在,上述变化状态即为第三设定区域的第三人员存在状态和第四设定区域的第四人员存在状态依次表征存在人员。
关于步骤:根据两个或多个设定区域的人员存在状态确定出人员运动状态,此时,两个或多个设定区域的人员存在状态已经依次表征人员存在,那么,两个或多个设定区域的人员存在状态的切换时间与人员的运动状态相对应。其中,两个或多个设定区域的人员存在状态的切换时间,指的是有一个设定区域的人员存在状态为人员存在切换至另一个设定区域的人员存在状态为人员存在,所需要的时间。仍以第三设定区域和第四设定区域为例,在第三设定区域的第三人员存在状态和第四设定区域的第四人员存在状态切换前,其状态为:第三人员存在状态为人员存在,第四人员存在状态为人员不存在,在切换的状态为:第三人员存在状态为人员不存在,第四人员存在状态为人员存在。由上述切换前的状态,变为上述切换后的状态,所需的时间,即为切换时间。在红外热释电传感器所检测的设定区域的面积和位置均为发生改变时,该切换时间越短,则人员的移动速度越快,该切换时间越长,则人员的移动速度越慢。
可选地,两个或多个设定区域的人员存在状态之间的切换时间与设定偏向距离正相关。便于确定出适当的设定偏向距离,使人员体验到较佳的风感。
在一种可选的实施方式中,步骤:根据人员运动状态确定出设定偏向距离,包括:
通过测距装置获取人员与空调之间的第三距离;
根据第三距离和人员运动状态确定出设定偏向距离。
通过上述步骤可获取准确的设定偏向距离,第三距离越大,设定偏向距离越大,提高防直吹的效果。
在一种可选的实施方式中,防直吹空调的控制方法,包括:
通过红外热释电传感器获取设定区域的人员存在状态;
当人员存在状态表征设定区域内存在人员时,获取人员身份信息;
根据人员身份信息确定出设定偏向距离;
根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据导风板角度控制空调。
不同人员对风的敏感度不同,所能承受的风的强度不同。在上述步骤中,人员身份信息与人员所能承受的风的强度相对应,人员所能承受的风的强度与设定偏向距离相对应,故,人员身份信息与设定偏向距离相对应,上述对应关系可预先存储在对应的数据库中,进而,可根据人员身份信息确定出对应的设定偏向距离。
通过上述步骤,一方面保证了空调具有防直吹的效果,还能在防直吹的基础上使得人员体验到较佳的风感。
在一种可选的实施方式中,步骤:获取人员身份信息,包括:
通过深度传感器获取人员的面部信息;
根据面部信息确定出人员身份信息。
上述深度传感器为可获取三维信息的传感器,区别与获取平面图像信息的传感器。该深度传感器可以为飞行时间传感器,可以为包括垂直腔面发射激光器阵列的传感器。
在一种可选的实施方式中,步骤:根据人员身份信息确定出设定偏向距离,包括:
根据人员身份信息确定出初始偏向距离;
获取空调室内机的风机转速;
根据风机修正初始偏向距离,获取设定偏向距离。
可选地,设定偏向距离与风机转速正相关。在修正初始偏向距离时,风机转速与修正距离相对应,将初始偏向距离与修正距离做加/减运算,即可获取设定偏向距离。可选地,当风机转速大于第一设定转速时,在初始偏向距离的基础上加上修正距离,以获取设定偏向距离,或,当风机转速大于第一设定转速时,修正距离为正数,初始偏向距离与修正距离相加,即可获取设定偏向距离;当风机转速小于第一设定转速时,在初始偏向距离的基础上减去修正距离,以获取设定偏向距离,或,当风机转速小于第一设定转速时,修正距离为负数,初始偏向距离与修正距离相加,即可获取设定偏向距离。可选地,风机转速与第一设定转速的差值与修正距离的绝对值正相关。通过上述步骤,即可获取更加准确的设定偏向距离。
在一种可选的实施方式中,防直吹空调的控制方法,包括:
通过红外热释电传感器获取设定区域内的人员存在状态;
当人员存在状态表征设定区域内存在人员时,获取设定区域内人员数量信息;
根据人员数量信息确定出设定偏向距离;
根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据导风板角度控制空调。
关于以下情境:多个人员同时使用空调,即设定区域内存在多个人员,与设定区域内存在一个人员相比,多个人员之间彼此互相遮挡,降低了空调对设定区域的送风效果,同时降低了空调对设定区域的调温效果。在上述步骤中,在对空调进行防直吹的控制时,顾及人员数量对设定区域的送风效果的影响,在实现了防直吹效果的基础上,降低了人员数量对设定区域的送风效果的影响,设定区域的人员可体验到较佳的风感。
关于步骤:根据人员数量信息确定出设定偏向距离,,在一种可选的实施方式中,该步骤包括:
确定出人员数量所在的数量等级;
根据数量等级确定出对应的设定偏向距离。
即,数量等级为预置的数量等级,每个数量等级对应一个数量范围,当人员数量已知后,即可判断出该人员数量所在的数量范围,从而获取与该数量范围对应的数量等级。每一个数量等级均对应于一个设定偏向距离,其对应关系可存储在对应的数据库中,即可根据数量等级确定出对应的设定偏向距离。
可选地,数量等级所表征的人员数量越多,该数量等级对应的数量范围越大。例如,数量等级包括第一数量等级、第二数量等级和第三数量等级,第一数量等级所对应的第一数量范围为[1,2],第二数量等级所对应的第二数量范围为[3,6],第三数量等级所对应的第三数量范围为[7,14]。
在一种可选的实施方式中,步骤:根据人员数量信息确定出设定偏向距离,包括:
根据人员数量信息确定出初始偏向距离;
获取空调室内机的风机转速;
根据风机修正初始偏向距离,获取设定偏向距离。
可选地,设定偏向距离与风机转速正相关。在修正初始偏向距离时,风机转速与修正距离相对应,将初始偏向距离与修正距离做加/减运算,即可获取设定偏向距离。可选地,当风机转速大于第一设定转速时,在初始偏向距离的基础上加上修正距离,获取设定偏向距离,或,当风机转速大于第一设定转速时,修正距离为正数,初始偏向距离与修正距离相加,即可获取设定偏向距离;当风机转速小于第一设定转速时,在初始偏向距离的基础上减去修正距离,以获取设定偏向距离,或,当风机转速小于第一设定转速时,修正距离为负数,初始偏向距离与修正距离相加,即可获取设定偏向距离。可选地,风机转速与第一设定转速的差值与修正距离的绝对值正相关。通过上述步骤,即可获取更加准确的设定偏向距离。
如图6所示,在一种可选的实施方式中,防直吹空调的控制方法包括:
S601、通过红外热释电传感器获取设定区域内的人员存在状态;
S602、当人员存在状态表征设定区域内存在人员时,根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离;
S603、根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
S604、根据设定导风板角度,或,设定导风板角度和设定风机转速控制空调。
上述步骤中的第二时刻为红外热释电传感器获取设定区域中的人员存在状态的时刻。即,通过红外热释电传感器获取设定区域内的人员存在状态时,记录此时的第二时刻。在不同时间,人员对于防直吹效果的要求不同,例如在睡眠时,需要加强防直吹的效果,确保人员不会感受到风;在工作学习时间,人员可以承受轻微的风吹,此时不需要在睡眠时所要求的防直吹效果,可适当的使人员感受到风,以调节人员对于温度的感受,通过上述步骤,纳入时间因素对防直吹效果的需求的影响,提高了防直吹空调的智能化效果,可更加契合地应用于不同的时间。进一步地,步骤:根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离,包括:
根据第二时刻确定出对应的设定时间段,根据对应的设定时间段确定出对应的设定偏向距离,或,室内风机的设定风机转速和设定偏向距离。设定时间段与设定偏向距离具有映射关系,或,设定时间段与设定风机转速和设定偏向距离均有映射关系,二者间的映射关系可存储在对应的数据库内。
步骤:根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离,考虑到了人员在不同时刻对于防直吹效果的需求,在一种可选的实施方式中,该步骤实施为:根据第二时刻和待调温空间的场景确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离。其待调温空间的场景即为应用空调的具有特征的地点,例如,该待调温空间的场景包括:走廊、会议室、健身室、办公室、客厅、厨房、卧室等需要调温的地点。每个场景包括对应于多个时刻的设定偏向距离,该对应关系可存储在数据库中。顾及了人员在不同场景下对于防直吹效果的需求,保证防直吹空调的可更具针对性的应用。
关于步骤:通过红外热释电传感器获取设定区域内的人员存在状态,在一种可选的实施方式中,该步骤可实施为:
通过静态感应的红外热释电传感器获取设定区域的第一人员存在状态;
通过动态感应的红外热释电传感器获取设定区域的第二人员存在状态;
根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态。
其中,可选地,静态感应的红外热释电传感器和动态感应的红外热释电传感器的为同一个红外热释电传感器,或,静态感应的红外热释电传感器和动态感应的红外热释电传感器为两个互相独立的红外热释电传感器。
关于步骤:根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离,可选地,当获取设定区域的人员身份信息时,该步骤可实施为:据第二时刻和人员身份信息确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离;可选地,当获取设定区域的人员数量信息时,该步骤可实施为:据第二时刻和人员数量信息确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离;当获取设定区域人员的运动状态时,该步骤可实施为:据第二时刻和人员身份信息确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离。在该步骤的上述实施方式中,其均可在数据库中存储具有对应信息的数据。
在一种可选的实施方式中,步骤:通过红外热释电传感器获取设定区域内的人员存在状态,包括:
通过两个或多个红外热释电传感器获取两个或多个设定区域的人员存在状态;
对应地,在确定出设定偏向距离的步骤中,包括:
当两个或多个设定区域的人员存在状态依次表征存在人员时,根据两个或多个设定区域的人员存在状态确定出人员运动状态;
根据人员运动状态和第二时刻确定出设定偏向距离。
人员在特定时刻的运动状态大概率地代表着人员特定的生活状态,生活状态包括离家状态、归家状态、休息状态、娱乐状态、睡眠状态等。通过上述步骤中,可获取人员的生活状态,再根据生活状态确定出设定偏向距离,人员即可体验到不同的防直吹效果。
关于步骤:根据人员运动状态和第二时刻确定出设定偏向距离,在一种可选的实施方式中,该步骤包括:
获取设定区域在待调温空间中的相对位置;
根据相对位置和人员运动状态确定出人员移动轨迹;
根据人员移动轨迹和第二时刻确定出预设控制模式;
在预设控制模式中确定出设定偏向距离。
在待调温空间中,当红外热释电传感器安装好之后,该红外热释电传感器仅能检测预期安装位置相对应的待调温空间中的部分区域,即,在红外热释电传感器安装好之后,设定区域在空间的位置为已知位置。可选地,该相对位置为待调温控制空间中的特征位置,例如待调温空间为A空间,特征位置包括:A空间与室外环境的连接位置、A空间与B空间(除A空间之外的其他空间)的连接位置、A空间中的电视位置、A空间中的沙发位置等。在第二时刻的人员在A空间内/外的不同的特征位置之间的移动轨迹,即可反映人员的生活状态,例如人员在看电视。为了使人员获得较佳的使用体验,人员的生活状态均对应着一个预设控制模式,在该预设控制模式中,具有对于与该生活状态的设定温度、设定风速、防直吹效果等级等,在该预设控制模式下,空调为用户的当前的生活状态营造了较佳的空气环境。在预设控制模式中,以不同的设定偏向距离表征防直吹效果等级。
在一种可选的实施方式中,防直吹空调的控制方法,包括:
通过红外热释电传感器获取设定区域内的人员存在状态;
获取设定区域的亮度信息;
根据人员存在状态和亮度信息确定出实际人员存在状态;
当实际人员存在状态为存在人员时,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
根据设定导风板角度控制空调。
当红外热释电传感器设定区域内存在用户时,控制空调的导风板的角度,以使其送风方向与人员之间的距离大于等于设定偏向距离,该设定偏向距离可保证人员处于空气的剧烈流动范围之外。当人员在设定区域时,送风方向与人员之间的最小距离也大于等于设定偏向距离,例如控制空调向设定区域的距离空调最远的一侧的方向送风时,若人员在设定区域的距离空调最远的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离;或,控制空调向设定区域的距离空调最近的一侧的方向送风时,若人员在设定区域的距离空调最近的一侧,则人员与送风方向之间的距离为最小距离,该最小距离大于等于设定偏向距离。当送风方向和人员之间的距离为设定偏向距离时,人员可体验无风感,进一步地,当送风方向和人员之间的垂直距离大于设定偏向距离时,空调出风口必然不会吹到人员,从而在红外热释电传感器的基础上实现了防直吹的效果,降低了空调的制造成本。
关于步骤,根据人员存在状态和亮度信息确定出实际人员存在状态,在一种可选的实施方式中,该步骤包括:当人员存在状态为存在人员时,若亮度信息大于设定亮度,则实际人员存在状态为存在人员。即可准确地确定出实际人员存在状态。
在一种可选的实施方式中,当亮度信息为自然光亮度时,在确定出设定导风板角度之前,还包括:根据亮度信息确定出设定偏向距离。当亮度信息为自然光亮度时,该亮度信息即可在一定程度上反映当前的第二时刻。
在步骤:通过红外热释电传感器获取设定区域内的人员存在状态时,记录第二时刻;对应地,当实际人员存在状态为存在人员时,在确定出设定导风板角度之前,还包括:根据第二时刻确定出设定偏向距离。
在一种可选的实施方式中,防直吹空调的控制方法,空调包括如图5中所示的可转向测距装置51,其控制方法包括:
通过可转向测距装置获取调温空间的面积信息;
通过红外热释电传感器获取设定区域内的人员存在状态;
当人员存在状态表征设定区域内存在人员时,根据面积信息修正室内机的风机转速;
根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于修正后的设定偏向距离;
根据设定导风板角度和修正后的风机转速控制空调。
当待调温空间的空间较大时,空调送出的风不易受到待调温空间的内壁的影响;当待调温空间的空间较小时,空调送出的风容易受到待调温空间的内壁的影响,导致空调送出的风容易吹到人员身上,虽然没有直接对设定区域的人员吹风,但是设定区域的人员还是被因待调温空间的内壁的阻挡而形成的风吹到,降低了防直吹效果。采用上述步骤,依据待调温空间的面积调整室内风机的转速,保证了防直吹实质的技术效果。
关于步骤:通过可转向测距装置获取调温空间的面积信息,在一种可选的实施方式中,该步骤包括:
根据第一设定策略控制可转向测距装置旋转;
当满足设定条件时,获取三个或多个特征距离,并记录三个或多个特征角度;
根据三个或多个特征距离,和,三个或多个特征角度获取面积信息。
关于步骤:根据第一设定策略控制可转向测距装置旋转,其第一设定策略,包括可转向测距装置的旋转速度,可转向测距装置的最大旋转角度以及可转向测距装置的初始位置。例如,控制可转向测距装置自最左端旋转至最右端,或,控制可转向测距装置自最右端旋转至最左端。在第一设定策略下,可转向测距装置在其可旋转角度内旋转一遍或多遍。
关于步骤:当满足设定条件时,获取三个或多个特征距离,并记录三个或多个特征角度,该设定条件为:在可转向测距装置所获取的距离的变化中,出现局部极值,该局部极值包括局部最大值和局部最小值。上述特征角度为当满足设定条件时,可转向测距装置的旋转角度(以可转向测距装置的初始位置为起点),或,可转向测距装置的当前角度(以空调所在的墙面等为起点)。当出现局部最小值时,记录第一特征距离和第一特征角度;当出现局部最大值时,记录第二/第三特征距离和第二/第三特征角度。
关于步骤:根据面积信息修正风机转速,在一种可选的实施方式中,该步骤包括:
根据面积信息确定出对应的修正转速;
根据修正转速和初始的风机转速获取修正后的风机转速。
在上述步骤中,可选地,面积信息所表征的面积与风机转速正相关。在此基础上,关于修正转速,该修正转速与面积信息对应,可存储在数据库中,通过在数据库中检索面积信息即可获取该修正转速。将初始的风机转速与修正转速做加/减运算,即可获取修正后的风机转速。可选地,当面积信息大于设定面积时,在初始的风机转速的基础上加上修正转速,获取修正后的风机转速,或,当面积信息大于设定面积时,修正转速为正数,初始的风机转速与修正转速相加,即可获取修正后的风机转速;当面积信息小于设定面积时,在初始的风机转速的基础上减去修正转速,获取修正后的风机转速,或,当面积信息小于设定面积时,修正转速为负数,初始的风机转速与修正转速相加,即可获取修正后的风机转速。通过上述步骤,即可获取更加准确的风机转速。
在一种可选实施方式中,防直吹空调的控制方法,空调包括万向测距装置,控制方法包括:
通过万向测距装置获取调温空间的体积信息;
通过红外热释电传感器获取设定区域内的人员存在状态;
当人员存在状态表征设定区域内存在人员时,根据体积信息修正室内机的风机转速;
根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于修正后的设定偏向距离;
根据设定导风板角度和修正后的风机转速控制空调。
当待调温空间的空间较大时,空调送出的风不易受到待调温空间的内壁的影响;当待调温空间的空间较小时,空调送出的风容易受到待调温空间的内壁的影响,导致空调送出的风容易吹到人员身上,虽然没有直接对设定区域的人员吹风,但是设定区域的人员还是被因待调温空间的内壁的阻挡而形成的风吹到,降低了防直吹效果。采用上述步骤,依据待调温空间的体积调整室内风机的转速,保证了防直吹实质的技术效果。
关于步骤:通过万向测距装置获取调温空间的体积信息,在一种可选的实施方式中,该步骤包括:
根据第一设定策略控制万向测距装置在水平面方向旋转,以获取待调温空间的面积信息;
根据第二设定策略控制万向测距装置在铅垂面方向旋转,以获取待调温空间的高度信息;
根据面积信息和高度信息获取体积信息。
关于步骤:根据第一设定策略控制万向测距装置在水平面方向旋转,以获取待调温空间的面积信息,在一种可选的实施方式中,该步骤包括:
根据第一设定策略控制万向测距装置旋转;
当满足设定条件时,获取三个或多个特征距离,并记录三个或多个特征角度;
根据三个或多个特征距离,和,三个或多个特征角度获取面积信息。
关于步骤:根据第一设定策略控制可转向测距装置旋转,其第一设定策略,包括可转向测距装置的旋转速度,可转向测距装置的最大旋转角度以及可转向测距装置的初始位置。例如,控制可转向测距装置自最左端旋转至最右端,或,控制可转向测距装置自最右端旋转至最左端。在第一设定策略下,可转向测距装置在其可旋转角度内旋转一遍或多遍。
关于步骤:根据第二设定策略控制万向测距装置在铅垂面方向旋转,以获取待调温空间的高度信息,第二设定策略与第一设定策略的不同之处在于;根据第二设定策略控制万向测距装置在铅垂面中旋转。在一种可选的实施方式中,步骤根据第二设定策略控制万向测距装置在铅垂面方向旋转,以获取待调温空间的高度信息,包括:根据第一设定策略控制万向测距装置旋转,当满足设定条件时,获取三个或多个特征距离,并记录三个或多个特征角度,根据三个或多个特征距离,和,三个或多个特征角度获取待调温空间的高度信息。
关于步骤:跟据体积信息修正室内机的风机转速,在一种可选的实施方式中,该步骤包括:
根据体积信息确定出对应的修正转速;
根据修正转速和初始的风机转速获取修正后的风机转速。
在上述步骤中,可选地,体积信息所表征的体积与风机转速正相关。在此基础上,关于修正转速,该修正转速与体积信息对应,可存储在数据库中,通过在数据库中检索体积信息即可获取该修正转速。将初始的风机转速与修正转速做加/减运算,即可获取修正后的风机转速。可选地,当体积信息大于设定体积时,在初始的风机转速的基础上加上修正转速,获取修正后的风机转速,或,当体积信息大于设定体积时,修正转速为正数,初始的风机转速与修正转速相加,即可获取修正后的风机转速;当体积信息小于设定体积时,在初始的风机转速的基础上减去修正转速,获取修正后的风机转速,或,当体积信息小于设定体积时,修正转速为负数,初始的风机转速与修正转速相加,即可获取修正后的风机转速。通过上述步骤,即可获取更加准确的风机转速。
可选地,前文的防直吹空调的控制方法可以在网络侧服务器中实现,或者,在移动终端中实现,或者,在专用的控制设备中实现。
根据本发明实施例的第二方面,提供一种防直吹空调的控制装置。
在一种可选的实施例中,防直吹空调的控制装置,其特征在于,包括:
第一获取模块,用于通过红外热释电传感器获取设定区域内的人员存在状态;
第一确定模块,用于当人员存在状态表征设定区域内存在人员时,根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第一控制模块,用于根据设定导风板角度控制空调。
在一种可选的实施方式中,第一确定模块,具体用于:
根据第一距离和安装高度与设定人员高度的第一高度差,确定出设定方向与竖直方向的第一角度,根据第一角度确定出设定导风板角度。
在一种可选的实施方式中,第一距离包括:
设定区域的距离空调最近的边缘与空调之间的距离;或,
设定区域的距离空调最远的边缘与空调之间的距离;或,
设定区域的设定中心与空调之间的距离。
在一种可选的实施方式中,第一距离包括:
空调在水平面的投影与设定区域之间的距离,或,空调与设定区域之间的直线距离。
在一种可选的实施方式中,空调包括驱动机构、透镜和红外传感器,驱动机构用于驱动透镜,以改变透镜与红外传感器的热释电敏感元件之间的距离,控制装置包括:
第二调整模块,用于根据第二设定策略控制驱动机构以调节透镜与红外传感器的热释电敏感元件之间的距离;
第五获取模块,用于当通过红外传感器的输出信号确定出存在人员时,获取透镜与红外传感器的热释电敏感元件之间的第四距离;
第三确定模块,用于根据第四距离确定出设定区域;
第四确定模块,用于根据空调与设定区域的第一距离和空调的安装高度,或,空调与设定区域的第一距离、空调的安装高度、设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第四控制模块,用于根据设定导风板角度控制空调。
在一种可选的实施方式中,第三确定模块,具体用于:根据第四距离确定出对应检测角度,根据检测角度、红外热释电传感器的安装高度和红外热释电传感器的安装角度确定出设定区域。
在一种可选的实施方式中,还包括:
第五确定模块,用于在确定出设定导风板角度之前,根据设定红外热释电传感器和空调的相对位置关系和设定区域确定出空调与设定区域的第一距离。
在一种可选的实施方式中,第四距离与设定偏向距离反相关。
在一种可选的实施方式中,防直吹空调的控制装置,空调包括驱动机构、透镜和红外热释电传感器,驱动机构用于驱动透镜,以改变透镜与红外热释电传感器的热释电敏感元件之间的距离,控制装置包括:
第四控制模块,用于控制驱动机构,以使透镜与红外热释电传感器的热释电敏感元件之间的距离在第一设定距离范围内变动;
第六获取模块,用于获取设定区域内的人员存在状态;
第五确定模块,用于当人员存在状态为人员存在时,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第五控制模块,用于根据设定导风板角度控制空调。
在一种可选的实施方式中,第四控制模块和第六获取模块具体用于:
在第二时间内,控制驱动机构持续运动;
通过红外热释电传感器获取设定区域内的第一人员存在状态;
在第三时间内,控制驱动机构始终静止;
通过红外热释电传感器获取设定区域内的第二人员存在状态;
根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态。
在一种可选的实施方式中,根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态,包括:
当第一人员存在状态为人员存在时,若第一时刻前第一时间段内,第二人员存在状态为人员存在,则实际人员存在状态为人员存在。
在一种可选的实施方式中,还包括:
第三调整模块,用于在获取设定区域内的人员存在状态之前,根据设定策略控制驱动机构以调节透镜与红外传感器的热释电敏感元件之间的距离;
第七获取模块,用于当人员存在状态为人员存在时,获取透镜与红外传感器之间的第四距离;
第六确定模块,用于根据第四距离确定出设定区域。
在一种可选的实施方式中,空调包括第二驱动机构、菲涅尔透镜和红外热释电传感器,菲涅尔透镜为网格状菲涅尔透镜,其焦点位于红外热释电传感器的热释电敏感元件上,第二驱动机构用于驱动菲涅尔透镜旋转,控制装置包括:
第六控制模块,用于控制第二驱动机构,以使菲涅尔透镜在第二设定角度内旋转;
第八获取模块,用于通过红外热释电传感器获取设定区域的人员存在状态;
第七确定模块,用于当人员存在状态为人员存在时,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第七控制模块,用于根据设定导风板角度控制空调。
在一种可选的实施方式中,第六控制模块和第八获取模块具体用于:
在第四时间内,控制第二驱动机构持续运动;
通过红外热释电传感器获取设定区域内的第一人员存在状态;
在第五时间内,控制第二驱动机构始终静止;
通过红外热释电传感器获取设定区域内的第二人员存在状态;
根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态。
在一种可选的实施方式中,根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态,包括:
当第一人员存在状态为人员存在时,若第一时刻前第一时间段内,第二人员存在状态为人员存在,则实际人员存在状态为人员存在。
在一种可选的实施方式中,菲涅尔透镜旋转的角速度与红外热释电传感器的热释电敏感元件的敏感度正相关。
在一种可选的实施方式中,防直吹空调的控制装置,包括:
第九获取模块,用于通过静态感应的第一红外热释电传感器获取设定区域的第一人员存在状态;
第一零获取模块,用于通过动态感应的第二红外热释电传感器获取设定区域的第二人员存在状态;
第八确定模块,用于当根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态为设定区域内存在人员时,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第八控制模块,用于根据设定导风板角度控制空调。
在一种可选的实施方式中,还包括:
第九确定模块,用于当第一人员存在状态为人员存在时,若第一时刻前第一时间段内,第二人员存在状态为人员存在,则实际人员存在状态为人员存在。
在一种可选的实施方式中,第八控制模块还用于:当根据第一人员存在状态和第二人员存在状态确定出实际人员存在状态为设定区域内不存在人员时,控制空调进入默认送风模式,或,控制空调关机。
在一种可选的实施方式中,还包括:
第九确定模块,用于根据设定区域与空调之间的第一距离确定出室内机的风机转速;
第九控制模块,用于根据风机转速控制空调。
在一种可选的实施方式中,防直吹空调的控制装置,包括:
第一一获取模块,用于通过红外热释电传感器获取设定区域内的人员存在状态;
第四调整模块,用于当人员存在状态表征设定区域内存在人员时,调整红外热释电传感器检测的设定区域;
当第一零确定模块,用于人员存在状态的变化周期小于设定周期时,根据空调的安装高度、设定区域的边沿与空调之间的第六距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第一零控制模块,用于根据设定导风板角度控制空调。
在一种可选的实施方式中,第四调整模块,具体用于:
控制可转向的红外热释电传感器的驱动机构,以移动红外热释电传感器检测的设定区域;或,
控制驱动透镜的驱动机构,以调整透镜与红外热释电传感器的热释电敏感元件之间的距离。
在一种可选的实施方式中,第四调整模块具体用于:
根据第一趋势调整红外热释电传感器检测的设定区域;
当人员存在状态变化时,根据与第一趋势相反的第二趋势调整红外热释电传感器检测的设定区域。
在一种可选的实施方式中,根据第一趋势调整红外热释电传感器检测的设定区域之后,若人员存在状态在第六时间后未发生变化,则根据第二趋势调整红外热释电传感器检测的设定区域。
在一种可选的实施例中,空调包括可转向红外热释电传感器和可转向测距装置,控制装置包括:
第二控制模块,用于控制可转向红外热释电传感器根据设定搜索策略搜索待调温区域内的所有区域;
第二获取模块,用于通过可转向红外热释电传感器获取人员所在的第一区域;
第三获取模块,用于通过可转向测距装置获取第一区域的移动的人员与空调的第三距离;
第二确定模块,用于根据空调的安装高度和第三距离,或,空调的安装高度、第三距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第三控制模块,用于根据设定导风板角度控制空调。
在一种可选的实施方式中,还包括:
第一调整模块,用于当可转向红外热释电传感器为水平转向红外热释电传感器,通过可转向红外热释电传感器获取人员所在的第一区域之后,调整可转向红外热释电传感器的检测区域;
第四获取模块,用于当人员存在状态的变化周期小于设定周期时,通过可转向测距装置获取第一区域的移动的人员与空调的第三距离。
在一种可选的实施方式中,第一调整模块,具体用于:根据第一趋势调整可转向红外热释电传感器的检测区域,当人员存在状态变化时,根据与第一趋势相反的第二趋势调整可转向红外热释电传感器的检测区域。
在一种可选的实施方式中,第二确定模块,具体用于:获取可转向红外热释电传感器的第一旋转角度,根据第一旋转角度确定出可转向测距装置的第二旋转角度,根据第二旋转角度控制可转向测距装置旋转。
在一种可选的实施方式中,防直吹空调的控制装置包括:
第一二获取模块,用于通过两个或多个红外热释电传感器获取两个或多个设定区域的人员存在状态;
第一一确定模块,用于当两个或多个设定区域的人员存在状态依次表征存在人员时,根据两个或多个设定区域的人员存在状态确定出人员运动状态;
第一二确定模块,用于根据人员运动状态确定出设定偏向距离;
第一三确定模块,用于根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第一一控制模块,用于根据设定导风板角度控制空调。
在一种可选的实施方式中,两个或多个设定区域的人员存在状态之间的切换时间与设定偏向距离正相关。
在一种可选的实施方式中,第一二确定模块具体用于:
通过测距装置获取人员与空调之间的第三距离;
根据第三距离和人员运动状态确定出设定偏向距离。
在一种可选的实施方式中,测距装置为可转向测距装置。
在一种可选的实施方式中,防直吹空调的控制装置,包括:
第一三获取模块,用于通过红外热释电传感器获取设定区域的人员存在状态;
第一四获取模块,用于当人员存在状态表征设定区域内存在人员时,获取人员身份信息;
第一四确定模块,用于根据人员身份信息确定出设定偏向距离;
第一五确定模块,用于根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第一二控制模块,用于根据导风板角度控制空调。
在一种可选的实施方式中,第一四获取模块,具体用于:
通过深度传感器获取人员的面部信息;
根据面部信息确定出人员身份信息。
在一种可选的实施方式中,第一四确定模块,具体用于:
根据人员身份信息确定出初始偏向距离;
获取空调室内机的风机转速;
根据风机修正初始偏向距离,获取设定偏向距离。
在一种可选的实施方式中,设定偏向距离与风机转速正相关。
在一种可选的实施方式中,防直吹空调的控制装置包括:
第一五获取模块,用于通过红外热释电传感器获取设定区域内的人员存在状态;
第一六获取模块,用于当人员存在状态表征设定区域内存在人员时,获取设定区域内人员数量信息;
第一六确定模块,用于根据人员数量信息确定出设定偏向距离;
第一七确定模块,用于根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第一三控制模块,用于根据导风板角度控制空调。
在一种可选的实施方式中,第一六确定模块具体用于:
确定出人员数量所在的数量等级;
根据数量等级确定出对应的设定偏向距离。
在一种可选的实施方式中,第一六确定模块具体用于:
根据人员数量信息确定出初始偏向距离;
获取空调室内机的风机转速;
根据风机修正初始偏向距离,获取设定偏向距离。
在一种可选的实施方式中,设定偏向距离与风机转速正相关。
如图7所示,在一种可选的实施方式中,防直吹空调的控制装置包括:
第一七获取模块71,用于通过红外热释电传感器获取设定区域内的人员存在状态;
第一八确定模块72,用于当人员存在状态表征设定区域内存在人员时,根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离;
第一九确定模块73,用于根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第一四控制模块74,用于根据设定导风板角度,或,设定导风板角度和设定风机转速控制空调。
在一种可选的实施方式中,第一七获取模块具体用于:
通过两个或多个红外热释电传感器获取两个或多个设定区域的人员存在状态;
第一八确定模块具体用于:
当两个或多个设定区域的人员存在状态依次表征存在人员时,根据两个或多个设定区域的人员存在状态确定出人员运动状态;
根据人员运动状态和第二时刻确定出设定偏向距离。
在一种可选的实施方式中,根据人员运动状态和第二时刻确定出设定偏向距离,包括:
获取设定区域在待调温空间中的相对位置;
根据相对位置和人员运动状态确定出人员移动轨迹;
根据人员移动轨迹和第二时刻确定出预设控制模式;
在预设控制模式中确定出设定偏向距离。
在一种可选的实施方式中,预设控制模式包括防直吹效果不同的两个或多个不同的设定偏向距离。
在一种可选的实施方式中,防直吹空调的控制装置包括:
第一八获取模块,用于通过红外热释电传感器获取设定区域内的人员存在状态;
第一九获取模块,用于获取设定区域的亮度信息;
第二零确定模块,用于根据人员存在状态和亮度信息确定出实际人员存在状态;
第二一确定模块,用于当实际人员存在状态为存在人员时,根据空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于设定偏向距离;
第一五控制模块,用于根据设定导风板角度控制空调。
在一种可选的实施方式中,第二零确定模块具体用于:
当人员存在状态为存在人员时,若亮度信息大于设定亮度,则实际人员存在状态为存在人员。
在一种可选的实施方式中,还包括:
第二二确定模块,用于当亮度信息为自然光亮度时,在确定出设定导风板角度之前,根据亮度信息确定出设定偏向距离。
在一种可选的实施方式中,还包括:
第一记录模块,用于当通过红外热释电传感器获取设定区域内的人员存在状态时,记录第二时刻;
第二三确定模块,用于当实际人员存在状态为存在人员时,在确定出设定导风板角度之前,根据第二时刻确定出设定偏向距离。
在一种可选的实施方式中,空调包括可转向测距装置控制装置包括:
第二零获取模块,用于通过可转向测距装置获取调温空间的面积信息;
第二一获取模块,用于通过红外热释电传感器获取设定区域内的人员存在状态;
第一修正模块,用于当人员存在状态表征设定区域内存在人员时,根据面积信息修正室内机的风机转速;
第二四确定模块,用于根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于修正后的设定偏向距离;
第一六控制模块,用于根据设定导风板角度和修正后的风机转速控制空调。
在一种可选的实施方式中,第二零获取模块具体用于:
根据第一设定策略控制可转向测距装置旋转;
当满足设定条件时,获取三个或多个特征距离,并记录三个或多个特征角度;
根据三个或多个特征距离,和,三个或多个特征角度获取面积信息。
在一种可选的实施方式中,根据面积信息修正室内机的风机转速,包括:
根据面积信息确定出对应的修正转速;
根据修正转速和初始的风机转速获取修正后的风机转速。
在一种可选的实施方式中,面积信息所表征的面积与风机转速正相关。
在一种可选的实施方式中,空调包括万向测距装置,控制装置包括:
第二二获取模块,用于通过万向测距装置获取调温空间的体积信息;
第二三获取模块,用于通过红外热释电传感器获取设定区域内的人员存在状态;
第二修正模块,用于当人员存在状态表征设定区域内存在人员时,根据体积信息修正室内机的风机转速;
第二五确定模块,用于根据空调的安装高度和设定区域与空调之间的第一距离,或,空调的安装高度、设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于修正后的设定偏向距离;
第一七控制模块,用于根据设定导风板角度和修正后的风机转速控制空调。
在一种可选的实施方式中,第二二获取模块具体用于:
根据第一设定策略控制万向测距装置在水平面方向旋转,以获取待调温空间的面积信息;
根据第二设定策略控制万向测距装置在铅垂面方向旋转,以获取待调温空间的高度信息;
根据面积信息和高度信息获取体积信息。
在一种可选的实施方式中,据体积信息修正室内机的风机转速,包括:
根据体积信息确定出对应的修正转速;
根据修正转速和初始的风机转速获取修正后的风机转速。
在一种可选的实施方式中,体积信息所表征的体积与风机转速正相关。
根据本发明实施例的第三方面,提供一种计算机设备。
如图8所示,在一种可选的实施方式中,计算机设备包括存储器802、处理器801及存储在存储器802上并可被处理器运行的程序,处理器801执行程序时实现如前述的防直吹空调的控制方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由处理器执行以完成前文的方法。上述非临时性计算机可读存储介质可以是只读存储器ROM(Read Only Memory)、随机存取存储器RAM(RandomAccess Memory)、磁带和光存储设备等。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。所属技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,应该理解到,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
应当理解的是,附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。
Claims (10)
1.一种防直吹空调的控制方法,其特征在于,包括:
通过静态感应的红外热释电传感器获取设定区域的第一人员存在状态;其中,所述静态感应的红外热释电传感器指的是可感应所述设定区域中静止的红外线辐射源的装置;
通过动态感应的红外热释电传感器获取所述设定区域的第二人员存在状态;其中,所述动态感应的第二红外热释电传感器指的是可感应所述设定区域中运动的红外线辐射源的红外热释电传感器;
当所述第一人员存在状态为人员存在时,若第一时刻前第一时间段内,所述第二人员存在状态为人员存在,则人员存在状态为人员存在;其中,所述第一时刻为确定出所述第一人员存在状态为人员存在的时刻;
当所述人员存在状态表征所述设定区域内存在人员时,根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离;
根据空调的安装高度、所述设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于所述设定偏向距离;
根据所述设定导风板角度,或,所述设定导风板角度和所述设定风机转速控制空调。
2.根据权利要求1所述的控制方法,其特征在于,所述通过红外热释电传感器获取设定区域内的人员存在状态,包括:
通过两个或多个红外热释电传感器获取两个或多个所述设定区域的人员存在状态;
确定出所述设定偏向距离,包括:
当两个或多个所述设定区域的人员存在状态依次表征存在人员时,根据两个或多个所述设定区域的人员存在状态确定出人员运动状态;
根据所述人员运动状态和所述第二时刻确定出设定偏向距离。
3.根据权利要求2所述的控制方法,其特征在于,根据所述人员运动状态和所述第二时刻确定出设定偏向距离,包括:
获取所述设定区域在待调温空间中的相对位置;
根据所述相对位置和所述人员运动状态确定出人员移动轨迹;
根据所述人员移动轨迹和所述第二时刻确定出预设控制模式;
在所述预设控制模式中确定出设定偏向距离。
4.根据权利要求3所述的控制方法,其特征在于,所述预设控制模式包括防直吹效果不同的两个或多个不同的设定偏向距离。
5.一种防直吹空调的控制装置,其特征在于,包括:
第一七获取模块,用于通过静态感应的红外热释电传感器获取设定区域的第一人员存在状态;通过动态感应的红外热释电传感器获取所述设定区域的第二人员存在状态;当所述第一人员存在状态为人员存在时,若第一时刻前第一时间段内,所述第二人员存在状态为人员存在,则人员存在状态为人员存在;其中,所述静态感应的红外热释电传感器指的是可感应所述设定区域中静止的红外线辐射源的装置,所述动态感应的第二红外热释电传感器指的是可感应所述设定区域中运动的红外线辐射源的红外热释电传感器,所述第一时刻为确定出所述第一人员存在状态为人员存在的时刻;
第一八确定模块,用于当所述人员存在状态表征所述设定区域内存在人员时,根据第二时刻确定出设定偏向距离,或,室内风机的设定风机转速和设定偏向距离;
第一九确定模块,用于根据空调的安装高度、所述设定区域与空调之间的第一距离和设定人员高度确定出设定导风板角度,以使送风方向与人员之间的距离大于等于所述设定偏向距离;
第一四控制模块,用于根据所述设定导风板角度,或,所述设定导风板角度和所述设定风机转速控制空调。
6.根据权利要求5所述的控制装置,其特征在于,所述第一七获取模块具体用于:
通过两个或多个红外热释电传感器获取两个或多个所述设定区域的人员存在状态;
所述第一八确定模块具体用于:
当两个或多个所述设定区域的人员存在状态依次表征存在人员时,根据两个或多个所述设定区域的人员存在状态确定出人员运动状态;
根据所述人员运动状态和所述第二时刻确定出设定偏向距离。
7.根据权利要求6所述的控制装置,其特征在于,根据所述人员运动状态和所述第二时刻确定出设定偏向距离,包括:
获取所述设定区域在待调温空间中的相对位置;
根据所述相对位置和所述人员运动状态确定出人员移动轨迹;
根据所述人员移动轨迹和所述第二时刻确定出预设控制模式;
在所述预设控制模式中确定出设定偏向距离。
8.根据权利要求7所述的控制装置,其特征在于,所述预设控制模式包括防直吹效果不同的两个或多个不同的设定偏向距离。
9.一种计算机设备,包括存储器、处理器及存储在所述存储器上并可被所述处理器运行的程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至4任意一项所述的防直吹空调的控制方法。
10.一种存储介质,其上存储有计算机程序,其特征在于,当所述计算机程序被处理器执行时实现如权利要求1至4任意一项所述的防直吹空调的控制方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811639619.1A CN109654696B (zh) | 2018-12-29 | 2018-12-29 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
PCT/CN2019/129676 WO2020135829A1 (zh) | 2018-12-29 | 2019-12-29 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811639619.1A CN109654696B (zh) | 2018-12-29 | 2018-12-29 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109654696A CN109654696A (zh) | 2019-04-19 |
CN109654696B true CN109654696B (zh) | 2021-01-29 |
Family
ID=66117935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811639619.1A Active CN109654696B (zh) | 2018-12-29 | 2018-12-29 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109654696B (zh) |
WO (1) | WO2020135829A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109654694B (zh) * | 2018-12-29 | 2021-03-16 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654700B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654703B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654702B (zh) * | 2018-12-29 | 2020-12-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109737568B (zh) * | 2018-12-29 | 2021-03-16 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654693B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654704B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654698B (zh) * | 2018-12-29 | 2021-04-20 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109764489B (zh) * | 2018-12-29 | 2020-11-03 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654696B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654695B (zh) * | 2018-12-29 | 2020-12-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN111089405B (zh) * | 2019-12-24 | 2020-11-24 | 珠海格力电器股份有限公司 | 单离心风机出风控制方法、装置及控制器和空调机组 |
CN111306724A (zh) * | 2020-02-26 | 2020-06-19 | 广东美的制冷设备有限公司 | 空调器及其控制方法与装置 |
CN112539718B (zh) * | 2020-11-24 | 2023-07-18 | 青岛海尔空调器有限总公司 | 位置检测方法、空调器及其控制方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107084795A (zh) * | 2017-04-19 | 2017-08-22 | 珠海格力电器股份有限公司 | 人体热源识别方法、装置及具有该装置的设备 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102798194B (zh) * | 2011-05-25 | 2015-08-12 | 珠海格力电器股份有限公司 | 空调器及其送风模式控制方法和装置 |
JP6001432B2 (ja) * | 2012-12-05 | 2016-10-05 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | 空気調和機 |
JP2015218963A (ja) * | 2014-05-19 | 2015-12-07 | パナソニックIpマネジメント株式会社 | 環境制御システム |
CN104833045A (zh) * | 2015-04-21 | 2015-08-12 | 广东美的制冷设备有限公司 | 空调器及其出风控制方法 |
CN105757903A (zh) * | 2016-04-01 | 2016-07-13 | 广东美的制冷设备有限公司 | 一种空调器控制方法、系统及空调器 |
CN106196473A (zh) * | 2016-07-26 | 2016-12-07 | 北京小米移动软件有限公司 | 控制空调的方法及装置 |
CN108119992B (zh) * | 2016-11-28 | 2020-08-11 | 青岛海尔智能技术研发有限公司 | 一种空调定向送风方法 |
CN107504630A (zh) * | 2017-08-02 | 2017-12-22 | 广东美的制冷设备有限公司 | 空调器及其控制方法和装置 |
CN107525238B (zh) * | 2017-08-22 | 2020-09-11 | 广东美的制冷设备有限公司 | 空调器控制方法、红外信号收发器及空调器 |
CN108489023B (zh) * | 2018-03-09 | 2021-05-28 | 广东美的制冷设备有限公司 | 空调器及其控制方法、控制装置、计算机可读存储介质 |
CN108397871B (zh) * | 2018-03-09 | 2021-05-28 | 广东美的制冷设备有限公司 | 空调器控制方法、装置、空调器和可读存储介质 |
CN108458451B (zh) * | 2018-03-29 | 2020-09-11 | 广东美的制冷设备有限公司 | 空调器送风控制方法、装置及可读存储介质、空调器 |
CN109737568B (zh) * | 2018-12-29 | 2021-03-16 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654702B (zh) * | 2018-12-29 | 2020-12-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654697B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654700B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654698B (zh) * | 2018-12-29 | 2021-04-20 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654699B (zh) * | 2018-12-29 | 2021-04-20 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654701B (zh) * | 2018-12-29 | 2020-12-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654693B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654703B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654696B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654695B (zh) * | 2018-12-29 | 2020-12-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654694B (zh) * | 2018-12-29 | 2021-03-16 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109764489B (zh) * | 2018-12-29 | 2020-11-03 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
CN109654704B (zh) * | 2018-12-29 | 2021-01-29 | 青岛海尔空调器有限总公司 | 防直吹空调的控制方法、装置、存储介质及计算机设备 |
-
2018
- 2018-12-29 CN CN201811639619.1A patent/CN109654696B/zh active Active
-
2019
- 2019-12-29 WO PCT/CN2019/129676 patent/WO2020135829A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107084795A (zh) * | 2017-04-19 | 2017-08-22 | 珠海格力电器股份有限公司 | 人体热源识别方法、装置及具有该装置的设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109654696A (zh) | 2019-04-19 |
WO2020135829A1 (zh) | 2020-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109654693B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654696B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654697B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654695B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654704B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654703B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109764489B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654701B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654699B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654698B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654694B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109737568B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654702B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN109654700B (zh) | 防直吹空调的控制方法、装置、存储介质及计算机设备 | |
CN104949281A (zh) | 空调器及其控制方法、控制装置 | |
CN105371421B (zh) | 一种空调控制方法和空调器 | |
CN112262300A (zh) | 扫描运动平均辐射温度传感器应用 | |
US20230126895A1 (en) | Occupant detection device | |
KR20090050434A (ko) | 열화상 이미지를 생성하는 공기조화기 및 열화상 이미지생성방법 | |
JP2011064427A (ja) | 環境計測装置、設備制御システム、環境計測方法、及び環境計測プログラム | |
CN112378033A (zh) | 空调器控制方法及系统 | |
CN105258293A (zh) | 空调器的出风控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210114 Address after: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao Applicant after: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd. Applicant after: Haier Smart Home Co., Ltd. Address before: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao Applicant before: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |