CN109652721A - 一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金 - Google Patents

一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金 Download PDF

Info

Publication number
CN109652721A
CN109652721A CN201710949307.XA CN201710949307A CN109652721A CN 109652721 A CN109652721 A CN 109652721A CN 201710949307 A CN201710949307 A CN 201710949307A CN 109652721 A CN109652721 A CN 109652721A
Authority
CN
China
Prior art keywords
carbide
ultra
cemented carbide
fine cemented
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710949307.XA
Other languages
English (en)
Inventor
刘启乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710949307.XA priority Critical patent/CN109652721A/zh
Publication of CN109652721A publication Critical patent/CN109652721A/zh
Pending legal-status Critical Current

Links

Classifications

    • B22F1/0003
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

为了改善WC‑Co硬质合金的硬度、耐磨性,研制了一种含(W,Ti,Ta)C复式碳化物的WC‑8%Co超细硬质合金。采用WC‑6%Co和WC‑8%Co硬质合金为原料,采用的最佳工艺参数为:烧结温度1390℃。在此烧结温度下制得的硬质合金力学性能最佳,其矫顽磁力为56.98kA·m‑1,硬度为141HRA,抗弯强度为3461MPa。合金内部的晶粒细小,符合超细晶硬质合金的制备要求。所制得的含(W,Ti,Ta)C复式碳化物的WC‑8%Co超细硬质合金,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的WC‑8Co超细硬质合金提供一种新的生产工艺。

Description

一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金
所属技术领域
本发明涉及一种硬质合金材料,尤其涉及一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金。
背景技术
硬质合金是一种由硬质相(WC、TiC、TaC、VC和Cr,C:等)和粘结相(Co、Ni和Fe)采用粉末冶金工艺生产的具有高硬度和高耐磨性材料,其具有高硬度、高强度、耐腐蚀、耐磨损、高弹性模量、热膨胀系数很低以及化学稳定性很好等特点,在钻具、刀具、耐磨耐腐零部件等方面有广泛应用,有“工业的牙齿”美称。硬质合金属于脆性材料,硬度和强度即耐磨性和韧性之间的矛盾一直是困扰其发展的主要因素。
超细WC-Co类硬质合金是指WC晶粒度≤0.5μm的硬质合金,具有高强度、高硬度、高耐磨性等优良的综合性能,因此广泛的用于工业生产中,尤其是刀具生产中。超细WC-Co类硬质合金在烧结过程中的晶粒长大是制约其能否取得超高力学性能的主要因素。复合碳化物是一种硬质合金行业和其它新材料行业广泛使用的原料,通常由两种或多种碳化物及其它化合物(如氮化物等)固溶而成。添加适量的复合碳化物可以有效抑制WC晶粒在烧结过程中的长大。
发明内容
本发明的目的是为了改善WC-Co硬质合金的硬度、耐磨性,设计了一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金。
本发明解决其技术问题所采用的技术方案是:
含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金的制备原料包括:WC-6%Co和WC-8%Co硬质合金。
含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金的制备步骤为:将原料按实验设计方案进行混合,随后加入至ND7-2行星式球磨机进行球磨,球磨介质为无水乙醇,成型剂为固体石蜡,球料比为5:1,球磨时间为60h。待原料均匀混合后,将混合料抽真空加热至其完全干燥,随后进行擦筛。将制得的粉末通过万能试验机下压制成B型样条,压制压力为250MPa,并在1390℃进行压力烧结,压力烧结的烧结压力为4MPa。
含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金的检测步骤为:洛氏硬度采用HR150型洛氏硬度仪,抗弯强度采用三点弯曲试验,钴磁采用ZS型钴磁测量仪,矫顽磁力采用YSK矫顽磁力计,微观组织采用Pect50型扫描电镜,能谱微区成分采用TecN透射电镜下。
所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,复式碳化物的添加能够增强硬质合金的力学性能。其作用机理为复式碳化物的添加能够有效地抑制合金晶粒在烧结过程中的长大,并且能够细化硬质合金的晶粒,达到提高硬质合金致密度的作用。
所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,复式碳化物的添加能够提高硬质合金的硬度、抗弯强度和矫顽磁力。
所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,采用的最佳工艺参数为:烧结温度1390℃。在此烧结温度下制得的硬质合金力学性能最佳,其矫顽磁力为56.98kA·m-1,硬度为141HRA,抗弯强度为3461MPa。合金内部的晶粒细小,符合超细晶硬质合金的制备要求。
所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,复式碳化物在烧结过程中的存在方式是溶解在粘结相中,所以需要制定一个非常严格的复式碳化物的添加量。
本发明的有益效果是:
采用WC-6%Co和WC-8%Co硬质合金为原料,经过配料、球磨、干燥、制粒、成形、烧结工艺成功制备了具有优异力学性能的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金。其中,复式碳化物的加入能够有效抑制WC晶粒的长大,这也是WC-8Co超细硬质合金力学性能得到大幅提升的根本。所制得的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的WC-8Co超细硬质合金提供一种新的生产工艺。
具体实施方式
实施案例1:
含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金的制备原料包括:WC-6%Co和WC-8%Co硬质合金。含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金的制备步骤为:将原料按实验设计方案进行混合,随后加入至ND7-2行星式球磨机进行球磨,球磨介质为无水乙醇,成型剂为固体石蜡,球料比为5:1,球磨时间为60h。待原料均匀混合后,将混合料抽真空加热至其完全干燥,随后进行擦筛。将制得的粉末通过万能试验机下压制成B型样条,压制压力为250MPa,并在1390℃进行压力烧结,压力烧结的烧结压力为4MPa。含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金的检测步骤为:洛氏硬度采用HR150型洛氏硬度仪,抗弯强度采用三点弯曲试验,钴磁采用ZS型钴磁测量仪,矫顽磁力采用YSK矫顽磁力计,微观组织采用Pect50型扫描电镜,能谱微区成分采用TecN透射电镜下。
实施案例2:
在Co含量相同的情况下,YG8和YG6的硬度和抗弯强度变化的趋势相同,都是随着复式碳化物含量的增加,合金的硬度随着增加,但是抗弯强度呈减小的趋势。复式碳化物是一种脆硬相,使合金的硬度增加;同时Co对复式碳化物的润湿性比对WC的润湿性差,更易形成具有严重缺陷的孔隙,故降低合金的抗弯强度。Co含量从4%增加到7%后,合金的硬度降低但是抗弯强度增加。粘结相Co增加,使WC晶粒的邻接度下降,合金抗弯强度增加;金属Co的硬度远低于WC的硬度,合金硬度降低。
实施案例3:
在Co含量一定的情况下,矫顽磁力随着复式碳化物含量的增加而降低;相对磁饱和随着复式碳化物含量的增加,变化趋势不明显。当复式碳化物含量相同,YG6对应的矫顽磁力比YG8大。YG6合金的磁饱和强度理论值为11.7,YG8合金的磁饱和强度理论值为14.9,相对磁饱和值处于正常的两相区,硬质合金没有明显的脱碳现象。硬质合金的矫顽磁力主要受合金Co含量和碳化物粒度的影响。在硬质相粒度相同的情况下,Co含量越少,粘结相的平均自由程越小,合金的矫顽磁力越大。合金Co含量相同的情况下,硬质相越细,粘结相的平均自由程越小,合金的矫顽磁力越大。
实施案例4:
在复式碳化物含量相同的情况下,WC晶粒大小变化不大。YG8比YG6抗弯强度高,Co含量由4%增加到7%,增大了粘结相的平均自由程,Co对WC颗粒有更好的润湿,在合金破断的过程中,粘结相能够吸收大量的能量而阻止裂纹扩展,没有粘结相包裹的或粘结相层较薄的部位都会成为薄弱环节。复式碳化物从1%增加到3%,加入复式碳化物更多,碳化物颗粒更粗大。Co含量相同的情况下,复式碳化物的增多,矫顽磁力是下降的趋势,碳化物晶粒在增大。
实施案例5:
加入了少量抑制剂的硬质合金性能相对更优。加入适量的抑制剂可以抑制液相烧结过程中的连续长大,得到晶粒细小并且分布比较均匀的超细晶硬质合金,硬质合金的矫顽磁力、硬度和抗弯强度都与硬质相的颗粒大小有着密切的联系,在工艺相同,Co含量一致的情况下,细晶硬质合金的力学性能更好。
实施案例6:
Co相保留下了部分高温时的流动性状态,以粘结相填充到了WC晶粒之间。抑制剂抑制晶粒长大主要有吸附说,偏析说,溶解说。当抑制剂在WC-Co中添加过量或者分散不好时,WC/Co相界纳米偏析膜被发现;或是抑制剂优先在粘结相中溶解,抑制剂元素降低W和C在粘结相中的溶解度,抑制了晶粒长大。
实施案例7:
抑制剂元素主要存在方式是溶解在粘结相中,VC,Cr3C2与Co具有较低的共晶温度,抑制剂往往是比WC优先溶解于液态Co中,阻止了WC晶粒的长大,抑制机理更符合溶解说。抑制晶粒的长大实质就是降低晶粒长大驱动力。复式碳化物中的部分抑制剂元素也是要溶解与Co中,以提高合金的热稳定性抗氧化性等。由于加入了复式碳化物,Co的润湿性比WC颗粒差很多,在液相烧结中易形成孔洞,复式碳化物在提高性能的同时以一种脆硬相存在于相与相之间,阻碍液相Co的填充,使硬质合金强度下降。

Claims (4)

1.一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金的制备原料包括:WC-6%Co和WC-8%Co硬质合金。
2.根据权利要求1所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,其特征是含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金的制备步骤为:将原料按实验设计方案进行混合,随后加入至ND7-2行星式球磨机进行球磨,球磨介质为无水乙醇,成型剂为固体石蜡,球料比为5:1,球磨时间为60h,待原料均匀混合后,将混合料抽真空加热至其完全干燥,随后进行擦筛,将制得的粉末通过万能试验机下压制成B型样条(长20mm×宽6.5mm×高5.25mm),压制压力为250MPa,并在1390℃进行压力烧结,压力烧结的烧结压力为4Mpa。
3.根据权利要求1所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,其特征是含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金的检测步骤为:洛氏硬度采用HR150型洛氏硬度仪,抗弯强度采用三点弯曲试验,钴磁采用ZS型钴磁测量仪,矫顽磁力采用YSK矫顽磁力计,微观组织采用Pect50型扫描电镜,能谱微区成分采用TecN透射电镜下。
4.根据权利要求1所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,其特征是所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,复式碳化物的添加能够增强硬质合金的力学性能,其作用机理为复式碳化物的添加能够有效地抑制合金晶粒在烧结过程中的长大,并且能够细化硬质合金的晶粒,达到提高硬质合金致密度的作用,所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,复式碳化物的添加能够提高硬质合金的硬度、抗弯强度和矫顽磁力,所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,采用的最佳工艺参数为:烧结温度1390℃,在此烧结温度下制得的硬质合金力学性能最佳,其矫顽磁力为56.98kA·m-1,硬度为141HRA,抗弯强度为3461MPa,合金内部的晶粒细小,符合超细晶硬质合金的制备要求,所述的含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金,复式碳化物在烧结过程中的存在方式是溶解在粘结相中,所以需要制定一个非常严格的复式碳化物的添加量。
CN201710949307.XA 2017-10-12 2017-10-12 一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金 Pending CN109652721A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710949307.XA CN109652721A (zh) 2017-10-12 2017-10-12 一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710949307.XA CN109652721A (zh) 2017-10-12 2017-10-12 一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金

Publications (1)

Publication Number Publication Date
CN109652721A true CN109652721A (zh) 2019-04-19

Family

ID=66108953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710949307.XA Pending CN109652721A (zh) 2017-10-12 2017-10-12 一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金

Country Status (1)

Country Link
CN (1) CN109652721A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111842906A (zh) * 2019-11-07 2020-10-30 齐鲁工业大学 一种添加纳米立方氮化硼的金属陶瓷刀具材料制备方法
CN114574727A (zh) * 2022-03-09 2022-06-03 自贡中兴耐磨新材料有限公司 铬钒钨复式碳化物强韧化WC-Ni硬质合金的制备方法
CN115728195A (zh) * 2022-11-21 2023-03-03 湖南博云东方粉末冶金有限公司 一种超细wc的晶粒间接评价方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111842906A (zh) * 2019-11-07 2020-10-30 齐鲁工业大学 一种添加纳米立方氮化硼的金属陶瓷刀具材料制备方法
CN114574727A (zh) * 2022-03-09 2022-06-03 自贡中兴耐磨新材料有限公司 铬钒钨复式碳化物强韧化WC-Ni硬质合金的制备方法
CN115728195A (zh) * 2022-11-21 2023-03-03 湖南博云东方粉末冶金有限公司 一种超细wc的晶粒间接评价方法

Similar Documents

Publication Publication Date Title
Qu et al. Effect of WC content on the microstructure and mechanical properties of Ti (C0. 5N0. 5)–WC–Mo–Ni cermets
EP2350331B1 (en) Functionally graded cemented tungsten carbide with engineered hard surface and the method for making the same
CN109652721A (zh) 一种含(W,Ti,Ta)C复式碳化物的WC-8%Co超细硬质合金
US9079778B2 (en) Production of near-stoichiometric spherical tungsten carbide particles
CN101397614B (zh) 一种Ni粘结WC基硬质合金的制备方法
CN109576547B (zh) 一种三元硼化物增强Ti(C,N)基金属陶瓷材料及其制备方法
Sun et al. Effects of initial particle size distribution and sintering parameters on microstructure and mechanical properties of functionally graded WC-TiC-VC-Cr3C2-Co hard alloys
Zhou et al. Effects of metal phases and carbides on the microstructure and mechanical properties of Ti (C, N)-based cermets cutting tool materials
BRPI0619322A2 (pt) método para produzir uma composição em pó e método para produzir um compacto de cbn policristalino
Ding et al. Effects of silicon powder content on the properties and interface bonding of nitrided Al2O3-C refractories
Yue et al. Effect of Ni content on microstructures and mechanical properties of hot-pressed TiC–TiB2–Ni composite
CN105154706B (zh) 一种高性能超细硬质合金的制备方法
US20140178139A1 (en) Method of manufacturing super hard alloy containing carbon nanotubes, super hard alloy manufactured using same, and cutting tool comprising super hard alloy
CN110396632A (zh) 一种具有均质环芯结构的Ti(C,N)基金属陶瓷及其制备方法
CN115710127B (zh) 石墨烯增韧碳化硅陶瓷材料的制备方法
CN109652701A (zh) 一种含VC/Cr3C2的WC-0.5Co超细硬质合金
Wang et al. Negative thermal expansion of Sc2W3O12 interlayer with three-dimensional interpenetrating network structure for brazing C/SiC composites and GH3536
Zhang et al. Synthesis and characterization of extremely hard and strong (W, Ti, Ta) C cermet by spark plasma sintering
Ma et al. Study on strengthening mechanism and high temperature mechanical properties of TiC-Fe-HEA cemented carbide
JP2012052237A (ja) 超硬合金およびその製造方法、並びにそれを用いた回転工具
Liu et al. Effect of carbon content on the microstructure and mechanical properties of superfine Ti (C, N)-based cermets
CN107265458A (zh) 钨粉分级制备超粗晶粒硬质合金的方法
CN112725676B (zh) 一种红硬性好的高强度硬质合金的制备方法
Wang et al. Effects of (Ti, W) C Addition on the microstructure and mechanical properties of ultrafine WC–Co tool materials prepared by spark plasma sintering
CN111235451A (zh) 一种表面具有金字塔形貌的硬质合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190419

WD01 Invention patent application deemed withdrawn after publication