CN109649610B - Adaptive parallel folding gripper and underwater pipeline robot - Google Patents
Adaptive parallel folding gripper and underwater pipeline robot Download PDFInfo
- Publication number
- CN109649610B CN109649610B CN201811477243.9A CN201811477243A CN109649610B CN 109649610 B CN109649610 B CN 109649610B CN 201811477243 A CN201811477243 A CN 201811477243A CN 109649610 B CN109649610 B CN 109649610B
- Authority
- CN
- China
- Prior art keywords
- stage
- gripper
- snap ring
- level
- folding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003044 adaptive effect Effects 0.000 title claims description 24
- 230000007246 mechanism Effects 0.000 claims abstract description 39
- 210000000078 claw Anatomy 0.000 abstract description 17
- 101100533749 Danio rerio snap25a gene Proteins 0.000 description 55
- 101100533751 Danio rerio snap25b gene Proteins 0.000 description 55
- 101100310525 Drosophila melanogaster alphaSnap gene Proteins 0.000 description 55
- 101100366070 Rattus norvegicus Napa gene Proteins 0.000 description 55
- 101150080510 snap25 gene Proteins 0.000 description 55
- 238000004140 cleaning Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000009193 crawling Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C11/00—Equipment for dwelling or working underwater; Means for searching for underwater objects
- B63C11/52—Tools specially adapted for working underwater, not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本发明涉及水下机器人领域,特别是指一种自适应并联折叠抓手和水下管道机器人。The invention relates to the field of underwater robots, in particular to an adaptive parallel folding gripper and an underwater pipeline robot.
背景技术Background technique
在海上平台底部有大量的圆柱形管道和支撑柱,在建成一段时间之后它们往往会被各种海洋生物和它们的排泄物附着,造成管道的重量发生变化从而影响整个平台的安全性能,需要对管道进行清洗。There are a large number of cylindrical pipes and support columns at the bottom of the offshore platform. After a period of time, they are often attached by various marine organisms and their excrement, causing the weight of the pipes to change and thus affecting the safety performance of the entire platform. Pipe cleaning.
水下管道机器人(水下清理机器人,爬柱机器人)是一种可沿管道自动行走、携带一种或多种传感器及操作机械,在工作人员的遥控操作或计算机自动控制下进行一系列管道作业的机、电、仪一体化系统。Underwater pipeline robot (underwater cleaning robot, climbing column robot) is a kind of automatic walking along the pipeline, carrying one or more sensors and operating machinery, and carries out a series of pipeline operations under the remote operation of the staff or the automatic control of the computer The integrated system of machine, electricity and instrument.
目前的水下清理机器人大多数只针对单一方向的圆柱体或者定直径的圆柱体,但是海上平台的圆柱形柱体在空间中交错分布,并且管径大小不一,因此需要清理机器能够适应管径的变化,以及能够在空间交错分布的管道上进行移动。Most of the current underwater cleaning robots are only aimed at a single-direction cylinder or a fixed-diameter cylinder, but the cylindrical cylinders of the offshore platform are staggered in space and have different pipe diameters. Therefore, the cleaning machine needs to be able to adapt to the pipe. Changes in diameter and the ability to move on spatially staggered pipes.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供一种自适应并联折叠抓手和水下管道机器人,本发明适应于空间中交错分布并且直径不同的圆柱体,能够在空间中交错分布的圆柱体或者类圆柱体上进行爬行。In order to solve the above technical problems, the present invention provides an adaptive parallel folding gripper and an underwater pipeline robot. The present invention is suitable for cylinders with staggered distribution in space and different diameters, and cylinders or cylinder-like cylinders that can be staggered in space. body crawling.
本发明提供技术方案如下:The present invention provides technical solutions as follows:
一种自适应并联折叠抓手,包括两个手爪和将两个手爪连接在一起的并联机构,其中:An adaptive parallel folding gripper includes two claws and a parallel mechanism connecting the two claws together, wherein:
所述并联机构包括两个机架和至少三根伸缩杆,每根伸缩杆的两端分别通过转轴与两个机架连接,同一个机架上的转轴不全部分布在同一条直线上,所述伸缩杆在转轴处能够以与伸缩杆垂直的方向为轴线旋转;The parallel mechanism includes two racks and at least three telescopic rods, the two ends of each telescopic rod are respectively connected to the two racks through rotating shafts, and the rotating shafts on the same rack are not all distributed on the same straight line, the said The telescopic rod can rotate at the axis of rotation in the direction perpendicular to the telescopic rod;
所述两个手爪分别通过旋转电机与所述两个机架连接;The two grippers are respectively connected with the two frames through a rotating motor;
每个手爪包括对称分布的两个折叠卡爪和分别控制所述两个折叠卡爪松开和夹紧的两组夹紧气缸,所述折叠卡爪包括能够折叠和展开的多级卡环。Each gripper includes two symmetrically distributed folding jaws and two sets of clamping cylinders that respectively control the release and clamping of the two folding jaws, and the folding jaws comprise multi-stage snap rings that can be folded and unfolded .
进一步的,所述多级卡环包括第一级卡环和第二级卡环,所述第一级卡环数量为2个,对称分布在所述第二级卡环的外侧,所述第一级卡环与所述夹紧气缸连接,所述第二级卡环通过第二级连杆和第二级伸缩杆与所述第一级卡环连接,所述第一级卡环上设置有第二级旋转电机,所述第二级旋转电机与所述第二级连杆连接。Further, the multi-level snap ring includes a first-level snap ring and a second-level snap ring. The number of the first-level snap rings is 2, which are symmetrically distributed on the outside of the second-level snap ring. The first-level snap ring is connected with the clamping cylinder, the second-level snap ring is connected with the first-level snap ring through the second-level connecting rod and the second-level telescopic rod, and the first-level snap ring is provided with There is a second-stage rotary electric machine connected to the second-stage link.
进一步的,所述多级卡环还包括第三级卡环,所述第二级卡环数量为2个,对称分布在所述第三级卡环的外侧,所述第三级卡环通过第三级连杆和第三级伸缩杆与所述第二级卡环连接,所述第二级卡环上设置有第三级旋转电机,所述第三级旋转电机与所述第三级连杆连接。Further, the multi-level snap ring also includes a third-level snap ring, the number of the second-level snap ring is 2, which are symmetrically distributed on the outside of the third-level snap ring, and the third-level snap ring passes through. The third-stage connecting rod and the third-stage telescopic rod are connected to the second-stage snap ring, and a third-stage rotary motor is provided on the second-stage snap ring, and the third-stage rotary motor is connected to the third-stage rotary motor. connecting rod connection.
进一步的,所述第二级伸缩杆包括第二级伸缩气缸和第二级气缸杆,所述第三级伸缩杆包括第三级伸缩气缸和第三级气缸杆。Further, the second-stage telescopic rod includes a second-stage telescopic cylinder and a second-stage cylinder rod, and the third-stage telescopic rod includes a third-stage telescopic cylinder and a third-stage cylinder rod.
进一步的,所述伸缩杆包括气缸和气缸杆。Further, the telescopic rod includes a cylinder and a cylinder rod.
进一步的,所述转轴处安装有扭力弹簧。Further, a torsion spring is installed on the rotating shaft.
进一步的,所述伸缩杆数量为3根,同一个机架上的三个转轴成三角形分布。Further, the number of the telescopic rods is three, and the three rotating shafts on the same frame are distributed in a triangle.
进一步的,所述旋转电机能够带动所述手爪进行360°旋转。Further, the rotating motor can drive the gripper to rotate 360°.
进一步的,所述手爪上设置有用于安装执行器的安装孔。Further, the gripper is provided with a mounting hole for mounting the actuator.
一种水下管道机器人,包括执行器和前述的自适应并联折叠抓手,所述执行器安装在所述手爪上。An underwater pipeline robot includes an actuator and the aforementioned adaptive parallel folding gripper, wherein the actuator is mounted on the gripper.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明的转向与行进采用了旋转电机与二自由度并联机构串联的结构形式,转向方式灵活多变,可以在空间中交错分布的圆柱体上进行移动。并且本发明的手爪采用可折叠的机构,可以自适应圆柱直径的变化同时也减小了手爪的体积。The steering and traveling of the present invention adopts the structural form of the rotary motor and the two-degree-of-freedom parallel mechanism in series, and the steering mode is flexible and changeable, and can move on the cylinders staggered in space. Moreover, the gripper of the present invention adopts a foldable mechanism, which can adapt to the change of the diameter of the cylinder while reducing the volume of the gripper.
附图说明Description of drawings
图1为本发明的自适应并联折叠抓手的整体结构示意图;1 is a schematic diagram of the overall structure of an adaptive parallel folding gripper of the present invention;
图2为并联机构的示意图;Fig. 2 is the schematic diagram of parallel mechanism;
图3为手爪折叠状态的示意图;Fig. 3 is the schematic diagram of the folded state of the claw;
图4为手爪展开状态的示意图;Fig. 4 is the schematic diagram of the extended state of the hand;
图5为管道异面时自适应并联折叠抓手的状态;Figure 5 shows the state of the adaptive parallel folding gripper when the pipes are on different planes;
图6为管道平行时自适应并联折叠抓手的状态;Figure 6 is the state of the adaptive parallel folding gripper when the pipes are parallel;
图7为管道垂直时自适应并联折叠抓手的状态。Figure 7 shows the state of the adaptive parallel folding gripper when the pipeline is vertical.
其中,各部件的编号为:手爪1、并联机构2、机架3、伸缩杆4、转轴5、旋转电机6、折叠卡爪7、夹紧气缸8、第一级卡环9、第二级卡环10、第三级卡环11、第二级连杆12、第二级伸缩杆13、第二级旋转电机14、第三级连杆15、第三级伸缩杆16、第三级旋转电机17、第二级伸缩气缸18、第二级气缸杆19、第三级伸缩气缸20、第三级气缸杆21、气缸22、气缸杆23、扭力弹簧24。Among them, the numbers of each part are:
具体实施方式Detailed ways
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention more clear, the following will be described in detail with reference to the accompanying drawings and specific embodiments.
一方面,本发明实施例提供一种自适应并联折叠抓手,如图1-3所示,包括两个手爪1和将两个手爪1连接在一起的并联机构2,其中:On the one hand, an embodiment of the present invention provides an adaptive parallel folding gripper, as shown in FIGS. 1-3 , comprising two
并联机构2包括两个机架3和至少三根伸缩杆4,每根伸缩杆4的两端分别通过转轴5与两个机架3连接,伸缩杆与机架形成转动副,伸缩杆4在转轴5处能够以与伸缩杆4垂直的方向为轴线旋转,同一个机架3上的转轴5不全部分布在同一条直线上;并联机构具有一个前移的自由度和绕与伸缩杆垂直方向旋转的自由度,当每根杆伸缩长度相同时,此机构为平面机构,当多根杆伸缩伸出长度不同时,本机构变为空间并联机构,一个手爪相对于另一个手爪移动到立体空间中。The parallel mechanism 2 includes two
两个手爪1分别通过旋转电机6与两个机架3连接,旋转电机控制手爪旋转;The two
每个手爪1包括对称分布的两个折叠卡爪7和分别控制两个折叠卡爪7松开和夹紧的两组夹紧气缸8,折叠卡爪7包括能够折叠和展开的多级卡环,多级卡环展开时,适应大直径的圆柱体,多级卡环折叠时,适应小直径的圆柱体,根据圆柱体的大小选择多级卡环的展开或折叠级数。Each
本发明的自适应并联折叠抓手适应于空间中交错分布并且直径不同的圆柱体,能够在空间中交错分布的圆柱体或者类圆柱体上进行爬行。本发明的使用过程如下:The self-adaptive parallel folding gripper of the present invention is suitable for cylinders with staggered distribution and different diameters in space, and can crawl on cylinders or cylinder-like bodies which are staggered in space. The use process of the present invention is as follows:
首先该自适应并联折叠抓手整体在圆柱体上夹紧,若需要向前移动,则前端手爪的夹紧气缸控制两个折叠卡爪松开,并联机构的多根伸缩杆同时伸出,然后前端手爪的夹紧气缸控制两个折叠卡爪夹紧,后端手爪的夹紧气缸控制两个折叠卡爪松开,并联机构的多根伸缩杆同时缩回,完成自适应并联折叠抓手的前移。First, the adaptive parallel folding gripper is clamped on the cylinder as a whole. If it needs to move forward, the clamping cylinder of the front gripper controls the two folding jaws to release, and the multiple telescopic rods of the parallel mechanism extend at the same time. Then the clamping cylinder of the front-end gripper controls the clamping of the two folding jaws, the clamping cylinder of the rear-end gripper controls the release of the two folding jaws, and the multiple telescopic rods of the parallel mechanism retract at the same time, completing the adaptive parallel folding The forward movement of the gripper.
若自适应并联折叠抓手需要爬行到空间中另外一根圆柱体,则先让一个手爪松开,然后并联机构的多根伸缩杆不同时伸出或缩回(具体哪根伸缩杆伸出或缩回根据另外一根圆柱体的位置而确定),使该手爪抬起,并联机构转化为空间并联机构,两个旋转电机控制手爪旋转,与并联机构配合将手爪移动到合适的位置然后夹紧;此时另一手爪松开,通过并联机构与旋转电机的配合移动到与前一手爪相同的位置,完成柱与柱之间的爬行。如图5所示,为管道异面时自适应并联折叠抓手的状态;如图6所示,为管道平行时自适应并联折叠抓手的状态;如图7所示,为管道垂直时自适应并联折叠抓手的状态。If the adaptive parallel folding gripper needs to crawl to another cylinder in the space, release one gripper first, and then the multiple telescopic rods of the parallel mechanism do not extend or retract at the same time (specifically which telescopic rod extends Or the retraction is determined according to the position of another cylinder), so that the claw is lifted, and the parallel mechanism is transformed into a space parallel mechanism. Two rotating motors control the rotation of the claw, and cooperate with the parallel mechanism to move the claw to a suitable position. The position is then clamped; at this time, the other claw is released, and moves to the same position as the previous claw through the cooperation of the parallel mechanism and the rotating motor to complete the crawling between the columns. As shown in Figure 5, it is the state of the adaptive parallel folding gripper when the pipes are on different planes; as shown in Figure 6, it is the state of the adaptive parallel folding gripper when the pipes are parallel; as shown in Figure 7, it is the automatic parallel folding gripper when the pipes are vertical. Adapt to the state of parallel folding gripper.
若管径发生变化,则多级卡环展开或折叠,根据管径的大小选择展开或折叠状态。If the pipe diameter changes, the multi-stage snap ring is unfolded or folded, and the unfolded or folded state is selected according to the size of the pipe diameter.
综上所述,本发明的转向与行进采用了旋转电机与二自由度并联机构串联的结构形式,转向方式灵活多变,可以在空间中交错分布的圆柱体上进行移动。并且本发明的手爪采用可折叠的机构,可以自适应圆柱直径的变化同时也减小了手爪的体积。To sum up, the steering and traveling of the present invention adopts the structural form of a rotating motor and a two-degree-of-freedom parallel mechanism in series, and the steering mode is flexible and changeable, and can move on cylinders staggered in space. Moreover, the gripper of the present invention adopts a foldable mechanism, which can adapt to the change of the diameter of the cylinder while reducing the volume of the gripper.
作为本发明的一种改进,如图4所示,多级卡环包括第一级卡环9和第二级卡环10,第一级卡环9数量为2个,对称分布在第二级卡环10的外侧,第一级卡环9与夹紧气缸8连接,夹紧气缸与折叠卡爪组成四杆机构,通过夹紧气缸的伸缩带动折叠卡爪整体运动,即控制折叠卡爪整体的松开和夹紧。As an improvement of the present invention, as shown in FIG. 4 , the multi-level snap ring includes a first-
第二级卡环10通过第二级连杆12和第二级伸缩杆13与第一级卡环9连接,连杆和伸缩杆相互平行,与第一级卡环、第二级卡环共同组成五杆机构,第一级卡环9上设置有第二级旋转电机14,第二级旋转电机14与第二级连杆12的转轴连接,第二级旋转电机带动第二级连杆,与第二级伸缩杆一同控制第二级卡环的展开与折叠。The second-
进一步的,如图4所示,多级卡环还包括第三级卡环11,第二级卡环10数量为2个,对称分布在第三级卡环11的外侧,第三级卡环11通过第三级连杆15和第三级伸缩杆16与第二级卡环10连接,第二级卡环10上设置有第三级旋转电机17,第三级旋转电机17与第三级连杆15连接,第三级卡环的控制方式与第二级卡环相同。Further, as shown in FIG. 4 , the multi-level snap ring also includes a third
根据管径的大小选择全折叠状态,二级卡环状态或者三级卡环全部伸出状态。图4中,左侧的折叠卡爪(多级卡环)展开到第二级卡环,右侧的折叠卡爪(多级卡环)展开到第三级卡环。According to the size of the pipe diameter, choose the fully folded state, the second-level snap ring state or the third-level snap ring fully extended state. In FIG. 4 , the left folding claw (multi-level snap ring) is expanded to the second level snap ring, and the right folding claw (multi-level snap ring) is expanded to the third level snap ring.
同理,还可以包括更多级的卡环,其结构和控制方式与第二级卡环、第三级卡环相同。Similarly, more levels of snap rings may also be included, and the structures and control methods are the same as those of the second level snap ring and the third level snap ring.
第二级伸缩杆和第三级伸缩杆优选通过气缸的形式实现,具体的:第二级伸缩杆13包括第二级伸缩气缸18和第二级气缸杆19,第三级伸缩杆16包括第三级伸缩气缸20和第三级气缸杆21。The second-stage telescopic rod and the third-stage telescopic rod are preferably realized in the form of cylinders. Specifically: the second-stage
并联机构的伸缩杆优选通过气缸的形式实现,具体的:伸缩杆4包括气缸22和气缸杆23。The telescopic rod of the parallel mechanism is preferably realized in the form of a cylinder. Specifically, the
为克服并联机构的死点,转轴5处安装有扭力弹簧24。In order to overcome the dead point of the parallel mechanism, a
伸缩杆的数量为至少三根,只要能够实现并联机构的两个自由度即可。伸缩杆4数量为3根时,同一个机架1上的三个转轴5成三角形分布。当三根杆伸缩长度相同时,此并联机构为平面机构,当中间的伸缩杆与两侧的伸缩杆伸出长度不同时,本并联机构变为空间并联机构。The number of telescopic rods is at least three, as long as two degrees of freedom of the parallel mechanism can be achieved. When the number of
旋转电机6优选能够带动手爪1进行360°旋转。The
手爪1上可以设置有用于安装执行器的安装孔,执行器为清理机构等。The
另一方面,本发明提供一种水下管道机器人,包括执行器和前述的的自适应并联折叠抓手,执行器安装在手爪1上,执行器为清洗机构等。On the other hand, the present invention provides an underwater pipeline robot, including an actuator and the aforementioned adaptive parallel folding gripper, the actuator is mounted on the
本发明水下管道机器人的转向与行进采用了旋转电机与二自由度并联机构串联的结构形式,转向方式灵活多变,可以在空间中交错分布的圆柱体上进行移动。并且本发明的手爪采用可折叠的机构,可以适应圆柱直径的变化同时也减小了手爪的体积。The steering and traveling of the underwater pipeline robot of the present invention adopts the structural form of a rotating motor and a two-degree-of-freedom parallel mechanism in series, and the steering mode is flexible and changeable, and can move on cylinders staggered in space. In addition, the gripper of the present invention adopts a foldable mechanism, which can adapt to the change of the diameter of the cylinder and also reduces the volume of the gripper.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811477243.9A CN109649610B (en) | 2018-12-05 | 2018-12-05 | Adaptive parallel folding gripper and underwater pipeline robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811477243.9A CN109649610B (en) | 2018-12-05 | 2018-12-05 | Adaptive parallel folding gripper and underwater pipeline robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109649610A CN109649610A (en) | 2019-04-19 |
CN109649610B true CN109649610B (en) | 2020-10-09 |
Family
ID=66111736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811477243.9A Expired - Fee Related CN109649610B (en) | 2018-12-05 | 2018-12-05 | Adaptive parallel folding gripper and underwater pipeline robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109649610B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110422621B (en) * | 2019-08-21 | 2024-07-23 | 中国南方电网有限责任公司超高压输电公司天生桥局 | Material handling device |
CN110745221B (en) * | 2019-11-13 | 2024-10-29 | 中国海洋大学 | Form-fully-adaptive undersea grabbing and fixing device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5740699A (en) * | 1995-04-06 | 1998-04-21 | Spar Aerospace Limited | Wrist joint which is longitudinally extendible |
DE102004058450A1 (en) * | 2004-12-03 | 2006-06-08 | Hartmut Friedrich | Movement device has powered axle arranged per serially parallel kinematic element whereby lower part of each element has guiding device firmly attached for linear thrust elements |
JP4661402B2 (en) * | 2005-07-01 | 2011-03-30 | 日産自動車株式会社 | Gripping method with robot hand |
CN106594455B (en) * | 2016-12-20 | 2018-08-21 | 中国石油大学(北京) | Robot is detected outside a kind of across the obstacle direction-adaptive pipeline of double claw type |
CN207273248U (en) * | 2017-09-30 | 2018-04-27 | 长沙矿山研究院有限责任公司 | Pipe holder for Work robot outside pipe |
CN108748076B (en) * | 2018-06-21 | 2021-10-01 | 山东拓步教育科技有限公司 | Automatic connect end water robot |
-
2018
- 2018-12-05 CN CN201811477243.9A patent/CN109649610B/en not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
几种混联/并联臂手机构运动与动力学研究;王鹏;《信息科技辑》;20180530;全文 * |
管道攀爬机器人结构设计及行走动力特性分析;罗洁;《信息科技辑》;20150730;全文 * |
转动副驱动的三自由度高速平移并联机器人的性能分析与优化;盛成;《信息科技辑》;20140730;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109649610A (en) | 2019-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106346464B (en) | The lateral pantographic flexible mechanical arm of hard and soft series-parallel connection | |
CN106313034B (en) | The flexible mechanical arm of Coupled Rigid-flexible | |
CN202412285U (en) | Manipulator device for clamping tubular columns during drilling and rework treatment | |
CN105298413B (en) | Automated shifting and transporting device of ocean drilling platform pipe column | |
CN109649610B (en) | Adaptive parallel folding gripper and underwater pipeline robot | |
CN104552286A (en) | Continuous multi-joint mechanical arm device | |
CN204736223U (en) | Manipulator grabbing device | |
CN110587641A (en) | Flexible mechanical claw for grabbing workpieces with different diameters | |
CN110561409A (en) | Multi-adaptability flexible picking manipulator | |
CN113021388B (en) | A multifunctional flexible gripper manipulator with pneumatic and magnetic switching | |
CN111872932A (en) | Mechanical arm | |
CN102434117A (en) | Drill rod assembling and disassembling mechanical arm of myriameter well drill | |
CN108237551B (en) | Rope-driven flexible mechanical arm joint group with double-degree-of-freedom linkage | |
CN104708616B (en) | Three Degree Of Freedom detent mechanism and its telescopically driven multiple degrees of freedom series-parallel robot | |
CN109469790B (en) | A telescopic drive nondestructive testing equipment | |
CN103213142A (en) | Mechanical arm driven by plurality of electric pushing rods | |
CN207827356U (en) | Folded lifting device and the folding robert for gripping storehouse object | |
CN207983374U (en) | The instant genlocing device of under-driving robot finger multi-joint any angle | |
CN202428448U (en) | Three-degree of freedom parallel hybrid overloaded mechanical arm containing complex hinge | |
CN203266667U (en) | Mechanical arm driven by multiple electric push rods | |
CN212601929U (en) | Crank arm and gripper structure of all-carbon fiber robot | |
CN115351806A (en) | A pneumatic software-based grasping and sensing device | |
CN209903207U (en) | A fully direct-acting hydraulic cylinder-driven mechanical arm | |
CN211220693U (en) | Five-branch-chain parallel manipulator | |
JP4046637B2 (en) | Pile press-fitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201009 Termination date: 20211205 |
|
CF01 | Termination of patent right due to non-payment of annual fee |